高二月考数学试卷理科
湖北省高二下学期第一次月考数学试卷(理科)

湖北省高二下学期第一次月考数学试卷(理科)姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知函数在处可导,则等于()A .B .C .D . 02. (2分) (2017高二下·汉中期中) 若f(x)=ax4+bx2+c满足f′(1)=2,则f′(﹣1)=()A . ﹣4B . ﹣2C . 2D . 43. (2分) (2016高三上·西安期中) (理)的值是()A .B .C .D .4. (2分)已知自由下落物体的速度为V=gt,则物体从t=0到t0所走过的路程为()A . gt02B . gt02C . gt02D . gt025. (2分)下列表述:①综合法是执因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是间接证法;⑤反证法是逆推法.正确的语句有()A . 2个B . 3个C . 4个D . 5个6. (2分)命题“任意角”的证明:“ ”应用了()A . 分析法B . 综合法C . 综合法、分析法结合使用D . 间接证法7. (2分)若复数z同时满足z﹣=2i,=iz,则z=()(i是虚数单位,是z的共轭复数)A . 1﹣iB . iC . ﹣1﹣iD . ﹣1+i8. (2分) .已知复数(其中是虚数单位)在复平面内对应的点Z落在第二象限,则的范围()A .B .C .D .9. (2分) (2017高三上·商丘开学考) 已知i是虚数单位,若复数z= 在复平面内的对应的点在第四象限,则实数a的值可以是()A . ﹣2B . 1C . 2D . 310. (2分) (2017高二上·大连期末) 设平面α的一个法向量为,平面β的一个法向量为,若α∥β,则k=()A . 2B . ﹣4C . ﹣2D . 411. (2分) (2019高二上·漠河月考) 设椭圆的左、右焦点分别为,是上的点,,,则的离心率为()A .B .C .D .12. (2分) (2018高二上·牡丹江期中) 已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为()A .B . 1C .D .二、填空题 (共4题;共4分)13. (1分)已知椭圆:+=1,左右焦点分别为F1 , F2 ,过F1的直线l交椭圆于A,B两点,若AF2+BF2的最大值为5,则椭圆方程为________14. (1分)矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B﹣AC﹣D,则四面体ABCD的体积为________15. (1分) (2019高一上·连城月考) 记表示中的最大者,设函数,若 ,则实数的取值范围是________.16. (1分) (2016高二下·上海期中) 已知虚数z=(x﹣2)+yi(x,y∈R),若|z|=1,则的取值范围是________.三、解答题 (共5题;共40分)17. (10分) (2016高二下·阳高开学考) 如图:四棱锥P﹣ABCD中,底面ABCD是平行四边形,且AC=BD,PA⊥底面ABCD,PA=AB=1,,点F是PB的中点,点E在边BC上移动.(1)证明:当点E在边BC上移动时,总有EF⊥AF;(2)当CE等于何值时,PA与平面PDE所成角的大小为45°.18. (5分)设函数y=lg(﹣x2+4x﹣3)的定义域为A,函数y=,x∈(0,m)的值域为B.(1)当m=2时,求A∩B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.19. (10分) (2019高二上·厦门月考) 已知命题,命题:方程表示焦点在轴上的双曲线.(1)命题为真命题,求实数的取值范围;(2)若命题“ ”为真,命题“ ”为假,求实数的取值范围.20. (5分) (2018高二上·白城月考) 求的值21. (10分) (2019高二下·宁夏月考) 已知复数.(1)若复数在复平面上所对应的点在第二象限,求的取值范围;(2)求当为何值时,最小,并求的最小值.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共5题;共40分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:。
河北省邯郸市第二十四中学高二数学理月考试题含解析

