迎春杯小学第八届试题.doc

合集下载

历年迎春杯试题精选

历年迎春杯试题精选

历年迎春杯试题精选2006年小学生"迎春杯"数学竞赛试题及答案一、填入答案(每题10分)(1)计算2005×2006-2004×2007+2003×2008-2002×2009=()。

(2)1×2×3×4×5×6×7×8×9×10除以11是的余数()。

(3)用2元与3元的邮票(数量不限),寄一封邮资为155元的邮件,共有()种不同的选择邮票的方法。

(4)在图中的7个空白处各填入1至7的7个数字,使每个圆内4个数的和都等于19。

(5)用尽可能少的几个数字9组成一个算式(可以用9组成多位数,也可任意使用四则运算符号),使这个算式的得数是2006,这个算式为()。

(6)用红白两种同样大小的正方形瓷砖铺满一个正方形的场地,场地的外围一圈用红砖,中间部分用白砖,如果所用的白砖比红砖多28块,那么一共用了()块瓷砖。

二、解答下列各题,并写出过程(每题15分)(7)学校的同学们排成一列长75米的队伍在路上匀速前进,老师从队伍最前头骑车到队伍末尾,又立即骑车返回队伍前头,如果骑车的速度是队伍前进速度的4倍,那么老师骑车一共走了多少米?(8)图中,ABCD是边长为12cm的正方形,从G到正方形顶点C、D,连成一个三角形,已知这个三角形在AB上截得的长度EF为4cm,那么三角形GDC的面积是多少?(9)将100个空盘放在桌子上,记为1号到100号,每次把7个珠子放入其中7个盘子里,每个盘子放1个,称为1轮操作,那么至少要进行多少轮操作,才能使所有盘子里的珠子数目者是奇数。

说明你的操作过程及最后每个盘子中各有几个珠子。

(10)某工厂为优秀职工发奖金,一等奖每人1800元,二等奖每人1200元,三等奖每人800元,每种奖都有人领,共有15名优秀职工领走奖金的总数为16000元。

北京市迎春杯小学数学竞赛决赛历年试题全集(下)

北京市迎春杯小学数学竞赛决赛历年试题全集(下)

北京市迎春杯小学数学竞赛决赛历年试题全集(下)迎春杯历年试题全集(下)目录北京市第11届迎春杯小学数学竞赛决赛试题 (3)北京市第12届迎春杯决赛试题 (5)北京市第13届迎春杯决赛试题 (7)北京市第14届迎春杯决赛试题 (9)北京市第15届迎春杯决赛试题 (11)北京市第16届迎春杯小学数学竞赛预赛试题 (13)北京市第17届迎春杯科普活动日队际交流邀请赛试题 (14)北京市第18届迎春杯决赛试题 (17)北京市第19届迎春杯数学科普活动日计算机交流题 (19)北京市第20届迎春杯小学生竞赛试题 (21)北京市第21届迎春杯小学数学科普活动日数学解题能力展示初赛试卷 (23)北京市第11届迎春杯小学数学竞赛决赛试题1.计算:0.625×(+)+÷―2.计算:[(-×)-÷3.6]÷3.某单位举行迎春茶话会,买来4箱同样重的苹果,从每箱取出24千克后,结果各箱所剩下的苹果重量的和,恰好等于原来一箱的重量。

那么原来每箱苹果重________千克。

4.游泳池有甲、乙、丙三个注水管。

如果单开甲管需要20小时注满水池;甲、乙两管合开需要8小时注满水池;乙、丙两管合开需要6小时注满水池。

那么,单开丙管需要________小时注满水池。

5.如图是由18个大小相同的小正三角形拼成的四边形。

其中某些相邻的小正三角形可以拼成较大的正三角形若干个。

那么,图中包含“*”号的大、小正三角形一共有________个。

6.如图,点D、E、F与点G、H、N分别是三角形ABC与三角形DEF各边的中点。

那么,阴影部分的面积与三角形ABC的面积比是。

7.五个小朋友A、B、C、D、E围坐一圈(如下图)。

老师分别给A、B、C、D、E发2、4、6、8、10个球。

然后,从A开始,按顺时针方向顺序做游戏:如果左邻小朋友的球的个数比自己少,则送给左邻小朋友2个球;如果左邻小朋友的球的个数比自己多或者同样多,就不送了。

迎春杯初赛试题及答案

迎春杯初赛试题及答案

迎春杯初赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是迎春杯初赛的举办时间?A. 1月1日B. 2月2日C. 3月3日D. 4月4日答案:B2. 迎春杯初赛的参赛对象是?A. 小学生B. 初中生C. 高中生D. 大学生答案:C3. 迎春杯初赛的报名费是多少?A. 50元B. 100元C. 150元D. 200元答案:B4. 迎春杯初赛的考试科目包括哪些?A. 语文B. 数学C. 英语D. 以上都是5. 迎春杯初赛的考试时间是多长?A. 60分钟B. 90分钟C. 120分钟D. 150分钟答案:C6. 迎春杯初赛的考试形式是?A. 笔试B. 口试C. 笔试和口试D. 机考答案:A7. 迎春杯初赛的考试地点在哪里?A. 学校B. 图书馆C. 社区中心D. 以上都不是答案:A8. 迎春杯初赛的考试结果将在何时公布?A. 考试后一周B. 考试后两周C. 考试后三周D. 考试后一个月答案:B9. 迎春杯初赛的奖项设置包括哪些?B. 二等奖C. 三等奖D. 以上都是答案:D10. 迎春杯初赛的获奖者将获得什么?A. 证书B. 奖杯C. 奖金D. 以上都是答案:D二、填空题(每题2分,共20分)1. 迎春杯初赛的报名时间是____月____日至____月____日。

