指、对数函数,幂函数
指数对数与幂函数(思维导图)

指数函数对数函数解析式定义域图像1、底数对图像的影响2、平移变换对图像的影响1、底数对图像的影响2、平移变换对图像的影响单调性1、先观察底数a与1大小,不确定时要分类讨论2、复合函数类型的单调性3、会利用单调性解指数不等式1、先观察底数a与1大小,不确定时要分类讨论2、复合函数类型的单调性3、会利用单调性解对数不等式比较大小1、底数相同,指数不同2、底数不同,指数相同3、底数指数都不同1、底数相同,指数不同2、底数不同,指数相同3、底数指数都不同过定点值域(六)指数函数 1.幂的有关概念正整数指数幂:=⋅⋅na a a a n a ; 零指数幂:0a =1( ) ;负整数指数幂:p a -= (0,a p N +≠∈); 正分数指数幂:m na = (0,1a m n N n +>∈>、且); 负分数指数幂:m n a-=(0,1a m n N n +>∈>、且);0的正分数指数幂等于 ,0的负分数指数幂 2.幂的运算法则(0,0,a b r s Q >>∈、)r s a a = ;()r s a = ;()r ab =3.指数函数图像及性质4.指数函数()x f x a =具有性质:()()()(),1(0,1)f x y f x f y f a a a +==>≠ (七)对数函数1.定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是b a N =,那么数b 称以a 为底N 的对数,记作log a b N =,其中a 称对数的底,N 称真数.①以10为底的对数称常用对数,N 10log 记作N lg ,②以无理数( 2.71828)e e =为底的对数称自然对数,N e log 记作N ln2.基本性质:①真数N 为正数(负数和零无对数), ②log 10a =, ③log 1a a =,④对数恒等式:log a N a N =.3.运算性质:如果,0,0,1,0>>≠>N M a a 则 ①log ()log log a a a MN M N =+; ②log log log a a a M M N N=-;③log log na a M n M =. 4.换底公式:log log log m a m NN a=(0,1,0,1,0),a a m m N >≠>≠> ①log log 1a b b a ⋅=, ②log log m n a a nb b m=. 5. 对数函数x y a log =具有性质: )()()(xy f y f x f =+ 6.函数的图像与性质(八)幂函数:,y x =2y x =3,y x =1y x=12y x =的图像1.当0a >时,幂函数()y x R αα=∈有下列性质:(1)在第一象限内,1α>时图像为 型抛物线,图像下凸,01α<<时图像为 型抛物线,图像上凸. (2)图像都通过点 ; (3)在第一象限内,随x 的 ;2.当a<0时,幂函数()y x R αα=∈有下列性质:(1)在第一象限内,函数图像为 型,函数值随x 的增大而 ,图像是向下凸; (2)图像都通过点 ;(3)在第一象限内,图像向上与y 轴无限地接近,向右与x 轴无限地接近;-----精心整理,希望对您有所帮助!。
指数对数幂函数知识点汇总

指数函数、对数函数、幂函数单元复习与巩固一、知识框图二、知识要点梳理知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数指数函数名称定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向象的影响看图象,逐渐减小.知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.知识点六:幂函数1.幂函数概念 形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限 无图象.幂函数是偶函数时,图象分布在第一、二象限(图象 关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象 限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:具体函数具体讨论(5)图象特征:幂函数当时,在第一象限,图像与32,x y x y ==的图像大致趋势一样,当10<<α时,在第一象限,图像与21x y =的图像大致趋势一样,当0<α时,在第一象限,图像与1-=xy 的图像大致趋势一样一元二次方程、一元二次不等式与二次函数的关系设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x < 有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02>≥++a c bx ax{}21x x x x x ≥≤或RR 的解集)0(02><++a c bx ax {}21x x x x <<∅ ∅ 的解集)0(02>≤++a c bx ax{}21x x xx ≤≤⎭⎬⎫⎩⎨⎧-=a b x x 2∅。
§6 指数函数、幂函数、对数函数增长的比较

首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
4.某工厂 12 月份的产量是 1 月份产量的 7 倍,那么该工厂这一年中的月平均增长率是 ________.