河北省邯郸市第二十四中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在棱长为a的正方体ABCD﹣A1B1C1D1中,M为AB的中点,则点C到平面A1DM的距离为()A. a B. a C. a D. a参考答案:A【考点】点、线、面间的距离计算.【专题】计算题.【分析】连接A1C、MC,三棱锥A1﹣DMC就是三棱锥C﹣A1MD,利用三棱锥的体积公式进行转换,即可求出点C到平面A1DM的距离.【解答】解:连接A1C、MC可得=△A1DM中,A1D=,A1M=MD=∴=三棱锥的体积:所以 d(设d是点C到平面A1DM的距离)∴=故选A.【点评】本题以正方体为载体,考查了立体几何中点、线、面的距离的计算,属于中档题.运用体积计算公式,进行等体积转换来求点到平面的距离,是解决本题的关键.2. 如果函数的导函数是偶函数,则曲线在原点处的切线方程是()A. B. C. D.参考答案:A试题分析:,因为函数的导数是偶函数,所以满足,即,,,所以在原点处的切线方程为,即,故选A.考点:导数的几何意义3. 若集合,,则是A.B.C.D.参考答案:B略4. 设,记,若则()A. B.- C. D.参考答案:B5. 下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则参考答案:C6. 用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度 B.假设三内角都大于60度C.假设三内角至少有一个大于60度D.假设三内角至多有二个大于60度参考答案:B略7. 椭圆上的点到直线的最大距离是()A.3 B.C.D.参考答案:D8. 用反证法证明命题“三角形的内角中至少有一个大于60°,反证假设正确的是( )A. 假设三内角都大于60°B. 假设三内角都不大于60°C. 假设三内角至多有一个大于60°D. 假设三内角至多有两个大于60°参考答案:B【分析】反证法的第一步是假设命题的结论不成立,根据这个原则,选出正确的答案.【详解】假设命题的结论不成立,即假设三角形的内角中至少有一个大于60°不成立,即假设三内角都不大于60°,故本题选B.【点睛】本题考查了反证法的第一步的假设过程,理解至少有一个大于的否定是都不大于是解题的关键.9. 对于幂函数,若,则,大小关系是()A. B.C. D.无法确定参考答案:A10. 若f(x)是偶函数且在(0,+∞)上减函数,又,则不等式的解集为()A. 或B. 或C. 或D. 或参考答案:C∵是偶函数,,∴,∵,∴∵在上减函数,∴,∴或∴不等式的解集为或,故选C.二、填空题:本大题共7小题,每小题4分,共28分11. 设两个独立事件和都不发生的概率为,发生不发生的概率与发生不发生的概率相同,则事件发生的概率为____.参考答案:12. 若x 2dx=9,则常数T的值为 .参考答案:3【考点】定积分.【分析】利用微积分基本定理即可求得.【解答】解: ==9,解得T=3,故答案为:3.13. 给出下列3个命题:①若,则;②若,则;③若且,则,其中真命题的序号为 ▲ .参考答案:14. 甲、乙、丙人站到共有级的台阶上,若每级台阶最多站人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).参考答案: 336 略15. 设变量满足约束条件则的最大值为________参考答案:4 16. 若在展开式中x 3的系数为-80,则a = .参考答案:-2;17. 已知,且是第二象限角,则____________参考答案:三、 解答题:本大题共5小题,共72分。
四川省凉山州宁南中学2022-2023学年高二下学期第二次月考理科数学试题

【详解】解:∵ A = {x 1 < x < 2}, B = {x 1 £ x £ 2} ,
∴ A Ç B = {x 1 < x < 2} ,
故选:D. 2.C 【分析】由复数运算法则可得 z 代数形式,后可得其虚部.
【详解】
z
=
3 + 2i 1+ i
=
(3 + 2i)(1- i) (1+ i)(1- i)
=
5
2
i
=
5 2
-
1 2
i
,则
z
的虚部是
-
1 2
.
故选:C 3.B
【分析】根据点 P ( x, y) 在椭圆上得
x2 a2
+
y2 b2
= 1,且 -a
£
x
£ a ,再利用两点距离求得
PF1
=
c a
x + a ,从而可确定
PF1
a, c 的最大值与最小值,即可求得 的值,即可得离心率
e
=
c a
的值.
