4.2直线、射线、线段测试题(人民教育版七上第4章训练)后附有答案
2019-2020学年人教版七年级数学上册4-2 直线、射线、线段(直线、射线、线段的表示)(练习)(含答案)

第四章几何图形的初步4.2直线、射线、线段(直线、射线、线段的表示)精选练习答案一. 选择题(共10小题)1.(2018·广信区第七中学初一期末)下列表述中正确的是()A.直线A、B相交于点MB.过A、B、C三点画直线lC.直线、cd相交于点MD.直线a、b相交于点m【答案】A【详解】A选项,直线A、B相交于点M符合直线和点的表示,符合题意,B选项,过A、B、C三点画直线l,由于三点不确定在同一条直线上在,因此表述不正确,不符合题意,C选项,直线、相交于点M ,直线表示不正确,因此不符合题意,D选项,直线a、b相交于点m,因为点用大写字母表示,因此表述不正确,故选A.2.(2018·西藏达孜县中学初一期末)下列说法正确的是( )A.过一点P只能作一条直线B.直线AB和直线BA表示同一条直线C.射线AB和射线BA表示同一条射线D.射线a比直线b短【答案】B【详解】A、过一点P可以作无数条直线;故错误.B、直线可以用两个大写字母来表示,且直线没有方向,所以AB和BA是表示同一条直线;故正确.C、射线AB和射线BA,顶点不同,方向相反,故射线AB和射线BA表示不同的射线;故错误.D、射线和直线不能进行长短的比较;故错误.故选:B.3.(2018·河北省保定市第十七中学初一期末)下列语句:①两条射线组成的图形叫做角②反向延长线段AB 得到射线BA,③延长射线AB 到点C,使BC=AC;④若AB=BC,则点B是AC 中点⑤连接两点的线段叫做两点间的距离,⑥两点之间直线最短. 正确的个数是( )A.1 B.2 C.3 D.4【答案】A【详解】①两条端点重合的射线组成的图形叫做角,故①错误;②反向延长线段AB,得到射线BA,故②正确;③延长线段AB到点C,使BC=AB,故③错误;④若AB=BC,则点B不一定是AC的中点,故④错误;⑤连接两点间的线段的长叫做两点间的距离,故⑤说法错误;⑥两点之间线段最短,故⑥错误.故正确的有②故选A.4.(2018·广东省东城春晖学校初一期末)下列说法中,正确的是()A.画一条长3cm的射线B.直线、线段、射线中直线最长C.延长线段BA到C,使AC=BAD.延长射线OC到C【答案】C【详解】解:A、画一条长3cm的射线,射线没有长度,故此选项错误;B、直线、线段、射线中直线最长,错误,射线、直线都没有长度,故此选项错误;C、延长线段BA到C,使AC=BA,正确;D、延长射线OC到点C,错误.故选:C.5.直线AB,线段CD,射线EF的位置如图所示,下图中不可能相交的是()A. B. C. D.【答案】A【分析】由定义知,直线是向两方无限延伸的,射线是向一个方向无限延伸的,所以直线、射线只要不经过线段,就不会和线段相交;射线方向只要朝着直线所在位置,或者直线朝着射线所在位置,两者就一定相交;如果直线在射线延伸的反方向,则两者不相交.【详解】A选项中,直线AB与线段CD无交点,符合题意;B选项中,直线AB与射线EF有交点,不合题意;C选项中,线段CD与射线EF有交点,不合题意;D选项中,直线AB与射线EF有交点,不合题意;故选:A.6.(2018·广东大光勘九年一贯制学校初一期末)直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.10【答案】D【详解】解:根据题意画图:由图可知有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10条.故选:D.7.(2019·宿州市第十一中学初一期末)下列语句正确的是()A.线段AB是点A与点B的距离B.过n边形的每一个顶点有条对角线C.各边相等的多边形是正多边形D.两点之间的所有连线中,直线最短【答案】B【详解】解:A、应是线段AB的长度是点A与点B之间的距离,故错误;B、过n边形的每一个顶点有(n-3)条对角线,故正确;C、各角相等,各边相等的多边形是正多边形,故错误;D、连接两点的所有连线中,线段最短,故错误.故选:B.8.(2018·广东省东城春晖学校初一期末)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短【答案】C【详解】解:A、经过一点可以作无数条直线,正确,不合题意;B、经过两点只能作一条直线,正确,不合题意;C、射线AB和射线BA不是同一条射段,故此选项错误,符合题意;D、两点之间,线段最短,正确,不合题意;故选:C.9.(2018·河南郑东新区九年制实验学校初一期中)预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对如图展开了激烈的讨论,下列说法不正确的是( )A.直线AB与直线BA是同一条直线B.射线OA与射线AB是同一条射线C.射线OA与射线OB是同一条射线D.线段AB与线段BA是同一条线段【答案】B【详解】解:A、因为直线向两方无限延伸;所以直线AB与直线BA是同一条直线,说法A正确,故本选项不符合题意;B、射线OA与射线AB端点不同,不是同一条射线,说法B错误,故本选项符合题意;C、射线OA与射线OB的端点和方向都相同;是同一条射线,故说法C正确,故本选项不符合题意;D、线段AB与线段BA是同一条线段,故说法D正确,故本选项不符合题意;故选:B.10.(2018·惠州市实验中学初一期末)下列说法中正确的是()A.三条直线两两相交有三个交点B.直线A与直线B相交于点MC.画一条5厘米长的线段D.在线段、射线、直线中直线最长【答案】C【详解】A.三条直线两两相交有三个或一个交点,故A选项错误;B.直线a与直线b相交于点M,直线可以用一个小写字母表示,不能用一个大写字母表示,故B选项错误;C.画一条5厘米长的线段,线段的长度可度量,故C选项正确;D.在线段、射线、直线中,直线和射线的长度无法度量,而线段的长度可度量,故D选项错误;故选:C.二. 填空题(共5小题)11.如图,棋盘上有黑、白两色棋子若干,若直线l经过3枚颜色相同的棋子,则这样的直线共有_____条.【答案】3【详解】如图,有3条.12.(2018·安达市吉星岗镇吉星岗中学初一期末)如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段________条.【答案】30【解析】线段AC,BE,CE,BD,AD上各有另两个点,每条上有6条线段;所以共有6×5=30条线段.故答案为:30.13.(2018·南宁市期末)如果A站与B站之间还有C、D两个车站,那么往返于A站与B站之间的客车应安排_________种车票.【答案】12【详解】如图所示:其中每两个站之间有AC、AD、AB、CD、CB、DB,故应该安排6×2=12(种).14.(2018·邢台市第七中学初一期中)如图,能用字母表示的直线有_____________条;能用字母表示的线段有_________条;在直线EF上的射线有_______条。
人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)