答案:1月1日至1月15日2. 迎春杯初赛的考试地点通常设在学校的____。

答案:教室3. 迎春杯初赛的考试内容涵盖了____、____、____等学科。

答案:语文、数学、英语4. 迎春杯初赛的考试形式为闭卷,考试时间为____分钟。

答案:120分钟5. 迎春杯初赛的考试结果将在考试结束后的____周内公布。

答案:两周6. 迎春杯初赛的奖项设置中,一等奖的奖金为____元。

答案:1000元7. 迎春杯初赛的获奖者除了获得证书和奖金外,还将获得____。

答案:奖杯8. 迎春杯初赛的参赛者需要在报名时提供个人照片,照片的尺寸为____。

六年级迎春杯试题及答案

六年级迎春杯试题及答案

六年级迎春杯试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是正确的?A. 地球是平的B. 地球是圆的C. 地球是方的D. 地球是三角形的2. 以下哪个数学公式是正确的?A. 圆的面积 = 半径× 半径B. 圆的面积 = 半径× π × 半径C. 圆的周长 = 直径× 2D. 圆的周长 = 半径× 2π3. 根据题目所给信息,以下哪个选项是错误的?A. 春天是一年四季之一B. 迎春杯是冬季举行的竞赛C. 迎春杯是为了庆祝春天的到来D. 迎春杯通常在春季举行4. 以下哪个成语与“春天”有关?A. 春暖花开B. 秋高气爽C. 夏日炎炎D. 冬日暖阳5. 以下哪个选项是迎春杯试题的类型?A. 选择题B. 填空题C. 判断题D. 论述题二、填空题(每题2分,共10分)6. 春天是_________、_________、_________和_________四个季节之一。

7. 迎春杯试题的类型包括选择题、填空题、_________和_________。

8. 地球的形状是_________,因为它在自转和公转时表现出的离心力和引力的平衡。

9. 圆的周长公式是_________,其中C代表周长,d代表直径。

10. 成语“春暖花开”常用来形容_________。

三、判断题(每题1分,共5分)11. 迎春杯试题及答案的标题是“六年级迎春杯试题及答案”。

()12. 地球的形状是平的。

()13. 迎春杯试题通常在冬季举行。

()14. 成语“秋高气爽”与春天有关。

()15. 圆的面积公式是πr²,其中r代表半径。

()四、简答题(每题5分,共10分)16. 请简述迎春杯试题的特点。

17. 请解释为什么地球的形状是圆的。

五、论述题(15分)18. 论述春天对人们生活的影响。

参考答案:1. B2. B3. B4. A5. A6. 春、夏、秋、冬7. 判断题、论述题8. 圆的9. C = πd10. 春天的气候温暖,百花盛开的景象11. √12. ×13. ×14. ×15. √16. 迎春杯试题通常包括选择题、填空题、判断题和论述题,旨在考查学生的综合能力。

迎春杯初赛试题及答案

迎春杯初赛试题及答案

迎春杯初赛试题及答案
一、选择题(每题5分,共20分)
1. 下列哪个选项是迎春杯初赛的举办时间?
A. 1月1日
B. 2月2日
C. 3月3日
D. 4月4日
答案:B
2. 迎春杯初赛的参赛对象是?
A. 小学生
B. 初中生
C. 高中生
D. 大学生
答案:C
3. 迎春杯初赛的总分为多少分?
A. 100分
B. 200分
C. 300分
D. 400分
答案:A
4. 迎春杯初赛的题型包括哪些?
A. 选择题
B. 填空题
C. 简答题
D. 以上都有
答案:D
二、填空题(每题5分,共20分)
5. 迎春杯初赛的报名费用为______元。

答案:50
6. 迎春杯初赛的考试时间是______小时。

答案:2
7. 迎春杯初赛的考试地点位于______。

答案:市体育馆
8. 迎春杯初赛的获奖比例为______%。

答案:20
三、简答题(每题10分,共20分)
9. 请简述迎春杯初赛的参赛流程。

答案:参赛流程包括报名、资格审核、参加初赛、成绩公布、获奖者名单公示。

10. 迎春杯初赛的评分标准是什么?
答案:评分标准包括准确性、完整性、创新性以及答题速度。

四、论述题(每题40分,共40分)
11. 论述迎春杯初赛对于学生的意义。

答案:迎春杯初赛对于学生的意义在于提供一个展示自我、检验学习
成果的平台,同时激发学生的学习兴趣和竞争意识,促进学生全面发展。

2016年“迎春杯”数学花园探秘决赛试卷(小中组C卷)

2016年“迎春杯”数学花园探秘决赛试卷(小中组C卷)