【详解】设椭圆的半焦距为 c ,若椭圆上一点 P ( x,
为圆柱下底面圆
O
的直径,C
是下底面圆周上一点,已知
ÐAOC
=
π 3
,
OA
=
2
,圆柱的高为
5.若点
D
在圆柱表面上运动,且满足
uuur BC
×
uuur CD
=
0
,则点
D
的轨
迹所围成图形的面积为________.
试卷第31 页,共33 页
16.已知函数 f ( x) = aln2x +1- x (a Î R) 有且仅有一条切线经过点 (0, 0) .若"x Î[1, +¥) , f ( x) + mlnx £ 0 恒成立,则实数 m 的最大值是______.
新疆高二下学期第一次月考数学试题(解析版)

高二下学期第一次月考数学试题一、单选题1.某物体的运动路程s (单位:m )与时间t (单位:s )的关系可用函数表示,则该()21s t t t =++物体在s 时的瞬时速度为( ) 1t =A .0m/s B .1m/s C .2m/s D .3m/s【答案】D【分析】根据瞬时速度的概念即可利用平均速度取极限求解. 【详解】该物体在时间段上的平均速度为[]1,1t +∆,当无限趋近于0时,无限趋()()()()()22111111113t t s t s s t t t t+∆++∆+-+++∆-∆===+∆∆∆∆Δt 3t +∆近于3,即该物体在s 时的瞬时速度为3m/s . 1t =故选:D2.曲线在点(1,-2)处的切线的倾斜角为( ) 43y x x =-A .B .C .D .6π4π3π23π【答案】B【分析】根据导数的几何意义求解.【详解】因为,所以,故所求切线的倾斜角为.343y x '=-11x y ='=4π故选:B .3.函数的单调递增区间为( )21=ln 22y x x -+A . B .C .D .()1,1-()0,1[)1,+∞()0,∞+【答案】C【分析】先对函数求导,然后令导函数大于0解出不等式,并结合函数的定义域,即可得到本题答案.【详解】因为,所以,21=ln 22y x x -+211x y x x x -'=-=令,得或,0y >'A A A A 1x <-1x >又函数的定义域为,所以函数的单调递增区间为, {}0x x >[1,)+∞故选:C4.若函数在区间上单调递增,则实数k 的取值范围是( )()331f x x kx =-+()1,+∞A . B . C . D .(),1-∞(],1-∞[)1,-+∞[)1,+∞【答案】B【分析】利用函数在区间上的导函数为非负数,列不等式,解不等式即可求得的取值()f x (1,)+∞k 范围.【详解】由题意得,在区间上恒成立, 22()333()0f x x k x k '=-=-≥(1,)+∞即在区间上恒成立,2k x ≤(1,)+∞又函数在上单调递增,得, 2y x =(1,)+∞21x >所以,即实数的取值范围是. 1k ≤k (,1]-∞故选:B5.已知函数的导函数图象如下图所示,则原函数的图象是( )()y f x =()y f x '=()y f x =A .B .C .D .【答案】B【分析】根据函数的单调性与导数的关系以及导数的变化可得结果.【详解】由图可知,当时,,则函数在上为增函数, 11x -<<()0f x ¢>()f x ()1,1-当时,单调递增,故函数在上的增长速度越来越快,10x -<<()f x '()f x ()1,0-当时,单调递减,故函数在上的增长速度越来越慢. 01x <<()f x '()f x ()0,1B 选项中的图象满足题意. 故选:B.6.函数在区间上的最大值为( ) ()cos sin f x x x x =-[]π,0-A .1 B .C .D .π323π2【答案】B【分析】求出函数的导数,判断函数的单调性,即可求得答案. 【详解】由题意得, ()cos sin cos sin f x x x x x x x '=--=-当时,,,[]π,0x ∈-sin 0x ≤()0f x '≤所以在区间单调递减,故函数最大值为, ()f x []π,0-()ππf -=故选:B7.