4.2 直线射线线段2一、单选题1.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为( )A.3 B.7 C.3或7 D.以上都不对2.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A.在A的左侧B.在AB之间C.在BC之间D.B处3.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不正确4.如果一条直线上得到10条不同的线段,那么在这条直线上至少有点( )A.20个B.10个C.7个D.5个5.下列说法错误的是()A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.经过一点有且只有一条直线与已知直线垂直6.在图中,线段的条数为( )A.9B.10 C.13D.157.如图,C 是AB 的中点,D 是BC 的中点,则下列等式不成立的是( )A . CD =AD-ACB . CD =21AB -BD C . CD =41AB D . CD=31AB 8.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A . 171B . 190C . 210D . 3809.如图,从A 地到B 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A . 两点确定一条直线B . 垂线段最短C . 两点之间,线段最短D . 两点之间,直线最短 10.如图所示的图形表示正确的有( )A . 3个B . 4个C . 5个D . 6个 11.下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示﹣1的点距离是3的点表示的数是2;③连接两点的线段叫做两点间的距离;④射线AB和射线BA是同一条射线;⑤若AC=BC,则点C是线段AB的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有()A.2个B.3个C.4个D.5个二、填空题12.点C在线段AB上,下列条件中:①AC=BC②AC=2AB③AB=2BC④AC=0.5AB。
【人教版】七上:4.2.1《直线、射线、线段》课时练习(含答案)

4.2 直线、射线、线段第1课时直线、射线、线段能力提升1.下列说法中错误的是( )A.过一点可以作无数条直线B.过已知三点可以画一条直线C.一条直线通过无数个点D.两点确定一条直线2.射线OA,射线OB表示同一条射线,下面正确的是( )3.图中共有条线段.4.看图填空:(1)点C在直线AB;(2)点O在直线BD,点O是直线与直线的交点;(3)过点A的直线共有条,它们是.5.如图所示,在线段AB上任取D,E,C三个点,则这个图中共有条线段. 6.木工检验木条的边线是否是直的,常常用眼睛从木条的一端向另一端望去,如果看到两个端点及这条边线中的各点都重合于一点,那么这条边线就是直的,你可以同伙伴试一试这种方法,并说一说其中的道理.7.按下列语句画出图形.(1)直线l经过A,B,C三点,点C在点A与点B之间;(2)经过点O的三条直线a,b,c;(3)两条直线AB与CD相交于点P;(4)P是直线a外一点,经过点P有一条直线b与直线a相交于点Q.★8.阅读下表:线段AB上的点数图例线段总条数Nn(包括A,B两点)3 3=2+14 6=3+2+15 10=4+3+2+16 15=5+4+3+2+1解答下列问题:(1)根据表中规律猜测线段总数N与线段上的点数n(包括线段两个端点)有什么关系?(2)根据上述关系解决如下实际问题:有一辆客车往返于A,B两地,中途停靠三个站点,如果任意两站间的票价都不同,问:①有多少种不同的票价?②要准备多少种车票?创新应用★9.如图,l1与l2是同一平面内的两条相交直线,它们有一个交点.如果在这个平面内再画第三条直线l3,那么这3条直线最多可有个交点;如果在这个平面内再画第4条直线l4,那么这4条直线最多可有个交点.由此,我们可以猜想:在同一平面内,n(n为大于1的整数)条直线最多可有个交点.(用含n的式子表示)参考答案能力提升1.B 过三点画直线,要看这三点在不在一条直线上,若不在,则无法画出.2.B 射线自端点向一方无限延伸,因为表示射线时字母有顺序性,即端点字母写在前面,所以点A、点B应在点O的同侧且三点在同一条直线上.3.104.(1)外(2)上AC BD (3)3 直线AD、直线AB、直线AC 这类题,必须认真观察图形,弄清各元素的位置关系,用精练、准确的语言表达.5.10 只要有一个端点不相同,就是不同的线段.6.解:经过两点有且只有一条直线.7.解:(1)(2)(3)(4)8.解:(1)N=1+2+3+…+(n-1)=.(2)①A,B两地之间有三个站点,说明在这条线段上有5个点,则共有=10条线段,即有10种票价;②由于从A到B和从B到A的车票不同,则要准备10×2=20种车票.创新应用9.3 6 通过作图发现:3条直线最多有交点1+2=3(个);4条直线最多有交点1+2+3=6(个);5条直线最多有交点1+2+3+4=10(个)……n条直线最多有交点1+2+3+…+(n-1)=(个).。
【最新】新人教版七年级数学上册同步试题《4.2直线、射线、线段》测试题含答案.doc

《4.2直线、射线、线段》测试题一、选择题1.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④考查说明:本题主要考查两点之间线段最短和两点确定一条直线的性质.答案与解析:D。
①②现象可以用两点可以确定一条直线来解释;③④现象可以用两点之间,线段最短来解释.2.下列语句正确的是()A.画直线AB=10厘米B.画直线l的垂直平分线C.画射线OB=3厘米D.延长线段AB到点C,使得BC=AB考查说明:本题主要考查的概念以及几何语言与图形语言的相互转化.答案与解析:选D.A、直线无限长;B、直线没有中点,无法画垂直平分线;C、射线无限长;D、延长线段AB到点C,使得BC=AB,正确.3.长度为12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为()A.2cm B.8cm C.6cm D.4cm考查说明:本题主要考查.根据图形弄清线段之间的和、差、倍、分关系是解题的关键.答案与解析:选B.∵长度为12cm的线段AB的中点为M,∴AM=BM=6,∵C点将线段MB分成MC:CB=1:2∴MC=2,CB=4∴AC=6+2=8.二、填空题4.往返于甲、乙两地的火车中途要停靠三个站,则有_______种不同的票价(来回票价一样),需准备_________种车票.考查说明:本题主要考查运用数学知识解决生活中的问题,需要掌握正确数线段的方法.答案与解析:10,20.此题相当于一条线段上有3个点,有多少种不同的票价即有多少条线段:4+3+2+1=10;有多少种车票是要考虑顺序的,则有10×2=20.5.在同一平面内的3个点,过任意2个点作一条直线,则可作直线的条数为______。
人教版七年级数学上册《4.2直线、射线、线段》同步练习题-含有答案

人教版七年级数学上册《4.2直线、射线、线段》同步练习题-含有答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列直线、射线、线段中,能相交的是()A.B.C.D.2.任意画三条不重合的直线,交点的个数是()A.1B.1或3C.0或1或2或3D.不能确定3.如图,用适当的语句表述图中点与直线的关系,错误..的是()A.点P在直线AB外B.点C在直线AB外C.直线AC不经过点M D.直线AC经过点B4.晚上,小明拿起手电筒射向远方,他发现电筒光线是一条()A.线段B.射线C.直线D.不能确定5.如图,下列不正确的说法是()A.直线AB与直线BA是同一条直线;B.射线OA与射线AB是同一条射线C.线段AB与线段BA是同一条线段;D.射线OA与射线OB是同一条射线6.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线D.线段是直线的一部分7.已知:A、B、C是同一直线上的三点,点D为AB的中点,若12AB=,BC=7,则CD的长为()A.1B.13C.13或1D.9.531二、填空题三、解答题15.如图,点C在线段上,,AC=12,点M,N分别是,的中点,点P在线段上,点Q为的中点.(1)分别求出、的长度;(2)若,求的长度.16.如图,点A,C,N,B在同一条直线上.(1)图中共有______条线段;(2)AB=______+______+______;(3)若点N是线段BC的中点,35cm=求线段AN的长.AB=,3AC CN参考答案:1.A2.C3.B4.B5.B6.A7.C8.D9.C10.2 直线上直线外直线外直线上11.312.AB13.314.3或1315.(1)CN=9 MN=6(2)AP=616.(1)6 (2)AC,CN,NB (3)28cm。