解析:设这一年的月平均增长率为 x,1 月份产量为 a, 则 a(1+x)12=7a,∴x= 12 答案: 7-1 12 7-1.
首页
上一页
【例 3】 下面给出 f(x)与 f(x+1)-f(x)随 x 的增大而得到的函数值列表. x 1 2 3 4 5 6 7 8 9 10 x 2 2 4 8 16 32 64 128 256 512 1024 x x2 2x+7 x log2x 1 1 9 1 0 2 4 11 1.4142 1 3 9 13 1.7321 1.5850 4 16 15 2 2 5 25 17 2.2361 2.3219 6 36 19 2.4495 2.5850 7 49 21 2.6458 2.8074 8 64 23 2.8284 3 9 81 25 3 3.1699 10 100 27 3.1623 3.3219
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
指数函数增长模型适合于描述增长速度快的变化规律;对数函数增长模型适合于描述增 长速度平缓的变化规律;而幂函数增长模型介于两者之间,适合于描述增长速度一般的变化 规律. 虽然对指数函数、对数函数以及幂函数各自的单调性都有了比较清楚的认识,但是对这三种 函数增长的差异总是认识不清,突破的思路有二:一是使用科学计算器,计算这三个函数所 对应的一系列函数值,再计算并观察函数值的变化量,从中分析三个函数的函数值增长的快 慢情况,感知其增长的差异;二是借助于图像的直观性,感知其增长的差异.
幂函数和对数函数增长速度

幂函数和对数函数增长速度幂函数和对数函数是两种在数学中经常出现的函数。
它们的增长速度非常不同,其中幂函数的增长速度非常快,而对数函数的增长速度非常慢。
下文将详细讨论这两种函数的增长速度。
首先,让我们来看一下幂函数。
幂函数是指一个函数的定义形式为y = x^n,其中n是一个正实数。
当n>1时,随着x的增加,y的增长速度非常快。
这是因为n次方会使x的增长倍增,而增长幅度比线性增长更快。
例如,在y = x^2中,x增加1时,y增加2;在y = x^3中,x增加1时,y增加3倍。
因此,幂函数的增长速度是非常快的,远远超过线性增长。
接下来,让我们来看一下对数函数。
对数函数是指一个函数的定义形式为y = log(x),其中x是正实数。
对数函数的增长速度非常慢。
这是因为对于任意大于1的实数x,log(x)的值都非常小,它在增加1时并不是以线性的速度增加。
例如,在y = log(x)中,x增加10倍时,y仅增加1。
因此,对数函数的增长速度是非常慢的,远远落后于线性增长。
需要注意的是,当涉及到不同底数的对数函数时,增长速度的比较会有所不同。
例如,当比较常见的对数函数y = log2(x)和y = log10(x)时,log2(x)的增长速度比log10(x)的增长速度快得多。
这是因为log2(x)在增加1时,x的值会增加2倍,而log10(x)的增加速度只是x增加10倍,因此它的增长速度相对较慢。
总的来说,幂函数和对数函数在增长速度上有很大的差异。
幂函数的增长速度非常快,而对数函数的增长速度非常慢。
这些性质使得它们在很多实际应用中具有重要的作用,例如在计算机科学、金融学和工程领域等等。
因此,这两种函数的增长速度是有很重要的意义的。
幂函数与指对数运算课件高三数学一轮复习

幂函数及其应用
1. 概念理解:
幂函数及其应用
2. 函数图象:
幂函数及其应用
2. 函数图象:
幂函数及其应用
3. 二次函数相关: ① 函数解析式
题给条件要看清,方程颇有选择性。
点乘双根法 二三次方程韦达定理
能判断“图象” 能熟练“配方” 能用好“零点”
幂函数及其应用
3. 二次函数相关: ① 函数解析式
朗博同构 1 一元同构:
朗博同构 1 一元同构:
朗博同构 1 一元同构:
朗博同构 2 二元同构:
朗博同构 2 二元同构:
朗博同构 3 同构与切线不等式:
朗博同构 3 同构与切线不等式:
课后小结
1. 幂函数及其图象. 2. 幂的运算性质. 3. 对数的概念及其运算性质. 4.三个二次之间的关系 5.大小比较 6.同构的应用技巧
题给条件要看清,方程颇有选择性。
幂函数及其应用
3. 二次函数相关: ① 函数解析式
题给条件要看清,方程颇有选择性。
幂函数及其应用
3. 二次函数相关:
② 函数值域
定义端点与中点,关注一线点间穿。
幂函数及其应用
3. 二次函数相关:
② 函数值域
定义端点与中点,关注一线点间穿。
幂函数及其应用
3. 二次函数相关:
③ 二次不等式
能否分解要确定,先看开口后比根。
指数与对数运算
1. 对数运算:
指数与对数运算
2.大小比较: 选好中间量,用好单调性
指数与对数运算
2.大小比较: 分参构造新函数,然后再手单调性。
朗博同构
指对共存须同构,看清形式再变形。
朗博同构
构造以后用图象,六个图象必记清。
指数、对数、幂函数总结归纳