“一笔画”游戏是指要求经过所有路线且节点可以多次经过,但连接节点间的路线不能重复画的游戏,下图是某一局“一笔画”游戏的图形,其中为节点,若研究发现本局游戏只能以为起,,A B C A 点为终点或者以为起点为终点完成,那么完成该图“一笔画”的方法数为( )C C AA .种B .种C .种D .种6122430【答案】C【分析】采用分步乘法可计算得到以为起点,为终点的方法数,再利用分类加法计数原理求得A C 结果.【详解】以为起点时,三条路线依次连接即可到达点,共有种选择;自连接到A B 326⨯=B C 时,在右侧可顺时针连接或逆时针连接,共有种选择,C 2以为起点,为终点时,共有种方法;∴A C 6212⨯=同理可知:以为起点,为终点时,共有种方法;C A 12完成该图“一笔画”的方法数为种.∴121224+=故选:C.8.过去的一年,我国载人航天事业突飞猛进,其中航天员选拔是载人航天事业发展中的重要一环.已知航天员选拔时要接受特殊环境的耐受性测试,主要包括前庭功能、超重耐力、失重飞行、飞行跳伞、着陆冲击五项.若这五项测试每天进行一项,连续5天完成.且前庭功能和失重飞行须安排在相邻两天测试,超重耐力和失重飞行不能安排在相邻两天测试,则选拔测试的安排方案有( ) A .24种 B .36种C .48种D .60种【答案】B【分析】根据特殊元素“失重飞行”进行位置分类方法计算,结合排列组合等计数方法,即可求得总的测试的安排方案种数.【详解】①若失重飞行安排在第一天则前庭功能安排第二天,则后面三天安排其他三项测试有种安排方法,33A 6=此情况跟失重飞行安排在第五天则前庭功能安排第四天安排方案种数相同;②若失重飞行安排在第二天,则前庭功能有种选择,超重耐力在第四、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法,22A 112222C C A 8=此情况与失重飞行安排在第四天方安排方案种数相同;③若失重飞行安排在第三天,则前庭功能有种选择,超重耐力在第一、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法;22A 112222C C A 8=故选拔测试的安排方案有种. 6282836⨯+⨯+=故选:B.二、多选题9.某高一学生想在物理、化学、生物、政治、历史、地理这六门课程中选三门作为选科科目,则下列说法正确的有( )A .若不选择政治,选法总数为种25C B .若物理和化学至少选一门,选法总数为1225C C C .若物理和历史不能同时选,选法总数为种3164C C -D .若物理和化学至少选一门,且物理和历史不同时选,选法总数为种 121244(C C C )-【答案】AC【分析】根据组合数性质判断A ;若物理和化学至少选一门,分物理和化学选一门和物理和化学都选,求出选法数,判断B ;物理和历史不能同时选,即六门课程中任意选3门减去物理和历史同时选的选法数,判断C ;物理和化学至少选一门,且物理和历史不同时选,分三种情况考虑,求得选法数,判断D.【详解】对于A, 若不选择政治,选法总数为种,正确;3255C C =对于B ,若物理和化学选一门,选法总数为, 1224C C 若物理和化学都选,则选法数有种,2124C C 故物理和化学至少选一门,选法总数为种,而,B 错误;12212424C C C C 16+=1225C C 20=对于C, 若物理和历史不能同时选,即六门课程中任意选3门有种选法,36C 减去物理和历史同时选的选法数,故选法总数为种,C 正确;14C 3164C C -对于D,当物理和化学中只选物理时,有种选法; 23C 当物理和化学中只选化学时,有种选法; 24C 当物理和化学中都选时,有种选法,13C 故物理和化学至少选一门,且物理和历史不同时选,选法总数为种,而,D 错误,221343C +C +C =12121244C C C 8-=故选:AC 10.下列等式正确的是( )A .B .()111A A m m n n n +++=()()!2!1n n n n =--C .D .A C !mm n nn =11A A m m n n n m+=-【答案】ABD【分析】利用排列数公式、组合数公式,逐项计算判断作答.