人教版数学七年级上册 第4章 4.2 ---4.3 同步练习(含答案)

人教版数学(七上)第4章 4.2 直线、射线、线段一、选择题1.下列各说法一定成立的是( )A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2.如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是( )A.A′B′>AB B.A′B′=ABC.A′B′<AB D.A′B′≤AB3. 如图,点C是线段BD之间的点,有下列结论:( )①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线5.如图所示,不同的线段的条数是( )A.4条B.5条C.10条D.12条6.射线OA与OB是同一条射线,画图正确的是( )A.B.C.D.7.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是( )A.1cm B.9cmC.1cm或9cm D.以上答案都不正确8. 下列选项中各有一条射线和一条线段,则它们能相交的是()9. 如图的图示中,直线表示方法正确的有()A.①②③④B.①②C.②④D.①④10. 已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC=BC=AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③二、填空题11.经过同一平面内的A,B,C三点中的任意两点,可以作出__________条直线.12.如图,该图中不同的线段数共有__________条.13. 如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.14.如下图,从小华家去学校共有4条路,第__________条路最近,理由是__________.15.如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=__________.16. 如图,只用圆规,比较下列线段的大小(选填“>”“<”或“=”).(1)图①中,AB____CD,AD____AB,AD____BD;(2)图②中,MN____EF,EF____KE,GM____MN.三、解答题17. 如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.18.如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.19.如图所示,C是线段AB上的一点,D是AC的中点,E是BC的中点,如果AB=9cm,AC=5cm.求:(1)AD的长;(2)DE的长.20. 如图,已知A,B,C,D四个点:(1)画直线AB,CD相交于点P;(2)连接AC和BD并延长AC和BD相交于点Q;(3)连接AD,BC相交于点O;(4)以点C为端点的射线有几条?请列举出来;(5)以点C为一个端点的线段有几条?请列举出来.21. 如图,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问应把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.22. 如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD 的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.23. 如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.参考答案一、选择题1.下列各说法一定成立的是( )A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行【答案】 D2.如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是( )A.A′B′>AB B.A′B′=ABC.A′B′<AB D.A′B′≤AB【答案】 A3. 如图,点C是线段BD之间的点,有下列结论:( )①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③【答案】B【解析】①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确.故选B.4.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是( )A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线【答案】 D5.如图所示,不同的线段的条数是( )A.4条B.5条C.10条D.12条【答案】 C6.射线OA与OB是同一条射线,画图正确的是( )A.B.C.D.【答案】 B7.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是( )A.1cm B.9cmC.1cm或9cm D.以上答案都不正确【答案】 C8. 下列选项中各有一条射线和一条线段,则它们能相交的是()【答案】C【解析】射线可以向一方无限延伸.故选C.9. 如图的图示中,直线表示方法正确的有()A.①②③④B.①②C.②④D.①④【答案】D10. 已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC=BC=AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③【答案】【解答】解:①点C在线段AB上,且AC=BC,则C是线段AB中点故①不符合题意;②AB=2BC,C不一定是线段AB中点故②不符合题意;③AC=BC=AB,则C是线段AB中点,故③符合题意.故选:B.二、填空题11.经过同一平面内的A,B,C三点中的任意两点,可以作出__________条直线.【答案】1或312.如图,该图中不同的线段数共有__________条.【答案】613. 如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.【答案】【解答】解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.14.如下图,从小华家去学校共有4条路,第__________条路最近,理由是__________.【答案】③;两点之间,线段最短15.如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=__________.【答案】116. 如图,只用圆规,比较下列线段的大小(选填“>”“<”或“=”).(1)图①中,AB____CD,AD____AB,AD____BD;(2)图②中,MN____EF,EF____KE,GM____MN.【答案】(1)>,=,=(2)=,<,<三、解答题17. 如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.