指数与指数幂的运算【学习目标】1.理解有理指数幂的含义,掌握幂的运算.2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点.3.理解对数的概念及其运算性质.4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理. 5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质.6.知道指数函数与对数函数互为反函数(a>0,a≠1).【要点梳理】要点一、幂的概念及运算性质1.整数指数幂的概念及运算性质2.分数指数幂的概念及运算性质为避免讨论,我们约定a>0,n,mN*,且为既约分数,分数指数幂可如下定义:3.运算法则当a>0,b>0时有:(1);(2);(3);(4).要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如;(3)幂指数不能随便约分.如.要点二、根式的概念和运算法则1.n次方根的定义:若xn=y(n∈N*,n>1,y∈R),则x称为y的n次方根,即x=.n为奇数时, y的奇次方根有一个,是负数,记为;零的奇次方根为零,记为;n为偶数时,正数y的偶次方根有两个,记为;负数没有偶次方根;零的偶次方根为零,记为.2.两个等式(1)当且时,;(2)要点诠释:①计算根式的结果关键取决于根指数n的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成的形式,这样能避免出现错误.②指数幂的一般运算步骤有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数(如),先要化成假分数(如15/4),然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式:a2-b2=(a-b)(a+b),a3-b3=(a-b)(a2+ab+b2),a3+b3=(a+b)(a2-ab+b2),(a±b)2=a2±2ab+b2,(a±b)3=a3±3a2b+3ab2±b3,的运用,能够简化运算.指数函数及其性质【要点梳理】要点一、指数函数的概念:函数y=ax(a>0且a≠1)叫做指数函数,其中x是自变量,a为常数,函数定义域为R.要点诠释:(1)形式上的严格性:只有形如y=ax(a>0且a≠1)的函数才是指数函数.像,,等函数都不是指数函数.(2)为什么规定底数a大于零且不等于1:①如果,则对于一些函数,比如,当时,在实数范围内函数值不存在.②如果,则是个常量,就没研究的必要了。
幂函数与指数函数的对数表示与应用
幂函数与指数函数的对数表示与应用幂函数和指数函数是数学中常见且重要的函数形式,它们在许多领域都有广泛的应用。
本文将探讨幂函数与指数函数的对数表示以及它们在实际问题中的应用。
一、幂函数的对数表示与应用幂函数是指形如 y = x^n 的函数,其中 x 是自变量,n 是常数指数。
当幂函数的指数 n 为实数时,可以使用对数来表示。
1. 幂函数的对数表示对于幂函数 y = x^n,其中 n 是实数,它的对数表示形式是:n = logx(y)。
这意味着,如果知道幂函数的底数 x 和函数值 y,就可以通过对数运算找到指数 n。
2. 幂函数的应用幂函数在实际生活和工作中有着广泛的应用。
例如,在物理学中,功率函数 P = W/t 就是一种幂函数,其中 W 是工作量,t 是时间。
通过对幂函数进行对数变换,可以更方便地处理功率函数的计算和分析。
二、指数函数的对数表示与应用指数函数是指形如 y = a^x 的函数,其中 a 是底数,x 是指数。
当指数函数的底数 a 为常数时,也可以使用对数来表示。
1. 指数函数的对数表示对于指数函数 y = a^x,其中 a 是常数底数,它的对数表示形式是:x = loga(y)。
这意味着,如果知道指数函数的底数 a 和函数值 y,就可以通过对数运算找到指数 x。
2. 指数函数的应用指数函数在金融学、生物学、计算机科学等领域中有重要的应用。
例如,在金融学中,复利计算就是一种指数函数的应用,通过对指数函数进行对数变换,可以更方便地计算利息的增长和投资的收益。
三、对幂函数和指数函数的综合应用幂函数和指数函数的对数表示可以在实际问题中互相转化,并结合其他数学工具来解决复杂的应用问题。
1. 对数函数的性质对数函数具有许多重要的性质,例如对数函数的导数与原函数的关系、对数函数的性质和等式的性质等。
利用这些性质,可以简化对数函数的计算和分析。
2. 应用举例幂函数和指数函数的综合应用非常广泛。
例如,在天文学中,使用对数表示来描述恒星的亮度和星等;在工程学中,使用对数表示来描述震级和声音的强度。
专题06 指对数函数及幂函数的图像与性质 (纯答案)