【详解】对于A ,,A 正确;()11!(1)!(1)()![(1)(1)]!1A A mm n n n n n n n m n m +++=+⋅=-+-++=对于B ,,B 正确; ()()!(1)!(1)(2)!2!1(1)1n n n n n n n n n n n ⋅--⋅-===----对于C ,,而与不一定相等,则与不一定相等,C 不正确;A C !m m nnm =!m !n A !m n m A !m n n 对于D ,,D 正确. 111!!A A (1)!()!m m n n n n n m n m n m n m +⋅==-----=故选:ABD11.如图是函数的导函数的图像,则下列判断正确的是( )()y f x =()f x 'A .在区间上,单调递增 ()2,1-()f xB .在区间上,单调递增 ()1,2()f xC .在区间上,单调递增 ()4,5()f xD .在区间上,单调递增 ()3,2--()f x 【答案】BC【分析】当,则单调递增,当,则单调递减,据此可得答案. ()0f x ¢>()f x ()0f x '<()f x 【详解】由题图知当时,,()()1245,,,x x ∈∈()0f x ¢>所以在区间上,单调递增,BC 正确; ()()1245,,,()f x 当时,,当时,,所以在区间上,单调递减.()2,1x ∈--()0f x '<()1,1x ∈-()0f x ¢>()2,1--()f x 在上递增,A 错误;()1,1-当时,,所以在区间上,单调递减,D 错误; ()3,2x ∈--()0f x '<()3,2--()f x 故选:BC12.已知函数,则( ) 321()()3f x x ax x a =+-∈R A .当时,函数的极大值为0a =()f x 23-B .若函数图象的对称中心为,则 ()f x (1,(1))f 1a =-C .若函数在上单调递增,则或 ()f x R 1a ≥1a ≤-D .函数必有3个零点 ()f x 【答案】BD【分析】根据函数极大值的定义,结合函数的导数的性质、函数零点的定义逐一判断即可.【详解】A 项:当时,,则,所以在单调递增,在0a =31()3f x x x =-2()1f x x '=-()f x (,1)-∞-单调递减,在单调递增,所以极大值为,故错误; (1,1)-(1,)+∞()f x 12(1)133f -=-+=B 项:因为函数图象的对称中心为,()f x (1,(1))f所以有,故正确;()()()()21121101f x f x f a x a ++-=⇒+=⇒=-C 项:恒成立,显然必有两根,则2()210f x x ax =+-≥'()0f x '=()121212,,10x x x x x x <⋅=-<()f x 在递减,故错误;()12,x x D 项:必有2相异根,且非零,()2221111001010333f x x ax x x x ax x ax ⎛⎫=+-=⇒=+-=+-= ⎪⎝⎭或,故必有3个零点,故正确. ()f x 故选择:BD三、填空题13.已知函数,则在处的切线方程为___________.()e sin 2xf x x =-()f x ()()0,0f 【答案】10x y +-=【分析】由导数的几何意义求切线的斜率,利用点斜式求切线方程.【详解】因为,()e sin 2xf x x =-所以,,()00e sin 01f =-=()e 2cos 2xf x x =-'所以,()00e 2cos 01f =-=-'切线方程为, 即. ()10y x -=--10x y +-=故答案为:.10x y +-=14.函数有极值,则实数的取值范围是______.()322f x x x ax a =-++a 【答案】1(,3-∞【分析】求出函数的导数,再利用存在变号零点求出a 的范围作答.()f x '()f x '【详解】函数定义域为R ,求导得:,()322f x x x ax a =-++2()32f x x x a '=-+因为函数有极值,则函数在R 上存在变号零点,即有两个不等实根, ()f x ()f x '()0f x '=即有方程有两个不等实根,于是得,解得,2320x x a -+=4120a ∆=->13a <所以实数的取值范围是.a 1(,)3-∞故答案为:1(,)3-∞15.