【答案】解:如图所示.18.如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.【答案】【解析】设AB=3x,则BC=2x,CD=5x,因为E、F分别是AB、CD 的中点,所以BE=x,CF=x,因为BE+BC+CF=EF,且EF=24,所以x+2x+x=24,解得x=4,所以AB=12,BC=8,CD=20.19.如图所示,C是线段AB上的一点,D是AC的中点,E是BC的中点,如果AB=9cm,AC=5cm.求:(1)AD的长;(2)DE的长.【答案】【解析】(1)因为AC=5cm,D是AC中点,所以AD=DC=AC= cm,(2)因为AB=9cm,AC=5cm,所以BC=AB−AC=9−5=4(cm),因为E是BC中点,所以CE=BC=2cm,所以DE=CD+CE=+2=(cm).20. 如图,已知A,B,C,D四个点:(1)画直线AB,CD相交于点P;(2)连接AC和BD并延长AC和BD相交于点Q;(3)连接AD,BC相交于点O;(4)以点C为端点的射线有几条?请列举出来;(5)以点C为一个端点的线段有几条?请列举出来.【答案】解:(1),(2),(3)如答图;(4)以点C为端点的射线有3条,分别是射线CP,射线CD,射线CQ;(5)以点C为一个端点的线段有6条,分别是线段CP,线段CD,线段CA,线段CQ,线段CO,线段CB.21. 如图,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问应把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.【答案】解:如答图,应建在AC,BD连线的交点处.理由:根据两点之间线段最短,将A,C,B,D用线段连起来,路程最短,两线段的交点处建超市可使4个居民小区到购物中心的距离之和最小.22. 如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.【答案】【解答】解:(1)∵AB=16cm,CD=6cm,∴AC+BD=AB﹣CD=10cm,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=16﹣5=11(cm);(2)∵AB=m,CD=n,∴AC+BD=AB﹣CD=m﹣n,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=m﹣(m﹣n)=.23. 如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.【答案】【解答】解:(1)∵AB=100=50,AP:BP=2:3,∴AP=20;(2)∵AP:BP=2:3,∴设AP=2x,BP=3x,若一根绳子沿B点对折成线段AB,则剪断后的三段绳子中分别为2x,2x,6x,∴6x=60,解得x=10,∴绳子的原长=2x+2x+6x=10x=100(cm);若一根绳子沿A点对折成线段AB,则剪断后的三段绳子中分别为4x,3x,3x,∴4x=60,解得x=15,∴绳子的原长=4x+3x+3x=10x=150(cm);综上所述,绳子的原长为100cm或150cm.故答案为100cm或150cm.4.3角一.选择题1.上午10:00时,钟表的时针与分针的夹角为()A.30°B.60°C.90°D.120°2.下列说法:①一个角的补角大于这个角;②小于平角的角是钝角;③同角或等角的余角相等;④若∠1+∠2+∠3=180°,则∠1、∠2、∠3互为补角,其中正确的说法有()A.4个B.3个C.2个D.1个3.已知∠A=115°,∠B是∠A的补角,则∠B的余角的度数是()A.65°B.115°C.15°D.25°4.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=160°,则∠BOC等于()A.20°B.30°C.40°D.50°5.如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线.其中结论正确的个数是()A.4个B.3个C.2个D.1个6.如图用一副三角板可以画出15°的角,用它们还可以画出其它一些特殊角,不能利用这副三角板直接画出的角度是()A.55°B.75°C.105°D.135°7.下面图形中,射线OP是表示北偏东30°方向的是()A.B.C.D.8.下列说法错误的是()A.如果两个角是同一个角的余角,那么这两个角相等B.任何有理数都可以用数轴上的点表示C.绝对值等于它的相反数的数都是负数D.若a=b,则9.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V“字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角α的度数为()A.25°B.35°C.45°D.55°10.岛A和岛B处于东西方向的一条直线上,由岛A、岛B分别测得船C位于北偏东40°和北偏西50°方向上,下列符合条件的示意图是()A.B.C.D.二.填空题11.若两个角互补,且度数之比为3:2,求较大角度数为.12.计算:已知∠α=20°20′,则∠α的余角为.13.如图,点A在点B的北偏西30°方向,点C在点B的南偏东60°方向.则∠ABC的度数是.14.如图,将长方形纸片进行折叠,ED,EF为折痕,A与A'、B与B'、C与C'重合,若∠AED=25°,则∠BEF的度数为.15.如图,射线OA的方向是北偏东20度,射线OB的方向是北偏西40度,OD是OB的反向延长线.若OC是∠AOD的平分线,则射线OC的方向是北偏东度.三.解答题16.如图,已知∠ABP与∠CBP互余,∠CBD=32°,BP平分∠ABD.求∠ABP的度数.17.如图,点O是直线AB上的一点,∠COD是一个直角,OE平分∠BOC.(1)如图1,当∠AOC=30°,求∠DOE的度数;(2)如图2,若∠AOC=x°,求∠DOE的度数.(用含有x的代数式表示)18.如图,已知∠AOC:∠AOB=2:7,OD是∠AOB的平分线,若∠COD=15°,求∠AOC 的度数.19.探究题:如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=100°,将一直角三角形的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?说明理由;(2)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果)参考答案与试题解析一.选择题1.【解答】解:∵10点整,时针指向10,分针指向12,中间相差两大格,钟表12个数字,每相邻两个数字之间的夹角为30°,∴10点整分针与时针的夹角是2×30°=60度.故选:B.2.【解答】解:①已知∠A=140°,则∠A的补角=40°,原来的说法错误;②大于直角小于平角的角是钝角,原来的说法错误;③同角或等角的余角相等是正确的;④和为180度的两个角互为补角,原来的说法错误.故其中正确的说法有1个.故选:D.3.【解答】解:∠A的补角∠B的度数是:180°﹣115°=65°,则余角是90°﹣65°=25°.故选:D.4.【解答】解:∵∠AOB=∠COD=90°,∠AOD=160°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣160°=20°.故选:A.5.【解答】解:①∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD=90°,∴∠AOB=∠COD;②∠AOB+∠COD=90°不一定和是90°;③若OB平分∠AOC,则∠AOB=∠BOC=45°,∴∠COD=45°,∴OC平分∠BOD;④∵∠AOB=∠COD,∴∠BOE=∠COE,∴∠AOE=∠DOE,∴∠AOD的平分线与∠BOC的平分线是同一条射线.