专题06 指对数函数及幂函数的图像与性质 答案题型一 指对函数以及幂函数的比较大小例1、【答案】A【解析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a 、b 、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<;由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <;由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<.故选:A.变式1、【答案】D【解析】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.变式2、【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<.故选B .变式3、【答案】A【解析】因为551log 2log 2a =<=, 0.50.5log 0.2log 0.252b =>=,10.200.50.50.5c <=<,即112c <<, 所以a c b <<.故选A.题型二、指对数以及幂函数的运算例2、【答案】A 【解析】两颗星的星等与亮度满足12125lg 2E m m E -=, 令211.45,26.7m m =-=-, 则()121222lg ( 1.4526.7)10.1,55E m m E =-=⨯-+= 从而10.11210E E =. 故选A.变式1、【答案】10330,4⎛⎫ ⎪⎝⎭【解析】∵3log 41x =,∵4log 3x =, ∵44log 3log 31104444333x x --+=+=+=; ∵30log 14a <<,即3log 1log log 4a a a a <<, ∵01314a a <<⎧⎪⎨>>⎪⎩,解得304a <<, 故答案为:103;30,4⎛⎫ ⎪⎝⎭. 变式2、 【答案】1927【解析】正实数a 满足()98a a a a =, 9log 8a a a a ∴=, 由1log 89a a =,得8log 89a =-, 8log 227a ∴=-, ()819log 2log 2112727a a a ∴=+=-+=. 故答案为:1927. 变式3、【答案】A 【解析】由题意()()2211log 44log 421616f f f f f ⎛⎫⎛⎫⎛⎫==-=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A.变式4、【答案】C【解析】∵函数2221,1()(1),1x x f x log x x ⎧-+=⎨-<⎩,∵2424131f ⨯+()=﹣=﹣,()()()24311315f f f log -⎡⎤⎣+⎦===. 故选:C.题型三 指对数的性质例3、【答案】B【解析】由于1()(21)a g x a x +=-为幂函数,则211a -=,解得:1a =, 函数1()2x b f x m -=-,(0,m >且1)m ≠,当x b =时,11()22b b f b m -=-= ,故()f x 的图像所经过的定点为1(,)2b , 所以1()2g b =,即212b =,解得:2b =±, 故答案选B变式1、【答案】C【解析】当1a >时,函数x y a-=在(),-∞+∞上单调递减且是曲线,向下平移一个单位长度得1x y a -=-,排除A ,B ,C ,D ,没有符合题意的;当01a <<时,函数x y a -=在(),-∞+∞上单调递增且是曲线,向下平移一个单位长度得1x y a -=-,排除B ,当0x =时,0y =,排除D.此时11a +>,函数1log a y x +=(0a >且1a ≠)在()0,+∞上单调递增,排除A.故选:C.变式2、【答案】A【解析】根据题意,函数()2ln 1f x a x ⎛⎫=+ ⎪-⎝⎭是奇函数,则()00f =, 即2ln 010a ⎛⎫+= ⎪+⎝⎭,可得1a =-, 则()21ln 1ln 11x f x x x +⎛⎫⎛⎫=-= ⎪ ⎪--⎝⎭⎝⎭,有101x x +>-,解可得11x -<<, 即函数的定义域为()1,1-, 设11x t x+=-,则ln y t =, 12111x t x x +==----,则t 在()1,1-上为增函数,而ln y t =在()0,∞+上为增函数,则()f x 在()1,1-上为增函数, 若()1f x =,即11x e x +=-,解可得11e x e -=+, 则()1f x <,即()11e f x f e -⎛⎫< ⎪+⎝⎭,解得11e x e -<+, 又由11x -<<,则有111e x e --<<+, 即x 的取值范围为11,1e e -⎛⎫- ⎪+⎝⎭; 故选:A.1、【答案】A【解析】因为551log 2log 2a =<=, 0.50.5log 0.2log 0.252b =>=,10.200.50.50.5c <=<,即112c <<,所以a c b <<.故选A.2、【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<.