某公司新开发了4件不同的新产品,需放到三个不同的机构A ,B ,C 进行测试,每件产品只能放到一个机构里,则所有测试的情况有________种(结果用具体数字表示). 【答案】81【分析】利用分步乘法原理求解即可【详解】由题意可知,每一个新产品都有3种放法,所以由分步乘法原理可得 4件不同的新产品共有种放法, 333381⨯⨯⨯=故答案为:8116.已知,则_________.233A C 0!4m -+=m =【答案】2或3【分析】利用排列数公式,组合数公式进行计算即得.【详解】,233A C 0!4m -+= ,又,3A 6m∴=323216⨯=⨯⨯=所以或. 2m =3m =故答案为:2或3.四、解答题17.求下列函数的导数. (1); ln(21)y x =+(2); sin cos xy x=(3). 1()23()()y x x x =+++【答案】(1) 221y x '=+(2) 21cos y x'=(3) 231211y x x =++'【分析】利用导数的运算法则求解. 【详解】(1)解:因为, ln(21)y x =+所以; 221y x '=+(2)因为, sin cos xy x=所以; ()2222cos sin 1cos cos x xy xx +'==(3)因为, 1()23()()y x x x =+++,326116x x x =+++所以.231211y x x =++'18.已知函数.()322f x x ax b =-+(1)若函数在处取得极小值-4,求实数a ,b 的值; ()f x 1x =(2)讨论的单调性.()f x 【答案】(1) 33a b =⎧⎨=-⎩(2)答案不唯一,具体见解析【分析】(1)根据求导和极值点处导数值为0即可求解;(2)求导,分类讨论的取值即可求解. a 【详解】(1),则 ()262f x x ax '=-()()1014f f ⎧=⎪⎨=-'⎪⎩即解得,经验证满足题意,62024a a b -=⎧⎨-+=-⎩33a b =⎧⎨=-⎩(2)()()26223f x x ax x x a '=-=-令解得或 ()0f x '=0x =3a x =1°当时,在上单调递增0a =()f x ()∞∞-,+2°当时,在,上单调递增,上单调递减a<0()f x ,3a ⎛⎫-∞ ⎪⎝⎭()0∞,+,03a ⎛⎫ ⎪⎝⎭3°当时,在,(上单调递增,上单调递减0a >()f x ()0∞-,,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭19.已知函数.()e 2x f x ax a =++(1)若为的一个极值点,求实数a 的值并此函数的极值; 0x =()f x (2)若恰有两个零点,求实数a 的取值范围. ()f x 【答案】(1),极小值为,无极大值12a =-12(2) ,⎛-∞ ⎝【分析】(1)由求得,结合函数的单调性求得的极值. ()00f '=a ()f x (2)由分离常数,利用构造函数法,结合导数求得的取值范围. ()0f x =a a 【详解】(1),依题意,()e 2x f x a '=+()10120,2f a a =+==-'此时,所以在区间递减;()e 1xf x '=-()f x ()()(),0,0,f x f x '-∞<在区间递增. ()()()0,,0,f x f x '+∞>所以的极小值为,无极大值. ()f x ()110122f =-=(2)依题意①有两个解,()e 20x f x ax a =++=,所以不是①的解,121e 02f -⎛⎫-=> ⎪⎝⎭12x =-当时,由①得,12x ≠-e 21xa x =-+构造函数,()e 1212x g x x x ⎛⎫=-≠- ⎪+⎝⎭,()()()()22e 212e 21e 2121x xx x x g x x x +--'=-=-⋅++所以在区间递增;()()111,,,,0,222g x g x ⎛⎫⎛⎫'-∞--> ⎪ ⎪⎝⎭⎝⎭在区间递减.