∴①③④正确,故选:B.6.【解答】解:因为一副三角板有30°、45°、60°、90°的角,又∵45°﹣30°=15°,45°+30°=75°,45°+60°=105°,45°+90°=135°.所以用一副三角板可以画出75°、105°、135°等特殊的角.故选:A.7.【解答】解:∵方向角是以正北,正南方向为基准,来描述物体所处的方向,∴射线OP是表示北偏东30°方向可表示为如图.故选:D.8.【解答】解:A.如果两个角是同一个角的余角,那么这两个角相等,说法正确;B.任何有理数都可以用数轴上的点表示,说法正确;C.绝对值等于它的相反数的数都是负数和0,故原说法错误;D.若a=b,则,说法正确;故选:C.9.【解答】解:如图所示:食指和中指所夹锐角α的度数为:35°.故选:B.10.【解答】解:符合题意的示意图为:.故选:D.二.填空题(共5小题)11.【解答】解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.12.【解答】解:∠α的余角=90°﹣20°20′=69°40′.故答案为:69°40′.13.【解答】解:如图:由题意,得∠ABD=30°,∠EBC=60°.∴∠FBC=90°﹣∠EBC=90°﹣60°=30°.∵∠DBF=90°,∴∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为:150°.14.【解答】解:根据翻折的性质可知,∠AED=∠A′ED,∠BEF=∠FEB′,∵∠AED+∠A′ED+∠BEF+∠FEB′=180°,∴∠AED+∠BEF=90°,又∵∠AED=25°,∴∠BEF=65°.故答案为:65°.15.【解答】解:∵OB的方向是北偏西40°,OA的方向是北偏东20°,∴∠AOB=40°+20°=60°,∴∠AOD=180°﹣60°=120°,∵OC是∠AOD的平分线,∴∠AOC=60°,∵20°+60°=80°,∴射线OC的方向是北偏东80°;故答案为:80.三.解答题(共4小题)16.【解答】解:∵∠ABP与∠CBP互余,∴∠ABP+∠CBP90°,即:∠ABC=90°,∵∠CBD=32°,∴∠ABD=90°+32°=122°,∵BP平分∠ABD.∴∠ABP=∠DBP=∠ABD=×122°=61°.17.【解答】解:(1)∵∠AOC=30°,∴∠BOC=180°﹣∠AOC=150°,又∵OE平分∠BOC,∴∠BOE=∠COE=∠BOC=75°,∴∠DOE=∠COD﹣∠COE=15°;(2)∵∠AOC=x°,∴∠BOC=180°﹣∠AOC=(180﹣x)°,又∵OE平分∠BOC∴∠BOE=∠COE=∠BOC=(180﹣x)°,又∵∠COD=90°∴∠DOE=∠COD﹣∠COE=90°﹣(180﹣x)°=x°18.【解答】解:∵∠AOC:∠AOB=2:7,∴设∠AOC=2x°,∠AOB=7x°,∵OD是∠AOB的平分线,∴∠AOD=∠AOB=3.5x°,∵∠DOC=15°,∴3.5x﹣2x=15,∴x=10,即∠AOC=2x°=20°.19.【解答】解:(1)平分,理由:延长NO,在延长线上取一点D,∵∠MON=90°∴∠MOD=90°∴∠MOB+∠NOB=90°,∠MOC+∠COD=90°,∴∠NOB=∠COD,∵∠NOB=∠AOD,∴∠COD=∠AOD,∴直线NO平分∠AOC;(2)分两种情况:①如图2,∵∠BOC=100°∴∠AOC=80°,当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=40°,∴∠BON=40°,∠BOM=50°,即逆时针旋转的角度为50°,由题意得,5°t=50°解得t=10(s);②如图3,当NO平分∠AOC时,∠NOA=40°,∴∠AOM=50°,即逆时针旋转的角度为:180°+50°=230°。
人教版七年级上册数学 4.2直线、射线、线段 同步测试(含解析)
4.2直线、射线、线段同步测试一.选择题1.下列说法正确的是()A.射线P A和射线AP是同一条射线B.射线OA的长度是3cmC.直线ab,cd相交于点PD.两点确定一条直线2.如图,C为AB的中点,D是BC的中点,则下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.CD=BC D.AD=BC+CD 3.平面上有A、B、C三点,经过任意两点画一条直线,可以画出直线的数量为()A.1条B.3条C.1条或3条D.无数条4.如图,线段CD在线段AB上,且CD=3,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.315.已知点A、B、C、D在同一条直线上,线段AB=8,C是AB的中点,DB=1.5.则线段CD的长为()A.2.5B.3.5C.2.5或5.5D.3.5或5.56.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB的中点的是()A.AM=BM B.AB=2AM C.AM+BM=AB D.BM=AB7.如图,线段AB=18cm,点M为线段AB的中点,点C将线段MB分成MC:CB=1:2,则线段AC的长度为()A.6cm B.12cm C.9cm D.15cm8.如图,已知线段AB=8,点C是线段AB是一动点,点D是线段AC的中点,点E是线段BD的中点,在点C从点A向点B运动的过程中,当点C刚好为线段DE的中点时,线段AC的长为()A.3.2B.4C.4.2D.9.如图,D、E顺次为线段AB上的两点,AB=19,BE﹣DE=7,C为AD的中点,则AE ﹣AC的值为()A.5B.6C.7D.810.如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=CB﹣EB;③CE=CD+DB﹣AC;④CE=AE+CB﹣AB.其中,正确的是()A.①②B.①②③C.①②④D.①②③④二.填空题11.数学来源于生活而又高于生活,比如当我们在植树的时候,要想整齐地栽一行树,只需要确定两端树坑的位置即可.用数学知识可以解释为.12.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD=.13.如图,点C在线段AB上,且AC=AB,点D在线段BC上,AD=5,BD=3,则线段CD的长度为.14.如图,点C、D在线段AB上,AC=6cm,CD=4cm,AB=12cm,则图中所有线段的和是cm.15.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.三.解答题16.如图,已知点A、B、C.D,根据下列语句画图.(不写作图过程)作射线AB、直线AC,连接AD并延长线段AD.17.如图,A,B,C三棵树在同一直线上,若小明正好站在线段的AC中点Q处,BC=2BQ.(1)填空:AQ==AC,AQ﹣BC=.(2)若BQ=3米,求AC的长.18.如图,线段AB上顺次有三个点C,D,E,把线段AB分为了2:3:4:5四部分,且AB=28.(1)求线段AE的长;(2)若M,N分别是DE,EB的中点,求线段MN的长度.参考答案一.选择题1.解:A、射线P A和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线ab,cd,直线的写法不对,故本选项错误;D、两点确定一条直线是正确的.故选:D.2.解:∵C是AB的中点,D是BC的中点,∴AC=BC=AB,CD=BD=BC,∵CD=BC﹣BD∴CD=AC﹣BD,故A正确;∵CD=BC﹣DB,∴CD=AB﹣DB,故B正确;∴AD=AC+CD=BC+CD,故D正确;∵CD=BD=BC;故C错误;故选:C.3.