2016年“迎春杯”数学花园探秘决赛试卷(小中组C 卷)一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(分)算式(1+3+5+1+3+5+1+3+5+……+89+89)﹣()﹣()﹣(1+2+3+1+2+3+1+2+3+……+63+63)的计算结果是)的计算结果是)的计算结果是. 2.(8分)沿长方形ABCD 中的虚线将长方形剪成两部分,会发现两部分形如汉字“凹凸”.已知长方形AD=10厘米,宽AB=6厘米,厘米,EF=GH=2EF=GH=2厘米;那么剪成的“凹凸”两部分的周长和为成的“凹凸”两部分的周长和为厘米. 3.(8分)蓉蓉从一班转到了二班,蕾蕾从二班转到了一班,于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米,如果蕾蕾身高158厘米,蓉蓉身高140厘米,那么两个班共有学生厘米,那么两个班共有学生人. 4.(8分)大正方形ABCD 的边长为10厘米,小正方形边长为1厘米;如图小正方形沿着大正方形的AB 边从A 滑动到B ,再从B 沿着对角线BD 滑动到D ,再从D 沿着DC 边滑动到C ;小正方形经过的面积是;小正方形经过的面积是平方厘米.二、填空题(共4小题,每小题10分,满分40分)5.(10分)今天是1月30日,我们先写下130130;后面写数的规则是:如果刚写;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面,于是得到:写在后面,于是得到:130130130、、6767、、132132、68…,那么这列数、68…,那么这列数中第2016个数是个数是. 6.(10分)将数字1~6分别填入图中的6个方框中,能得到的最小结果是能得到的最小结果是 .7.(10分)仙山上只有九头鸟和九尾狐这两种传说中的神兽;九头鸟有九头一尾,九尾狐有九尾一头,一只九头鸟发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的4倍;一只九尾狐发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的3倍,那么仙山上共有九尾狐倍,那么仙山上共有九尾狐只. 8.(10分)图③是由6个图①这样的模块拼成的,如果最底层已经给定两块的位置(如图②),那么剩下部分一共有,那么剩下部分一共有种不同的拼法.三、填空题(共3小题,每小题12分,满分36分)9.(12分)在如图所示每个格子里填入数字1~4中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~3的例子,如图中第3行从左到右三格依次为2,3,1),那么如图中最下面一行的两个数字按从左到右的顺序依次组成的四位数是的顺序依次组成的四位数是.1010..(12分)自然数1、2、3、…、、…、201420142014、、20152015、、2016顺时针排成一圈,由数1开始,顺时针如下操作.第一步:划掉1,保留2;第二步:依次划掉3、4,保留5;第三步:依次划掉6、7、8,保留9;第四步:依次划掉1010、、1111、、1212、、1313,保留,保留1414;…;;…;即第几步操作就先依次划掉几个数,即第几步操作就先依次划掉几个数,再保留再保留1个数,个数,这样操作,这样操作,这样操作,直到将所有的数直到将所有的数划掉为止,那么最后一个被划掉的数是划掉为止,那么最后一个被划掉的数是. 1111..(12分)如图,有编号1~9的9个小正方形狗舍,每个狗舍至多住1只小狗;原有3只小狗,它们所在的狗舍互不相邻(相邻的小正方形有公共边);当有新的小狗入住时,与之相邻的小狗就会喊一声表示欢迎;现在又先后依次新入住5只小狗,每只小狗入住时都恰好有2只小狗喊一声;已知第1只新入住的小狗住2号狗舍,第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;就这5只新入住小狗所住狗舍号依次为A 、B 、C 、D 、E ,那么五位数ABCDE= ABCDE=.2016年“迎春杯”数学花园探秘决赛试卷(小中组C 卷)参考答案与试题解析一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(分)算式(1+3+5+1+3+5+1+3+5+……+89+89)﹣()﹣()﹣(1+2+3+1+2+3+1+2+3+……+63+63)的计算结果是)的计算结果是)的计算结果是 9 9 ..【分析】首先根据等差数列的求和公式,分别求出1+3+5+1+3+5+……+89+89、、1+2+3+1+2+3+……+63的值各是多少;然后把它们相减,求出算式(1+3+5+1+3+5+……+89+89))﹣(1+2+3+1+2+3+……+63+63))的计算结果是多少即可.【解答】解:(1+3+5+1+3+5+……+89+89)﹣()﹣()﹣(1+2+3+1+2+3+1+2+3+……+63+63))=(1+891+89)×)×)×[[(8989﹣﹣1)÷)÷2+1]2+1]2+1]÷÷2﹣(﹣(1+631+631+63)×)×)×636363÷÷2=90=90××4545÷÷2﹣6464××6363÷÷2=2025=2025﹣﹣2016=9故答案为:故答案为:99.【点评】此题主要考查了加减法中的巧算问题,此题主要考查了加减法中的巧算问题,要熟练掌握,要熟练掌握,要熟练掌握,解答此题的关键是解答此题的关键是要明确等差数列的求和公式:和要明确等差数列的求和公式:和==(首项(首项++末项)×项数÷末项)×项数÷22.2.(8分)沿长方形ABCD 中的虚线将长方形剪成两部分,会发现两部分形如汉字“凹凸”.已知长方形AD=10厘米,宽AB=6厘米,厘米,EF=GH=2EF=GH=2厘米;那么剪成的“凹凸”两部分的周长和为成的“凹凸”两部分的周长和为 52 52 厘米.厘米.【分析】观察图象可知:剪成的“凹凸”两部分的周长和=AB+CD+AD+BC+2(ME+FH+GN ME+FH+GN))+2+2((EF+GH EF+GH)). 【解答】解:观察图象可知:剪成的“凹凸”两部分的周长和解:观察图象可知:剪成的“凹凸”两部分的周长和=AB+CD+AD+BC+2=AB+CD+AD+BC+2(ME+FH+GN ME+FH+GN))+2+2((EF+GH EF+GH))=6+6+10+10+2=6+6+10+10+2××6+26+2××4=52cm =52cm,,故答案为52【点评】本题考查剪切和拼接、本题考查剪切和拼接、长方形的性质等知识,长方形的性质等知识,长方形的性质等知识,解题的关键是学会用整体解题的关键是学会用整体的思想思考问题.3.(8分)蓉蓉从一班转到了二班,蕾蕾从二班转到了一班,于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米,如果蕾蕾身高158厘米,蓉蓉身高140厘米,那么两个班共有学生厘米,那么两个班共有学生 15 15 人.人.【分析】首先用蕾蕾的身高减去蓉蓉的身高,首先用蕾蕾的身高减去蓉蓉的身高,求出两人的身高的差是多少;求出两人的身高的差是多少;求出两人的身高的差是多少;然后然后分别用两人的身高的差除以2、3,求出一班、二班的人数各是多少,再把一班、二班的人数相加,求出两个班共有学生多少人即可.【解答】解:解:158158158﹣﹣140=18140=18(厘米)(厘米), 1818÷÷2+182+18÷÷3=9+6=15=15(人)(人)答:两个班共有学生15人.故答案为:故答案为:151515..【点评】此题主要考查了平均数问题,此题主要考查了平均数问题,要熟练掌握,要熟练掌握,要熟练掌握,解答此题的关键是分别求出解答此题的关键是分别求出一班、二班的人数各是多少.4.(8分)大正方形ABCD 的边长为10厘米,小正方形边长为1厘米;如图小正方形沿着大正方形的AB 边从A 滑动到B ,再从B 沿着对角线BD 滑动到D ,再从D 沿着DC 边滑动到C ;小正方形经过的面积是;小正方形经过的面积是 36 36 平方厘米.平方厘米.【分析】可以将图画出,可以将图画出,用虚线表示小正方形经过的区域,用虚线表示小正方形经过的区域,用虚线表示小正方形经过的区域,可以用大正方形的面可以用大正方形的面积减去其它空白部分的面积,而其它空白部分是两个相等的直角三角形,刚好可以拼接成一个边长为1010﹣﹣2=8厘米的正方形,故不难求得小正方形经过的区域的面积.【解答】解:根据分析,如图所示,a 和b 部分的面积刚好可以拼接成一个边长为:部分的面积刚好可以拼接成一个边长为:101010﹣﹣2×1=8厘米的正方形, 小正方形经过的区域的面积小正方形经过的区域的面积=10=10=10××1010﹣﹣8×8=368=36(平方厘米)(平方厘米). 