()()1,,0,2g x g x ⎛⎫'+∞< ⎪⎝⎭当时,;当时,,12x <-()0g x >12x >-()0g x <与的图象有两个交点, 121e 22g ⎛⎫=-= ⎪⎝⎭y a =()y g x =则需a <综上所述,的取值范围是. a ,⎛-∞ ⎝【点睛】根据极值点求参数,要注意的是由求得参数后,要根据函数的单调区间进行验()00f x '=证,因为导数为零的点,不一定是极值点.利用导数研究函数的零点,可以考虑分离常数法,通过分离常数,然后利用构造函数法,结合导数来求得参数的取值范围.20.已知一条铁路有8个车站,假设列车往返运行且每个车站均停靠上下客,记从车站上车到A B 车站下车为1种车票().A B ≠(1)该铁路的客运车票有多少种?(2)为满足客运需要,在该铁路上新增了个车站,客运车票增加了54种,求的值.n n 【答案】(1)56(2)3【分析】根据条件利用排列公示建立方程就可以解决.【详解】(1)铁路的客运车票有.288756A =⨯=(2)在新增了个车站后,共有个车站,因为客运车票增加了54种,则, n 8n +285654n A +-=所以,解得.28(8)(7)110n A n n +=++=3n =21.现有如下定义:除最高数位上的数字外,其余每一个数字均比其左边的数字大的正整数叫“幸福数”(如346和157都是三位“幸福数”).(1)求三位“幸福数”的个数;(2)如果把所有的三位“幸福数”按照从小到大的顺序排列,求第80个三位“幸福数”.【答案】(1)个84(2)589【分析】(1)由幸福数的定义结合组合公式求解即可;(2)分类讨论最高位数字,由组合公式结合分类加法计数原理得出第80个三位“幸福数”.【详解】(1)根据题意,可知三位“幸福数”中不能有0,故只需在数字1,2,3,…,9中任取3个,将其从小到大排列,即可得到一个三位“幸福数”,每种取法对应1个“幸福数”,则三位“幸福数”共有个.39C 84=(2)对于所有的三位“幸福数”,1在最高数位上的有个, 28C 28=2在最高数位上的有个,27C 21=3在最高数位上的有个,2615C =4在最高数位上的有个,25C 10=5在最高数位上的有个.24C 6=因为,28211510680++++=所以第80个三位“幸福数”是最高数位为5的最大的三位“幸福数”,为589.22.为响应国家提出的“大众创业万众创新”的号召,小王大学毕业后决定利用所学专业进行自主创业,生产某小型电子产品.经过市场调研,生产该小型电子产品需投入年固定成本2万元,每生产x 万件,需另投入流动成本万元.已知在年产量不足4万件时,,在年产量不小()W x ()3123W x x x =+于4万件时,.每件产品售价6元.通过市场分析,小王生产的产品当年能全部售()64727W x x x=+-完.(1)写出年利润(万元)关于年产量(万件)的函数解析式.(年利润=年销售收入-年固定成()P x x 本-流动成本.)(2)年产量为多少万件时,小王在这一产品的生产中所获年利润最大?最大年利润是多少? 【答案】(1); ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当年产量为8万件时,所获年利润最大,为9万元.【分析】(1)分以及,分别求解得出表达式,写成分段函数即可;04x <<4x ≥()P x (2)当时,求导得出.然后根据基本不等式求出时,的最值,04x <<()max 10()23P x P ==4x ≥()P x 比较即可得出答案.【详解】(1)由题意,当时,;当时,04x <<()33116224233x x x x x P x ⎛⎫=--+=-+- ⎪⎝⎭4x ≥. ()64646272725P x x x x x x ⎛⎫=--+-=-- ⎪⎝⎭所以. ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当时,,令,解得.04x <<()24P x x '=-+()0P x '=2x =易得在上单调递增,在上单调递减,所以当时,()P x ()0,2()2,404x <<. ()max 10()23P x P ==当时,, 4x ≥()6425259P x x x ⎛⎫=-+≤-= ⎪⎝⎭当且仅当,即时取等号. 64x x=8x =综上,当年产量为8万件时,所获年利润最大,为9万元.。