解:①如果三点共线,过其中两点画直线,共可以画1条;②如果任意三点不共线,过其中两点画直线,共可以画3条.故选:C.4.解:所有线段之和=AC+AD+AB+CD+CB+BD,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB﹣CD)=12+3(AB﹣3)=3AB+3=3(AB+1),∵AB是正整数,∴所有线段之和是3的倍数,故选:C.5.解:∵AB=8,C是AB的中点,∴AC=BC=4,∵DB=1.5.当点D在点B左侧时,CD=BC﹣BD=4﹣1.5=2.5,当点D在点B右侧时,CD=BC+BD=4+1.5=5.5,则线段CD的长为2.5或5.5.故选:C.6.解:A、由AM=BM可以判定点M是线段AB中点,所以此结论正确,故这个选项不符合题意;B、由AB=2AM可以判定点M是线段AB中点,所以此结论正确,故这个选项不符合题意;C、由AM+BM=AB不可以判定点M是线段AB中点,所以此结论不正确,故这个选项符合题意;D、由BM=AB可以判定点M是线段AB中点,所以此结论不正确,故这个选项不符合题意;故选:C.7.解:∵线段AB=18cm,点M为线段AB的中点,∴AM=BM=AB=9,∵点C将线段MB分成MC:CB=1:2,设MC=x,CB=2x,∴BM=MC+CB=3x,∴3x=9,解得x=3,∴AC=AM+MC=9+3=12.则线段AC的长度为12.故选:B.8.解:∵点D是线段AC的中点,∴AD=CD,∵点E是线段BD的中点,∴BE=DE,∵点C为线段DE的中点,∴CD=CE,∴AD=CD=CE,∵AB=AD+DC+CE+BE=3AD+BE=3AD+DE=3AD+2CD=5AD,∴AD=1.6,∴AC=2AD=3.2,故选:A.9.解:∵AB=19,设AE=m,∴BE=AB﹣AE=19﹣m,∵BE﹣DE=7,∴19﹣m﹣DE=7,∴DE=12﹣m,∴AD=AB﹣BE﹣DE=19﹣(19﹣m)﹣(12﹣m)=19﹣19+m﹣12+m=2m﹣12,∵C为AD中点,∴AC=AD=×(2m﹣12)=m﹣6.∴AE﹣AC=6,故选:B.10.解:由图可知:①CE=CD+DE,正确;②CE=CB﹣EB,正确;③CE=CD+DB﹣EB,错误;④CE=AE+CB﹣AB,正确;故选:C.二.填空题11.解:两端两个树坑的位置,可看做两个点,根据两点确定一条直线,即可确定一行树所在的位置.故答案为:两点确定一条直线.12.解:∵DA=6,DB=3,∴AB=DB+DA=3+6=9,∵C为线段AB的中点,∴BC=AB=×9=4.5,∴CD=BC﹣DB=4.5﹣3=1.5.故答案为:1.5.13.解:∵AD=5,BD=3,∴AB=AD+BD=8,∵AC=AB=,∴CD=AD﹣AC=5﹣=,故答案为:.14.解:由线段的和差,得AC+DB=AB﹣CD=12﹣4=8(cm).图中所有线段的和AC+AD+AB+CD+CB+DB=AC+(AC+CD)+AB+CD+(CD+DB)+DB=2(AC+DB)+3CD+AB=2×8+3×4+12=40(cm).答:图中所有线段的和是40cm,故答案为:40.15.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.三.解答题16.解:作射线AB、直线AC,连接AD并延长线段AD,如图所示:17.解:(1)∵O是线段AC的中点,∴AQ=CQ=AC,AQ﹣BC=CQ﹣BC=QB,故答案为;(2)∵BQ=3米,BC=2BQ,∴BC=2BQ=6米,∴CQ=BC+BQ=6+3=9(米),∵Q是AC中点,∴AQ=QC=9(米),∴AC=AQ+QC=9+9=18(米),∴AC的长是18米.18.解:(1)设AC=2x,则CD、DE、EB分别为3x、4x、5x,由题意得,2x+3x+4x+5x=28,解得,x=2,则AC、CD、DE、EB分别为4、6、8、10,则AE=AC+CD+DE=4+6+8=18;(2)如图:∵M是DE的中点,∴ME=DE=4,∵N是EB的中点∴EN=EB=5,∴MN=ME+EN=4+5=9.。
人教版七年级数学上学期《4.2 直线、射线、线段》 同步练习试题
4.2 直线、射线、线段一.选择题1.如图,从C地到B地有①②③条路线可以走,下列判断正确的是()A.路线①最短B.路线②最短C.路线③最短D.①②③长度都一样2.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条3.已知线段AB=9,点C是AB的中点,点D是AB的三等分点,则C,D两点间距离为()A.3B.1.5C.1.2D.14.平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外5.如图,从A到B有①,②,③三条路线,最短的路线是①,其理由是()A.因为它最直B.两点确定一条直线C.两点间的距离的概念D.两点之间,线段最短6.如图,小林利用圆规在线段CE上截取线段CD,使CD=AB.若点D恰好为CE的中点,则下列结论中错误的是()A.CD=DE B.AB=DE C.CE=CD D.CE=2AB7.如图,点C,D在线段AB上.则下列表述或结论错误的是()A.若AC=BD,则AD=BC B.AC=AD+DB﹣BCC.AD=AB+CD﹣BC D.图中共有线段12条8.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若AB=10,CD =4,则EF的长为()A.6B.7C.5D.89.已知线段AB=4cm,延长线段AB到C使BC=AB,延长线段BA到D使AD=AC,则线段CD的长为()A.12cm B.10cm C.8cm D.6cm10.图中下列从A到B的各条路线中最短的路线是()A.A→C→G→E→B B.A→C→E→B C.A→D→G→E→B D.A→F→E→B 11.已知点A,B,C在同一直线上,若AB=20cm,AC=30cm,点M、N分别是线段AB、AC中点,求线段MN的长是()A.5cm B.5cm或15cm C.25cm D.5cm或25cm 12.如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是()A.两点之间,线段最短B.两点确定一条直线C.两点之间,直线最短D.直线比线段长13.如图,把三角形剪去一个角,所得四边形的周长比原三角形的周长小,能正确解释这一现象的数学知识是()A.四边形周长小于三角形周长B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线二.填空题14.已知如图,C是线段AB上的一点,N是线段BC的中点,若AB=10,AC=6,则AN =.15.如图,已知线段AB=8cm,AD=1.5cm,D为线段AC的中点,则线段CB=cm.16.已知线段AB,延长AB至点C,使BC=AB.若点D为线段AC的中点,点E为线段AB的中点,且DE=1cm,则线段AB=cm.17.如图,线段AB=4cm,延长线段AB到C,使BC=1cm,再反向延长AB到D,使AD =3cm,E是AD中点,F是CD的中点.则EF的长度为cm.三.解答题(共3小题)18.如图,点C在线段AB上,AB=9,AC=2CB,D是AC的中点,求AD长.19.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.20.已知:如图,在直线l上顺次有A、B、C三点,AB=4cm,AB>BC,点O是线段AC 的中点,且OB=cm,求:B、C两点之间的距离.参考答案一.选择题1.解:利用线段的性质可得路线②最短,故选:B.2.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.3.