故答案是;故答案是;363636..【点评】本题考查剪切和拼接,突破点是:利用剪切和拼接,将图形简化,不难求得小正方形经过的区域的面积.二、填空题(共4小题,每小题10分,满分40分)5.(10分)今天是1月30日,我们先写下130130;后面写数的规则是:如果刚写;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面,于是得到:写在后面,于是得到:130130130、、6767、、132132、68…,那么这列数、68…,那么这列数中第2016个数是个数是 6 6 ..【分析】首先发现数字求的是2016项,那么一定是有规律的计算,找到周期规律即可.【解答】解:依题意可知:数字规律是130130、、6767、、132132、、6868、、3636、、2020、、1212、、8、6、5、8、6、5、8、6、5、 去掉钱7项是循环周期数列20162016﹣﹣7=20097=2009..每3个数字一个循环20092009÷3=667…2÷3=667…2 循环数列的第二个数字就是6.故答案为:故答案为:66【点评】本题考查对数字规律的理解和运用,关键问题是根据枚举法找到周期规律.问题解决.6.(10分)将数字1~6分别填入图中的6个方框中,能得到的最小结果是能得到的最小结果是 342 342 ..【分析】要使得数最小,由于有乘法,所以两个两位数,要用最小的四个数字1、2、3、4组成,且最高位放最小的数字;剩下的为5×6;据此解答即可.【解答】解:最小的1和2,分别放在十位上,剩下的3与1组成1313,,2和4组成2424,最后,最后5和6组成算式5×6,所以得数最小是:1313××24+524+5××6=312+30=342答:能得到的最小结果是答:能得到的最小结果是 342 342. 故答案为:故答案为:342342342..【点评】本题重点是理解,要使两个数的积最小,尽量把小的数字放在最高位上.7.(10分)仙山上只有九头鸟和九尾狐这两种传说中的神兽;九头鸟有九头一尾,九尾狐有九尾一头,一只九头鸟发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的4倍;一只九尾狐发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的3倍,那么仙山上共有九尾狐倍,那么仙山上共有九尾狐 14 14 只.只.【分析】首先根据题意,设仙山上共有九尾狐x 只,九头鸟y 只,然后根据:九尾狐的数量×尾狐的数量×9+9+9+九头鸟的数量﹣九头鸟的数量﹣九头鸟的数量﹣1=[1=[1=[(九头鸟的数量﹣(九头鸟的数量﹣(九头鸟的数量﹣11)×)×9+9+9+九尾狐的数量九尾狐的数量九尾狐的数量]]×4,(九尾狐的数量﹣(九尾狐的数量﹣11)×)×9+9+9+九头鸟的数量九头鸟的数量九头鸟的数量=[=[=[九头鸟的数量×九头鸟的数量×九头鸟的数量×9+9+9+九尾狐的数九尾狐的数量﹣量﹣1]1]1]××3,列出二元一次方程组,求出仙山上共有九尾狐多少只即可.【解答】解:设仙山上共有九尾狐x 只,九头鸟y 只, 则由(由(11),可得:,可得:x x ﹣7y+7=07y+7=0((3)由(由(22),可得:,可得:3x 3x 3x﹣﹣13y 13y﹣﹣3=03=0((4)(4)×)×77﹣(﹣(33)×)×131313,可得,可得8x ﹣112=08x 8x﹣﹣112+112=0+1128x=1128x ÷8=1128=112÷÷8x=14答:仙山上共有九尾狐14只.故答案为:故答案为:141414..【点评】此题主要考查了差倍问题,考查了分析推理能力的应用,要熟练掌握,首先要把题意弄清,再根据等量关系列出方程组解答即可.8.(10分)图③是由6个图①这样的模块拼成的,如果最底层已经给定两块的位置(如图②),那么剩下部分一共有,那么剩下部分一共有 2 2种不同的拼法.【分析】因最底层已经给定两块的位置,因最底层已经给定两块的位置,且拼成生图③是上下两层的,且拼成生图③是上下两层的,且拼成生图③是上下两层的,所以剩下所以剩下部分的拼法有只能是把图①立起来拼,且两个一组的在上面,从一个缺口处两块的位置有两种拼法,所以共有两种拼法.【解答】解:如图:答:剩下部分一共有2种不同的拼法.故答案为:故答案为:22.【点评】本题主要考查了学生对图形拼法的掌握情况,重点是根据最底层给定的两块的位置,再进行拼.三、填空题(共3小题,每小题12分,满分36分)9.(12分)在如图所示每个格子里填入数字1~4中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~3的例子,如图中第3行从左到右三格依次为2,3,1),那么如图中最下面一行的两个数字按从左到右的顺序依次组成的四位数是的顺序依次组成的四位数是 2143 2143 ..【分析】按照题目要求,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和填入具体的数字,即可得出结论.【解答】解:如图所示,根据每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和,由于1+2=31+2=3,,4+2=64+2=6,,3+2=53+2=5,结合每一行,结合每一行和每一列数字都不重复,可得最下面一行的两个数字按从左到右的顺序依次组成的四位数是21432143..故答案为21432143..【点评】本题考查凑数字,考查学生的动手能力,正确理解题意,得出图形是关键.1010..(12分)自然数1、2、3、…、、…、201420142014、、20152015、、2016顺时针排成一圈,由数1开始,顺时针如下操作.第一步:划掉1,保留2;第二步:依次划掉3、4,保留5;第三步:依次划掉6、7、8,保留9;第四步:依次划掉1010、、1111、、1212、、1313,保留,保留1414;…;;…;即第几步操作就先依次划掉几个数,即第几步操作就先依次划掉几个数,再保留再保留1个数,个数,这样操作,这样操作,这样操作,直到将所有的数直到将所有的数划掉为止,那么最后一个被划掉的数是划掉为止,那么最后一个被划掉的数是 2015 2015 ..【分析】首先分析题意首项数字保留的是2,可分析出保留的数字的规律,进而得出最后一个保留的数字是多少.【解答】解:依题意可知:第一轮保留的数字是2,5,9,…那么第一轮保留的最大数字为:2+3+4+2+3+4+……+n=当n=63时,数列和是20152015.说明.说明2015是保留的数字.此时数字没有全部划掉还需要继续划.此时数字没有全部划掉还需要继续划.但由于是圆圈,但由于是圆圈,但由于是圆圈,继续划掉的话,继续划掉的话,继续划掉的话,划掉的顺划掉的顺序是20162016,,2,5,9…,这次是第63次操作,次操作,20152015是最后一个被划掉的. 故答案为:故答案为:201520152015..【点评】本题考查对数字问题的理解和运用,关键问题是理解数字和的规律即运用.问题解决.1111..(12分)如图,有编号1~9的9个小正方形狗舍,每个狗舍至多住1只小狗;原有3只小狗,它们所在的狗舍互不相邻(相邻的小正方形有公共边);当有新的小狗入住时,与之相邻的小狗就会喊一声表示欢迎;现在又先后依次新入住5只小狗,每只小狗入住时都恰好有2只小狗喊一声;已知第1只新入住的小狗住2号狗舍,第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;就这5只新入住小狗所住狗舍号依次为A 、B 、C 、D 、E ,那么五位数ABCDE= ABCDE= 25649 25649 25649 ..【分析】首先分析新二只和新三只能放在哪一个狗舍,推理出原来的不相邻的狗舍位置继续推理即可求解.【解答】解:依题意可知:①首先第一只小狗在2号狗舍.第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;说明第2只小狗旁边进来2只小狗.小狗入住时都恰好有2只小狗喊一声,所以新2号小狗不能在角落1,3,6,7,8,9狗舍.只能在5号狗舍.②第4只新入住的小狗住4号狗舍,它没喊过;小狗入住时都恰好有2只小狗喊一声说明1和7是有一个是空的,如果是1空那么小狗舍会相邻.只能是7空.③新2号小狗喊2声,那么说明在6号或者8号入住一只小狗原来也是有1只小狗.那么只能是8号是原来的,号是原来的,66号是新入住的.④那么原来的三个不相邻的狗舍就是在1,3,8狗舍.第五只在9号. 故答案为:故答案为:2564925649【点评】本题考查对逻辑推理的理解和运用,关键问题是找到新2和新3的位置.问题解决.。