故选B .3、【答案】A【解析】因为551log 2log 2a =<=, 0.50.5log 0.2log 0.252b =>=,10.200.50.50.5c <=<,即112c <<, 所以a c b <<.故选A.4、【答案】3- 【解析】由题意知()f x 是奇函数,且当0x <时,()e ax f x =-,又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=,所以3a -=,即3a =-.5、【答案】1 [1,0)-【解析】(1)(1)f f -=,122log (1)a -∴=-,1212a ∴-=,1a ∴=-易知0x <时,()2(0,1)xf x =∈;又时,2()log ()f x x a =-递增,故()()()a f x f -=≥2log 0,要使函数()f x 存在最小值,只需,解得:01<≤-a .故答案为:1[1,0)-.6、【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称, 又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ; 当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--, ()ln 21y x =+在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减, ()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ; 0≥x ()⎩⎨⎧≤->-0log 02a a当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭, 2121x μ=+-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增, 根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确. 故选:D .7、【答案】B【解析】因0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==, 设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.69 1.80.380.38t =≈≈天. 故选:B.8、【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴> 故答案为:(0,)+∞9、【答案】(]1;,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e x x f x a -=+为奇函数,则()(),f x f x -=-即()e e e e x x x x a a --+=-+,即()()1e e 0x x a -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e x xf x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立, 即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞.。
指数函数对数函数和幂函数知识点归纳
一、幂函数1、幂的有关概念正整数指数幂:...()nna a a a n N=∈g123零指数幂:01(0)a a=≠负整数指数幂:1(0,) ppa a pNa-=≠∈分数指数幂:正分数指数幂的意义是:(0,,,1)mn mna a a m n N n=>∈>且负分数指数幂的意义是:1(0,,,1)mnm n mna a m n N naa-==>∈>且2、幂函数的定义一般地,函数ay x=叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况).3、幂函数的图象幂函数ay x=当11,,1,2,332a=时的图象见左图;当12,1,2a=---时的图象见上图:由图象可知,对于幂函数而言,它们都具有下列性质:a y x =有下列性质: (1)0a >时:①图象都通过点(0,0),(1,1);②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时:①图象都通过点(1,1);②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点.