解:∵点C是AB的中点,AB=9,∴AC=CB=AB=4.5,当点D是AB的三等分点,点D在线段BC上时,BD=AB=3,∴CD=4.5﹣3=1.5,当点D是AB的三等分点,点D′在线段AC上时,AD′=AB=3,∴CD′=4.5﹣3=1.5,故选:B.4.解:如图,在平面内,AB=10,∵AC=7,BC=3,∴点C为以A为圆心,7为半径,与以B为圆心,3为半径的两个圆的交点,由于AB=10=7+3=AC+BC,所以,点C在线段AB上,故选:A.5.解:从A到B有①,②,③三条路线,最短的路线是①,其理由是:两点之间,故选:D.6.解:∵点D恰好为CE的中点,∴CD=DE,∵CD=AB,∴AB=DE=CE,即CE=2AB=2CD,故A,B,D选项正确,C选项错误,故选:C.7.解:A、若AC=BD,则AD=BC,正确,不符合题意;B、AC=AD+DB﹣BC,正确,不符合题意;C、AD=AB+CD﹣BC,正确,不符合题意;D、图中共有线段6条,符合题意,故选:D.8.解:由线段的和差,得AC+DB=AB﹣CD=10﹣4=6.∵点E是AC的中点,∴AE=AC,∵点F是BD的中点,∴BF=BD,∴AE+BF=(AC+DB)=3.由线段的和差,得EF=AB﹣(AE+BF)=10﹣3=7.故选:B.9.解:由线段的和差,得AC=AB+BC=4+4=6(cm),由线段中点的性质,得CD=AD+AC=2AC=2×6=12(cm),故选:A.10.解:最短的路线是A→F→E→B.11.解:(1)当点C位于点B的右边时,MN=(AC﹣AB)=5cm,(2)当点C位于点A的左边时,MN=(AC+AB)=25cm故线段MN的长为5cm或25cm.故选:D.12.解:点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是:两点之间,线段最短,故选:A.13.解:如图,把三角形剪去一个角,所得四边形的周长比原三角形的周长小,能正确解释这一现象的数学知识是:两点之间,线段最短.故选:C.二.填空题14.解:∵AB=10,AC=6,∴CB=10﹣6=4,∵N是线段BC的中点,∴CN=2,∴AN=AC+CN=6+2=8.15.解:∵D为线段AC的中点,∴AC=2AD=2×1.5cm=3(cm),∵AB=8cm,∴CB=AB﹣AC=8﹣3=5(cm).故答案为:5.16.解:设BC=x,则AB=3x,∴AC=4x,∵点D为线段AC的中点,点E为线段AB的中点,∴AD=AC=2x,AE=AB=x,∴DE=AD﹣AE=2x﹣x=x=1,∴x=2,故答案为:6.17.解:CD=AD+AB+BC=3+4+1=8cm;∵E是AD中点,F是CD的中点,∴DF=CD=×8=4cm,DE=AD=×3=1.5cm.∴EF=DF﹣DE=4﹣1.5=2.5cm,故答案为:2.5.三.解答题(共3小题)18.解:∵点C在线段AB上,AC=2CB,AB=9,∴AC=6,∵D是AC的中点,∴AD=AC,∴AD=3.19.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.20.解:∵AB=4cm,OB=cm∴OA=AB﹣OB=3.5而O是线段AC的中点,∴BC=AC﹣AB=7﹣4=3故B、C两点之间的距离为3cm.。
人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案).docx
4.2 直线射线线段2一、单选题1.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为( )A.3 B.7 C.3或7 D.以上都不对2.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A.在A的左侧B.在AB之间C.在BC之间D.B处3.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不正确4.如果一条直线上得到10条不同的线段,那么在这条直线上至少有点( )A.20个B.10个C.7个D.5个5.下列说法错误的是()A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.经过一点有且只有一条直线与已知直线垂直6.在图中,线段的条数为( )A.9B.10 C.13D.157.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是()A . CD =AD-ACB . CD =21AB -BDC . CD =41AB D . CD=31AB 8.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A . 171B . 190C . 210D . 3809.如图,从A 地到B 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是()A . 两点确定一条直线B . 垂线段最短C . 两点之间,线段最短D . 两点之间,直线最短10.如图所示的图形表示正确的有( )A . 3个B . 4个C . 5个D . 6个11.下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示﹣1的点距离是3的点表示的数是2;③连接两点的线段叫做两点间的距离;④射线AB 和射线BA 是同一条射线;⑤若AC=BC ,则点C 是线段AB 的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有( )A . 2个B . 3个C . 4个D . 5个二、填空题12.点C在线段AB上,下列条件中:①AC=BC②AC=2AB③AB=2BC④AC=0.5AB。
【最新】人教版七年级数学上册同步练习4.2 直线、射线、线段(含答案).doc
4.2 直线、射线、线段基础检测1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线.2.如图1,图中共有______条线段,它们是_________.1()2()3()3.如图2,图中共有_______条射线,指出其中的两条________.4.线段AB=8cm,C 是AB 的中点,D 是BC 的中点,A 、D 两点间的距离是_____cm.5.如图3,在直线上顺次取A 、B 、C 、D 四点,则A C=______+BC=AD-_____,AC+BD- BC=________.6.下列语句准确规范的是( )A.直线a 、b 相交于一点mB.延长直线ABC.反向延长射线AO(O 是端点)D.延长线段AB 到C,使BC=AB 7.下列四个图中的线段(或直线、射线)能相交的是( )1()2()3()4()A.(1)B.(2)C.(3)D.(4) 8.如果点C 在AB 上,下列表达式①AC=12AB;②AB=2BC;③C 是AB 中点的有( )A.1个B.2个C.3个D.4个9.如上图,从A 到B 有3条路径,最短的路径是③,理由是( ) A.因为③是直的 B.两点确定一条直线 C.两点间距离的定义 D.两点之间,线段最短 10.如图,平面上有四个点A 、B 、C 、D,根据下列语句画图 (1)画直线AB 、CD 交于E 点; (2)画线段AC 、BD 交于点F; (3)连接E 、F 交BC 于点G;B AA(4)连接AD,并将其反向延长; (5)作射线BC;(6)取一点P,使P 在直线AB 上又在直线CD 上. 拓展提高11.观察图中的3组图形,分别比较线段a 、b 的长短,再用刻度尺量一下, 看看你的结果是否正确.12.如图,要在一个长方体的木块上打四个小孔,这四个小孔要在一条直线上,且每两个相邻孔之间的距离相等,画出图形,并说明其中道理.13.如图,一个三角形纸片,不用任何工具,你能准确比较线段AB 与线段AC 的大小吗试用你的方法分别确定线段AB 、AC 的中点.BA14.在一条直线上取两上点A 、B,共得几条线段在一条直线上取三个点A 、B 、 C,共得几条线段在一条直线上取A 、B 、C 、D 四个点时,共得多少条线段 在一条直线上取n 个点时,共可得多少条线段CB A C4.2 直线、射线、线段答案1.无数;一,只有一2.3条,线段AC,AB,CB3.4,射线BA,射线A B4.65. AB,CD,AD6.D7.A8.C9.D12.道理:经过两点,有且只有一条直线13.提示: 折叠14.2个点时1条线段,3个点时有2+1=3条线段;4个点时有3+2+1=6条线段;[n 个点时有(n-1)+(n-2)+……+3+2+1=(1)2n n条线段.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2直线、射线、线段测试题