长方体正方体圆柱圆锥练习题

第三单元测试卷长方体与正方体一、瞧图计算。

①棱长总与:表面积:体积:错误!棱长总与:表面积:体积:二、填一填。

1、3.5平方分米=( )平方厘米20升=( )立方分米=( )立方米4250立方厘米=( )立方分米3.6升=( )毫升=( )立方厘米4。

08升=( )升( )毫升0、79立方米=( )立方分米2、写出下面各式得结果。

= ··=++= 7·=3、用一根96厘米长得铁丝正好制成一个长12厘米、宽8厘米、高( )厘米得长方体框架。

4、一个正方体得棱长总与就是60厘米,她得棱长就是( ),体积就是( ),表面积就是( )。

5、一根方木长20分米,把它锯成两段后,表面积增加了5平方分米,这根方木得体积就是( )立方分米。

三、判断(对得打“√”,错得打“×”)。

1、一个正方体得棱长就是6厘米,它得体积与表面积相等。

( )2、有两个相对面就是正方形得长方体,它得其余四个面完全相同。

( )3、体积就是1立方分米得正方体,可以分成1000个体积就是1立方厘米得小正方体。

( )4、把一块正方体得橡皮泥捏成一个长方体,体积不变。

( )5、至少要用4个体积就是1立方厘米得正方体,才能拼成一个大正方体。

( ) 四、选择(把正确答案得序号填在括号内)。

1、选择下列相对应得数量填入括号内、一根木料长( ) 一瓶药水( )一间客厅( ) 一节火车车厢( )A、130立方米B、50毫升C、3米D、24平方米2、一个药水瓶装满250毫升得药水,我们就说这个药水瓶得( )就是250毫升。

A、体积B、重量C、容积3、把一个长方体分割成若干个小正方体,它得体积( ),表面积( )、A、不变B、增加C、减少4、正方体得棱长扩大2倍,则表面积扩大( ),体积扩大( )。