二、指数函数①定义:函数)1,0(≠>=a a a y x且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞;3)当10<<a 时函数为减函数,当1>a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a .5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=⋅-=三、对数函数如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b =log b a a N N b =⇔=(0a >,1a ≠,0N >). 1.对数的性质()log log log a a a MN M N =+. log log log aa a MM N N=-.log log n a a M n M =.(00M N >>,,0a >,1a ≠)( a, b > 0且均不为1)2.换底公式:log log log m a m NN a=( a > 0 , a ¹ 1 ;0,1m m >≠) 常用的推论:(1)log log 1a b b a ⨯= ; .(2)log log m na a nb b m=(a 、0b >且均不为1).1log log 1N N a a mn n m==. (3), (4)对数恒等式.一、对数函数的图像及性质① 函数log a y x =(0a >,1a ≠)叫做对数函数② 对数函数的性质:定义域:(0,)+∞; 值域:R ; 过点(1,0),即当1x =时,0y =.当0a >时,在(0,+∞)上是增函数;当01a <<时,在(0,+∞)上是减函数.二、对数函数与指数函数的关系对数函数log a y x =与指数函数x y a =图像关于直线y x =对称. 指数方程和对数方程主要有以下几种类型:()()log ,log ()()f x b a a a b f x b f x b f x a =⇔==⇔=(定义法)b mnb a n am log log =1log log log =⋅⋅a c b c b a 01log =a 1log =a a N a N a =log()()()(),log ()log ()()()0f x g x a a a a f x g x f x g x f x g x =⇔==⇔=>(转化法) ()()()log ()log f x g x m m a b f x a g x b =⇔= (取对数法)。
指数对数幂函数知识点总结精选
指数对数幂函数知识点总结精选篇一:指数、对数、幂函数知识点指数、对数、幂函数知识归纳知识要点梳理知识点一:指数及指数幂的运算 1.根式的概念的次方根的定义:一般地,如果;当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.;,那么叫做的次方根,其中次方根的性质: (1)当为奇数时,;(2)当为偶数时,3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:(1)(2)(3)知点二:指数函数及其性质 1.指数函数概念:一般地,函数变量,函数的定义域为.叫做指数函数,其中是自1.(2013·北京高考理科·T5)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)= ( ) +1 +12.(2013·上海高考文科·T8)方程3.(2013·湖南高考理科·T16)设函数f(x)?ax?bx?cx,其中c?a?0,c?b?0.9x的实数解为 . ?1?3x3?1且a=b?,(1)记集合M??(a,b,c)a,b,c不能构成一个三角形的三条边长,则(a,b,c)?M所对应的f(x)的零点的取值集合为____.(2)若a,b,c是?ABC的三条边长,则下列结论正确的是. (写出所有正确结论的序号)①?x,1?,f?x??0;②?x?R,使得ax,bx,cx不能构成一个三角形的三边长;③若?ABC为钝角三角形,则?x??1,2?,使f?x??0.知识点三:对数与对数运算 1.对数的定义(1)若叫做底数,叫做真数.,则叫做以为底的对数,记作,(2)负数和零没有对数.(3)对数式与指数式的互化:2.几个重要的对数恒等式:,,..3.常用对数与自然对数:常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果①加法:,那么②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质 1.对数函数定义一般地,函数数的定义域.叫做对数函数,其中是自变量,函2.对数函数性质:4.(2013·广东高考理科·T2)函数f(x)?的定义域是() x?1A.(?1,??) B.[?1,??) C.(?1,1)(1,??) D.[?1,1)(1,??)5.(2013·陕西高考文科·T3)设a, b, c均为不等于1的正实数, 则下列等式中恒成立的是 A.logab·logcb?logcaB. logab?logca?logcb篇二:指数_对数_幂函数必备知识点几种特殊的函数知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等于0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.