一、选择题
1. 下列说法错误的是( )
A. 平面内过一点有且只有一条直线与已知直线垂直 B. 两点之间的所有连线中,线段
最短
C.经过两点有且只有一条直线 D. 过一点有且只有一条直线与已知直线平行
2.平面上的三条直线最多可将平面分成( )部分 A .3 B.6 C . 7 D.9
3.如果A BC三点在同一直线上,且线段AB=4CM,BC=2CM,那么AC两点之间的距离为( )
A .2CM B. 6CM C .2 或6CM D .无法确定
4.下列说法正确的是( )
A.延长直线AB到C; B.延长射线OA到C; C.平角是一条直线; D.延长线段AB
到C
5.如果你想将一根细木条固定在墙上,至少需要几个钉子( )
A.一个 B.两个 C.三个 D.无数个
6.点P在线段EF上,现有四个等式①PE=PF;②PE=12EF;③12EF=2PE;④2PE=EF;其中能表
示点P是EF中点的有( )
A.4个 B.3个 C.2个 D.1个
7. 如图所示,从A地到达B地,最短的路线是( ).
A.A→C→E→B B.A→F→E→B C.A→D→E→B D.A→C→G→E→B
8..如右图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,
则线段AD的长是( )
A .2()ab- B .2ab- C .ab+ D .ab-
9..在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,
那么线段OB的长度是( )
A.2㎝ B.0.5㎝ C.1.5㎝ D.1㎝
10.如果AB=8,AC=5,BC=3,则( )
A. 点C在线段AB上 B. 点B在线段AB的延长线上
C. 点C在直线AB外 D .点C可能在直线AB上,也可能在直线AB外
二、填空题
1.若线段AB=a,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN=_______.
2.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______
条直线;
经过四点最多能确定 条直线。
3.图中共有线段________条。
4.如图,学生要去博物馆参观,从学校A处到博物馆B处的路径共有⑴、⑵、⑶三条,为
了节约时间,尽快从A处赶到B处,假设行走的速度不变,你认为应该走第________条线路
(只填番号)最快,理由是___________________。
5.若AB=BC=CD那么AD= AB AC= AD
6.直线上8点可以形成_______条线段;若n个点可以形成_____条线段。
7.如图,点C是线段AB上一点,点D、E分别是线段AC、BC的中点. 如果AB=a,AD=b,
其中2ab>,那么CE= 。
8.如图,若CB = 4 cm,DB = 7 cm,且D是AC的中点,则AC =_________________.
9.下面由火柴杆拼出的一列图形中,第n个图形由几根火柴组成.(4分)
通过观察可以发现:第4个图形中,火柴杆有_______根,第n个图形中,火柴杆有________
根.
10.已知:A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm,则线段AC=_______。
三、解答题
1.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度。
2.线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF。
3.如图所示一只蚂蚁在A处,想到C处的最短路线是请画出简图,并说明理由。
4.观察图①,由点A和点B可确定 条直线;
观察图②,由不在同一直线上的三点A、B和C最多能确定 条直线;
(1)动手画一画图③中经过A、B、C、D四点的所有直线,最多共可作 条直线;
(2)在同一平面内任三点不在同一直线的五个点最多能确定 条
直线、n个点(n≥2)最多能确定 条直线。
5.如图,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点。
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足ABCBacm,其它条件不变,你能猜想MN的长度
吗?并说明理由。
(3)若C在线段AB的延长线上,且满足ACCBbcm,M、N分别为AC、BC的中点,
你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由。
参考答案
一.选择题
1.D 2.C 3.C 4.D 5.B 6.A 7.B 8.B 9.D 10.A
二。填空题
1. 12a; 2.无数、1或3 、6; 3.31; 4.(2)、两点之间的所有连线中,线段最短;
5.3、23
6.28、(1)2nn; 7. 22ab; 8.6cm; 9.13、(31)n; 10.20cm或10cm
三。解答题
1. 解:如图
∵C点为线段AB的中点,D点为BC的中点,AB=10cm
∴152ACCBABcm
∴12.52CDBCcm
∴52.57.5ADACCDcm
答:AD的长度为7.5cm。
2. 解:如图
∵线段AD=6cm,线段AC=BD=4cm
∴4462BCACBDADcm
∴624ABCDADBCcm
又∵E、F分别是线段AB、CD中点
∴11,22EBABCFCD
∴111()2222EBCFABCDABCDcm
∴224EFEBBCCFcm
答:线段EF的长为4cm。
3.如图所示一只蚂蚁在A处,想到C处的最短路线如图所示,
理由是:两点之间,线段最短。(圆柱的侧面展开图是长方形,是一个平面)
4.由点A和点B可确定 1 条直线;
由不在同一直线上的三点A、B和C最多能确定 3 条直线;
经过A、B、C、D四点最多能确定 6 条直线;
在同一平面内任三点不在同一直线的五个点最多能确定 10 条
直线、n个点(n≥2)最多能确定(1)2nn条直线。
5.解:(1)如图12999.com
∵AC = 8 cm,CB = 6 cm
∴8614ABACCBcm
又∵点M、N分别是AC、BC的中点
∴11,22MCACCNBC
∴1111()72222MNACCBACCBABcm
答:MN的长为7cm。
(2)若C为线段AB上任一点,满足ABCBacmAC + CB = a cm,其它条件不变,
则12MNacm
理由是:
∵点M、N分别是AC、BC的中点
∴11,22MCACCNBC
∵ABCBacm
∴1111()2222MNACCBACCBacm
(3)解:如图
∵点M、N分别是AC、BC的中点
∴11,22MCACNCBC
∵ACCBbcm
∴1111()2222MNMCNCACCBACCBbcm