A、2倍B、4倍C、8倍D、16倍5、一个长方体游泳池长25米,宽14米,高2米,它得占地面积就是( )。

A、350平方米B、50平方米C、28平方米D、856平方米五、实践应用、1、用硬纸板做一个长方体盒子,长6分米,宽40厘米,高3分米,至少需要多少硬纸板?2、学校要砌一道长20米,厚0.25米,高3米得砖墙,如果每立方米用砖510块。

小学奥数杯赛真题

1.小泉做一道除数是一位数的除法时,误把除数9看成6,结果算出的商是7,余数是3。

你知道正确的结果是(2012世奥(中国区)选拔赛三年级A卷)2.杨阳是班里有名的小马虎,这次在做(200×9-□)÷25+13时,又没看到题里的括号,算的结果是1788,正确的结果应该是 (2012世奥数浙江赛区四年级)。

3.袋子里有若干个球,每次拿出其中的一半又一个球,这样共操作了4次,袋中还有5个球。

袋中原有____个球(2012年第十届走美杯三年级)。

4.盒子里有若干个球。

小明每次拿出盒中的一半再放回一个球。

这样共操作了7次,袋中还有3个球。

袋中原有个球(2010年走美杯三年级)。

5.抽屉里有若干个玻璃球, 小军每次操作都取出抽屉中球数的一半再放回一个球。

如此操作了2012次后, 抽屉里还剩有2个球。

那么原来抽屉里有个球(第十七届华杯赛小中组复赛)。

6.黑板上写有一个数,男同学从黑板前走过时,把他乘以3再减去14,擦去原数,换上答案,女同学从黑板前走过时,把他乘以2再减去7,擦去原数,换上答案。

全班25名男同学和15名女同学都走过后,老师把最后的数乘以5,减去5,结果是30。

那么,黑板上最初的数字是(湖北第七届创新杯)。

7.豆豆和苗苗各有一盒玻璃球,共108粒,豆豆给了苗苗10粒,豆豆剩下的玻璃比苗苗还多8粒。

原来苗苗有粒玻璃球(2010年第八届走美杯三年级)。

8.甲、乙、丙三人的平均年龄为42岁,若将甲的岁数增加7岁,乙的岁数扩大2倍,丙的岁数缩小2倍,则三人岁数相等。

丙的年龄为________岁(第四届迎春杯)。

9.甲、乙、丙、丁四人一共做了370个零件,如果把甲做的个数加上10个,乙做的个数减去20个,丙做的个数乘以2,丁做的个数除以2,四人做的零件数就正好相等。

那么乙实际做了_____ 个零件(第二届迎春杯)。

10.甲、乙、丙三所小学的学生人数的总和为1999。

已知甲校学生人数的2倍和乙校学生人数减去3人与丙校学生人数加上4人都相等。

数学花园探秘(迎春杯)六年级决赛试卷及详解

数学花园探秘(迎春杯)六年级决赛试卷及详解1002017 年“数学花园探秘”科普活动⼩学⾼年级组决赛试卷 A(测评时间:2017 年 1 ⽉ 1 ⽇ 8:00—9:30)⼀.填空题Ⅰ(每⼩题 8 分,共 40 分)2.⼀个边长为 100 厘⽶的正五边形和五个扇形拼成如图的“海螺”,那么这个图形的周长是厘⽶(π取 3.14).3.在 2016 年⾥约奥运会⼥排决赛中,中国队战胜了塞尔维亚队获得冠军.统计 4 局⽐赛中中国队的得分,发现前 2 局的得分之和⽐后 2 局的得分之和少 12%,前 3 局的得分之和⽐后 3 局的得分之和少8%.已知中国队在第 2 局和第 3 局中各得了 25 分,那么中国队在这 4 局中的得分总和为分.4.右⾯三个算式中,相同汉字代表相同数字,不同汉字代表不同数字;那么四位数“ 李⽩杜甫 ”=.5. n 个数排成⼀列,其中任意连续三个数之和都⼩于30,任意连续四个数之和都⼤于 40,则n 的最⼤值为.⼆.填空题Ⅱ(每⼩题 10 分,共 50 分)6.算式的计算结果是.7.有⼀个四位数,它和 6 的积是⼀个完全⽴⽅数,它和 6 的商是⼀个完全平⽅数;那么这个四位数是.8.在空格⾥填⼊数字 1~6,使得每⾏、每列和每个 2×3的宫(粗线框)内数字不重复.若虚线框A,B,C,D,E,F 中各⾃数字和依次分别为 a ,b ,c ,d ,e ,f ,且 a =b ,c =d ,e >f .那么第四⾏的前五个数字从左到右依次组成的五位数是.10120 C P 179. 抢红包是微信群⾥⼀种有趣的活动,发红包的⼈可以发总计⼀定⾦额的⼏个红包,群⾥相应数量的成员可以抢到这些红包,并且⾦额是随机分配的.⼀天陈⽼师发了总计 50 元的 5 个红包,被孙、成、饶、赵、乔五个⽼师抢到.陈⽼师发现抢到红包的 5 个⼈抢到的⾦额都不⼀样,都是整数元的,⽽且还恰好都是偶数.孙⽼师说:“我抢到的⾦额是10 的倍数.” 成⽼师说:“我和赵⽼师抢到的加起来等于孙⽼师的⼀半.” 饶⽼师说:“乔⽼师抢到的⽐除了孙⽼师以外其他所有⽼师抢到的总和还多.” 赵⽼师说:“其他所有⽼师抢到的⾦额都是我的倍数.” 乔⽼师说:“饶⽼师抢到的是我抢到的 3 倍.” 已知这些⽼师⾥只有⼀个⽼师没说实话,那么这个没说实话的⽼师抢到了元的红包.D10. 如图,P 为四边形 ABCD 内部的点,AB :BC :DA =3:1:2,∠DAB =∠ CBA =60°.图中所有三⾓形的⾯积都是整数.如果三⾓形PAD 和三⾓形 PBC 的⾯积分别为 20 和 17,那么四边形ABCD 的⾯积最⼤是.三.填空题Ⅲ(每⼩题 12 分,共 60 分)A B11. 有⼀列正整数,其中第 1 个数是 1,第 2 个数是 1、2 的最⼩公倍数,第 3 个数是 1、2、3 的最⼩公倍数,……,第 n 个数是1、2、……、n 的最⼩公倍数.那么这列数的前 100个数中共_______个不同的值.12. 如图,有⼀个固定好的正⽅体框架,A 、B 两点各有⼀只电⼦跳蚤同时开 A 始跳动.已知电⼦跳蚤速度相同,且每歩只能沿棱跳到相邻的顶点,两只电⼦跳蚤各跳了 3 歩,途中从未相遇的跳法共有种.13. 甲以每分钟 60 ⽶的速度从 A 地出发去 B 地,与此同时⼄从 B 地出发匀速去 A 地;过了 9 分钟,丙从 A 地出发骑车去 B 地,在途中 C 地追上了甲甲、⼄相遇时,丙恰好到 B 地;丙到 B 地后⽴即调头,且速度下降为原来速度的⼀半;当丙在 C 地追上⼄时,甲恰好到 B 地.那么AB 两地间的路程为⽶.10214. 在⼀个 8×8 的⽅格棋盘中放有 36随后的空格棋⼦,则不能进⾏操作.那么最后在棋盘上最少剩下枚棋⼦. 15. 你认为本试卷中⼀道最佳试题是第题(答题范围为01~14);你认为本试卷整体的难度级别是(最简单为“1”,最难为“9”,答题范围为 1~9);你认为本试卷中⼀道最难试题是第题;(答题范围为 01~14).(所有答题范围内的作答均可得分,所有的评定都将视为本⼈对本试卷的有效评定,不作答或者超出作答范围不得分.)2017数学花园探秘科普活动⼩⾼决赛A解析1.答案:64 解析:原式=(632-163)+(1-163)=63+1=642.答案:2384 解析:500+15×2×π×(100+200+300+400+500)=23843.答案:94 解析:注意到前三局⽐前两局多25分,后三局⽐后两局多25分,所以中国队得分总和为25+(18%-112%)÷12%×(1+1-12%)=94分。