知识点五:反函数1.反函数的概念设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.2.反函数的性质(1)原函数与反函数的图象关于直线对称.(2)函数的定义域、值域分别是其反函数的值域、定义域.(3)若在原函数的图象上,则在反函数的图象上.(4)一般地,函数要有反函数则它必须为单调函数.3.反函数的求法(1)确定反函数的定义域,即原函数的值域;(2)从原函数式中反解出;(3)将改写成,并注明反函数的定义域.知识点六:幂函数1.幂函数概念形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.(5)图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.篇三:指数对数幂函数知识点汇总知识点一:根式、指数幂的运算1、根式的概念:若x?a,则x叫做a的次方根, n?1,n?Nn???(1)当n为奇数时,正数的n次方根为正,负数的n次方根为负,记作na;(2)当n为偶数时,正数的n次方根有两个(互为相反数),记作(3)负数没有偶次方根,0的任何次方根都是0. 2、n次方根的性质:(1)n?an为奇数. ?a;(2???|a|n为偶数3、分数指数幂的意义:(1)a?;(2)amnm?n?1amn?a?0,m,n?N?,n?1?.注意:0的正指数幂等于0,负指数幂没有意义. 4、指数幂的运算性质:?a?0,b?0,r,s?R?rrs)ras?a? (1a;(2)a??s?ars; (3)?ab??arbrr知识点二:对数与对数运算b1、指数式与对数式的互化:a?N?logaN?b(a?0,a?1,N?0)2、几个重要的对数恒等式(1)负数和0没有对数;(2)loga1?0(a?1)(3)logaa?1(a?a);(4)对数恒等式:a3、对数的运算性质(1)loga(MN)?logaM?logaN;(2)logan1logaN?NM?logaM-logaN; NlogmN;logma(3)logaM?nlogaM(n?R);(4)换底公式:logaN?(5)logab?logba?1 ;(6)logab?logbc?logac ;(7)logab?logbc?logcd?logad ;(8)logambn?nlogab;m知识点四:对数函数及其性质x注:指数函数y?a与对数函数y?logax互为反函数(1)互为反函数的两函数图象关于y?x对称,即(a,b)在原函数图象上,则(b,a)在其反函数图象上;(2)互为反函数的两函数在各自的定义域上单调性相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指、对数函数,幂函数
指数、对数以及指数函数与对数函数,是高中代数非常重要的内容。无论在高考及数学竞赛中,
都具有重要地位。熟练掌握指数对数概念及其运算性质,熟练掌握指数函数与对数函数这一对反函数
的性质、图象及其相互关系,对学习好高中函数知识,意义重大。
一、 指数概念与对数概念:
指数的概念是由乘方概念推广而来的。相同因数相乘a·a……a(n个)=an导出乘方,这里的n为正
整数。从初中开始,首先将n推广为全体整数;然后把乘方、开方统一起来,推广为有理指数;最后,
在实数范围内建立起指数概念。
欧拉指出:“对数源出于指数”。一般地,如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b
叫做以a为底N的对数,记作:logaN=b
其中a叫做对数的底数,N叫做真数。
ab=N与b=logaN是一对等价的式子,这里a是给定的不等于1的正常数。当给出b求N时,是
指数运算,当给出N求b时,是对数运算。指数运算与对数运算互逆的运算。
二、指数运算与对数运算的性质
1.指数运算性质主要有3条:
ax·ay=ax+y,(ax)y=axy,(ab)x=ax·bx(a>0,a≠1,b>0,b≠1)
2.对数运算法则(性质)也有3条:
(1)loga(MN)=logaM+logaN (2)logaM/N=logaM-logaN(3)logaMn=nlogaM(n∈R)
(a>0,a≠1,M>0,N>0)
3.指数运算与对数运算的关系:
X=alogax;mlogan=nlogam
4.负数和零没有对数;1的对数是零,即loga1=0;底的对数是1,即logaa=1
5.对数换底公式及其推论:
换底公式:logaN=logbN/logba
推论1:logamNn=(n/m)logaN
推论2:
三、指数函数与对数函数
函数y=ax(a>0,且a≠1)叫做指数函数。它的基本情况是:
(1)定义域为全体实数(-∞,+∞)
(2)值域为正实数(0,+∞),从而函数没有最大值与最小值,有下界,y>0
(3)对应关系为一一映射,从而存在反函数--对数函数。