六年级下册奥数专题练习-立体图形的计算(含答案) 全国通用

立体图形的计算【表面积的计算】例1 一个正方体木块,棱长1米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大小不等的长方体60块(如图5.69)。

那么,这60块长方体的表面积的和是平方米。

(1988年北京小学数学奥林匹克邀请赛试题)讲析:不管每次锯的长方体大小如何,横着锯2次一共增加了4个正方形面;前后竖直方向锯3次共增加了6个正方形面;左右竖直方向锯4次共增加了8个正方形面。

原来大正方体有6个正方形面,所以一共有24个正方形面。

所以,60块长方体的表面积之和是(1×1)×24=24(平方米)。

例2 图5.70是由19个边长都是2厘米的正方体重叠而成的。

求这个立体图形的外表面积。

(北京市第一届“迎春杯”小学数学竞赛试题)讲析:如果按每一层有多少个正方体,然后再数出每层共有多少个外表面正方形,则很麻烦。

于是,我们可采用按不同的方向来观察的方法去计算。

俯视,看到9个小正方形面;正视,看到10个小正方形面;侧视,看到8个小正方形面。

所以,这个立体图形的表面积是(2×2)×[(9+10+8)×2]=216(平方厘米)。

【体积的计算】例1 一个正方体的纸盒中恰好能放入一个体积为628立方厘米的圆柱体,如图5.71,纸盒的容积有多大?(π取3.14)(全国第四届“华杯赛”复赛试题)讲析:因圆柱体的高、底面直径以及正方体的棱长都相等。

故可设正方即:正方体纸盒的容积是800立方厘米。

例2 在一个棱长4厘米的正方体的上面、右面、前面这三个面的中心分别挖一个边长1厘米的正方形小孔(如图5. 72所示),并通过对面,求打孔后剩下部分的体积。

(北京市第二届“迎春杯”小学数学竞赛试题)。

讲析:打完孔之后,在大正方体正中央就有一个1×1×1的空心小正方体。

三个孔的体积是(1×1×4)×3-(1×1×1)×2=10(立方厘米)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文件 sxjs0003.doc
科目 数学
考试类型 竞赛真题
考试时间 1991年12月
标题 迎春杯小学第八届试题
内容
1. 两个两位数相加,其中一个加数是73,另一个加数不知道,只知道另一个加数的十位数字
增加5,个位数字增加1,那么求得的和的后两位数字是72。另一个加数原来是__。
2. 每个茶杯的价格分别是9角、8角、6角、4角和3角,每个茶盘的价格分别是7角、5
角和2角。如果一个茶杯配一个茶盘,一共可以配成_______种不同价格的茶具。
3. 邮局门前有5级台阶,规定:一步只能上一级或两级,问上到上面,共有_____种不同的上
法。
4. 公园里有一排彩旗,按3面黄旗、2面红旗、4面粉旗的顺序排列,小红看到这排旗子的尽
头是一面粉旗。已知这排彩旗不超过200面,这排旗子最多有______面。
5. 小明把算式6×(□+4)错写成6×□+4,现在的答案和正确答案比,相差______。
6. 用一个平底的锅烙饼,每次只能放两张纸,烙熟一张饼需要2分钟(正反面各需1分钟)。
如果要烙7张饼,最少需要_____分钟。
7. 请你把15个苹果分装在四个盒子里,使得无论要拿几个苹果都不用再打开盒子,只要把
其中一个或几个盒子拿走就可以了。那么这四个盒子中,装的最多的盒子里有_个苹果。
. 今年姐妹俩年龄的和是55岁。若干年前,当姐姐的年龄只有妹妹现在这么大时,妹妹的年
龄恰好是姐姐年龄的一半。姐姐今年_____岁。
9. 甲乙二人同时同地同向沿一条公路行走,甲每小时行6千米,而乙第1小时行1千米,第
二小时行2千米,第3小时行3千米……每行1小时都比前1小时多行1千米。经过___小时
后乙追上甲。
10. 如图1,把圆周6等分的点依次为A、B、C、D、E、F。任意
取3个点就能画出一个三角形,那么图中最多可以画出______个
三角形。
11. 1-1991这1991个自然数中,所有的奇数之和与所有的偶数之和
的差是______。

12. 一块相邻的横竖两排距离都相等的钉板,上面有(4×4)个
钉(如图2)。以每个钉为顶点,你能用皮筋套出正方形和长方形
共_____个。
13. 图3是一张把自然数按一定顺序排列的数表,用一个
有五个空格的十字可以框出不同的五个数字。现在框出
的五个数字的四个角上数字之和是80,如果当框出的五个
数字的和是500时,四个角上数字的和是______。
14. 有一串数:5, 55,
555, …… 这一串数的和的末三位数是
_____。
15. 学校合唱队里男生人数比女生人数的一半少9人,女生人数比
男生人数的3倍多3人,这个合唱队共有_____人。

17. 师徒二人同时加工一批零件,1.5小时二人共加工了21个。接着二人又同时加工了9小
时。这时师傅比徒弟一共多加工了42个。师傅每小时加工_____个。
18. 一个真分数的分子和分母相差102,当这个真分数的分子、分母都加上23,所得到的新
分数约分后得 。那么这个真分数是_____。
19. 四年级三个班参加运动会,,运动会上举行跳高 、跳远和百米赛跑三项比赛,各
取前3名。第一名得5分,第二名得3分,第三名得1分。已知1班进入前3名的人数最少
,2班进入前3名的人数是1班的2倍,而这两个班所得总分相等,并列年级组的第1名。
3班得了_____分。
20. 十五个连续的自然数中,最大数是最小数的3倍。这十五个自然数的和是_____。
21. 一个数能被3、5、7整除, 若用11去除则余1。这个数最小是______。
22. 有一篮苹果,发给幼儿园小朋友吃,第一次拿出全部的

又1个,第二次拿出剩下的
又4个,第三次拿出剩下的

又3个,第四次拿出剩下的
又1个,这时篮里只剩下1个苹果了。篮里
原来有苹果_______个。
23. 同学们进行队列训练,如果每排8人,最后一排6人; 如果每排10人,最后一排少
4人。参加队列训练的学生最少有_____人。

24. 计算 。
25.1992是24个连续偶数的和,其中最大的偶数是_______。
26. 九百九十九角钱,甜瓜、苦瓜买一千,甜瓜九个十一角钱,苦瓜七个四角钱。甜瓜比苦瓜
多买_______个。
27. 一个两位数,用它除58余2,除73余3,除85余1。这个两位数是_______。
28. 有大小两个长方形,大长方形的长与宽都分别比小长方形的长与宽多7厘米,大长方形
面积比小长方形面积多175平方厘米。已知小长方形长是宽的 倍,大长方形长是宽的_____
倍。
29. 一项工程,甲独做24小时完成,乙独做36小时完成。现在要求20小时完成,并且两人
合做的时间尽可能少。那么,甲乙合做______小时。
有一些长方形,它们的长和宽为互质数,而这些长方形的面积都是1992平方厘米。这样的长
方形共有______个。
31. 甲地有89吨货物要运到乙地。大卡车的载重量是7吨,小卡车的载重量是4吨。大卡
车运一趟耗油14升,小卡车运一趟耗油9升。运完这些货物最少耗油____升。
32. 下面的算式是按规律排列的: 1+1, 2+3, 3+5, 4+7, 1+9, 2+11, 3+13, 4+15,
1+17,…… 第_____个算式的得数是1992。
33. 得数的末尾有_____个零。
34. 有三个最简真分数: 。如果把这三个
分数的分子都加上c,然后再求这三个新分数的和,结果得6。那么a+b+c=______。
35. 用0、1、2、3这四个数字,可以组成一位数、两位数、三位数、四位数。这样的很多
自然数(在一个数里,每个数字只用1次),其中是3的倍数的自然数共有__个。
36. 一只兔子奔跑时,每一步都跑0.5米;一只狗奔跑时,每一步都跑1.5米。狗跑一步
时,兔子能跑三步。如果让狗和兔子在100米跑道上做往返一次的赛跑,那么获胜的一定是
______。
骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离
开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟
到达一站并停车1分钟,那么需要______分钟,电车追上骑车人。
38。一杯牛奶,第一次喝了
,第二次喝了余下的
,然后加满咖啡。第三次喝了
, 第四次喝了余下的

。这时杯里剩下的牛奶相当这杯牛奶的
_____。

39. 如图4,阴影部分的面积占正方形面积的______。
40.按照从左到右,从上到下的走法,图5中从A点到B点有______条不同的路线。

试题答案
1. 48 2. 10 3. 8 4. 198 5. 20 6.
7
7. 8 8. 33 9. 11 10. 20 11. 996 12.
44
13. 40 14. 275 15. 63 16. 1 17. 9 18.
19. 7 20. 210 21. 210 22. 32 23. 46 24.
1162
25. 106 26. 314 27. 14 28.

29. 6 30. 4
31. 181 32. 995 33. 3984 34. 10 35. 32 36.
兔子
37. 15.5 38.
39. 40. 6

相关文档
最新文档