(4)单调性是:当a>1时为增函数;当0(5)无奇偶性,是非奇非偶函数,但y=ax与y=a - x的图象关于y轴对称,y=ax与y= -ax的图象关
于x轴对称;y=ax与y=logax的图象关于直线y=x对称。
(6)有两个特殊点:零点(0,1),不变点(1,a)
(7)抽象性质:f(x)=ax(a>0,a≠1),f(x+y)=f(x)·f(y),f(x-y)=f(x)/f(y)
函数y=logax(a>0,且a≠1)叫做对数函数,它的基本情况是:
(1)定义域为正实数(0,+∞)
(2)值域为全体实数(-∞,+∞)
(3)对应关系为一一映射,因而有反函数——指数函数。
(4)单调性是:当a>1时是增函数,当0(5)无奇偶性。但y=logax与y=log(1/a)x关于x轴对称,y=logax与y=loga(-x)图象关于y轴对称,
y=logax与y=ax图象关于直线y=x对称。
(6)有特殊点(1,0),(a,1)
(7)抽象运算性质f(x)=logax(a>0,a≠1),
f(x·y)=f(x)+f(y),f(x/y)=f(x)-f(y)
例题讲解
1.若f(x)=(ax/(a
x
+√a)),求f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001)
2.5log25等于:( )
(A)1/2 (B)(1/5)10log25 (C)10log45 (D)10log52
3.计算
4.试比较(122002+1)/(122003+1)与(122003+1)/(122004+1)的大小。
5.已知(a,b为实数)且f(lglog310)=5,则f(lglg3)的值是( )
(A)-5 (B)-3 (C)3 (D)随a,b的取值而定
例题答案:
1. 分析:和式中共有1000项,显然逐项相加是不可取的。需找出f(x)的结构特征,发现规律,
注意到1/1001+1000/1001=2/1001+999/1001=3/1001+998/1001=…=1,
而
f(x)+f(1-x)=(ax/(ax+√a))+(a1-x/(a1-x+√a))=(ax/(ax+√a))+(a/(a+ax·√a))=(ax/(a
x+√a))+((√a)/(ax+√a))=((ax+√a)/(ax
+√a))=1规律找到了,这启示我们将和式配对结合后再相加:
原式
=[f(1/1001)+f(1000/1001)]+[f(2/1001)+f(999/1001)]+…+[f(500/1001)+f(501/1001)]=(1+1+…+1)5000个
=500
说明:观察比较,发现规律f(x)+f(1-x)=1是本例突破口。
(1)取a=4就是1986年的高中数学联赛填空题:设f(x)=(4x/(4x+2)),那么和式
f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001)的值= 。
(2)上题中取a=9,则f(x)=(9x/(9x+3)),和式值不变也可改变和式为求
f(1/n)+f(2/n)+f(3/n)+…+f((n-1)/n).
(3)设f(x)=(1/(2
x
+√2)),利用课本中推导等差数列前n项和的方法,可求得
f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为 。这就是2003年春季上海高考数学第12题。
2.解:∵5log25=(10/2)log25=(10log25)/(2log25)=(1/5)×10log25
∴选(B)
说明:这里用到了对数恒等式:alogaN=N(a>0,a≠1,N>0)
这是北京市1997年高中一年级数学竞赛试题。
3.解法1:先运用复合二次根式化简的配方法对真数作变形。
解法2:利用算术根基本性质对真数作变形,有
说明:乘法公式的恰当运用化难为易,化繁为简。
4.解:对于两个正数的大小,作商与1比较是常用的方法,记122003=a>0,则有
((122002+1)/(122003+1))÷((122003+1)/(122004+1))=((a/12)+1)/(a+1)·((12a+1)/(a+1))=((a+12)(12a+1))/(12(a+1)
2
)=((12a2+145a+12)/(12a2+24a+12))>1
故得:((122002+1)/(122003+1))>((122003+1)/(122004+1))
5. 解:设lglog310=t,则lglg3=lg(1/log310)=-lglog310=-t
而f(t)+f(-t)=
∴f(-t)=8-f(t)=8-5=3
说明:由对数换底公式可推出logab·logba=(lgb/lga)·(lga/lgb)=1,即logab=(1/logba),因而lglog310
与lglg3是一对相反数。设中的部分,则g(x)为奇函数,
g(t)+g(-t)=0。这种整体处理的思想巧用了奇函数性质使问题得解,关键在于细致观察函数式结构特征
及对数的恒等变形。