江油中学高二数学6月月考试题理无答案

四川省江油中学2019-2020学年高二数学6月月考试题 理(无答案)一、选择题:(本大题共12小题,每小题4分,共48分,在每小题给同的四个选项中,只有一项是符合题目要求的。
) 1。
命题“0xR ∃∈,2450x x ++>"的否定是( ) A .0x R ∃∈,2450x x ++>B .0x R ∃∈,2450x x ++≤C .x R ∀∈,2450x x ++>D .x R ∀∈,2450x x ++≤ 2.i 是虚数单位,复数12aii +-为纯虚数,则实数a 为( ) A 。
12- B 。
2- C. 2 D 。
12 3.设随机变量1(2,2),(2)2N D ξξ+=则( ) A. 1 B 。
12 C 。
3 D. 4 4。
现有4名男生,2名女生,从中选出3人参加学校组织的社会实践活动,在男生甲被选中的情况下,女生乙也被选中的概率为( )A. 25 B 。
35 C 。
12 D. 23 5.已知 p :0≤2x —1≤1, q :(x -a )(x -a -1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围是( )A .[0,错误!]B .(0,错误!)C .(-∞,0]∪[错误!,+∞)D .(-∞,0)∪(错误!,+∞)6.函数2ln x x y x =的图象大致是( ) A . B . C . D . 7.已知P 为空间中任意一点,A 、B 、C 、D 四点满足任意三点均不共线,但四点共面,且4136PA PB xPC DB =-+,则实数x 的值为( ) A .13 B .13- C .12 D .12- 8。
为支援边远山区教育事业的发展,现有5名师范大学毕业生主动要求赴西部某地区三所不同的学校去支教,每个学校至少去1人,甲、乙不能安排在同一所学校,不同的安排方法有( )种.A 。
180 B. 150 C 。
90 D 1149.若542345012345(2)3(3)(3)(3)(3)(3)x x a a x a x a x a x a x --=+-+-+-+-+-,则3a =( ) A .-70B .28C .-26D .40 10。
内江五中高二下期第一次月考(选修2-3:排列组合、二项式定理)

1 / 3内江五中高二下期第一次月考数学(理科)试卷总分:150分 考试时间:120分钟姓名: 得分一、选择题:(本大题共12小题, 4×12= 48分,在每小题给出的四个选项中,只有一项是符合题目要求的。
把答案选在相应位置。
)1.4名男歌手和2名女歌手联合举行一场音乐会,出场顺序要求两名女歌手之间恰有一名男歌手,共有出场方案的种数是 ( )A .6A 33B .3A 33C .2A 33D .A 22A 41A 442.编号为1,2,3,4,5,6的六个人分别去坐编号为1,2,3,4,5,6的六个座位,其中有且只有两个人的编号与座位编号一致的坐法有( ) A .15种 B.90种 C .135种 D .150种3.某人制定了一项旅游计划,从7个旅游城市中选择5个进行游览。
如果A 、B 为必选城市,并且在游览过程中必须按先A 后B 的次序经过A 、B 两城市(A 、B 两城市可以不相邻),则有不同的游览线路 ( ) A .120种 B .240种C .480种D .600种4. 三位同学乘同一列火车,火车有10节车厢,则至少有2位同学上了同一车厢的可能有 ( ) A .145 B .56 C .720 D .280 5、()()()()()()3,1312543>*∈-----x N x x x x x x 中,可表示为( )A .A x 103- B .A x 113- C .A x 1013- D .A x 1113-6.5310被8除的余数是 ( ) A .1 B .2 C .3 D .77.已知集合A={1,2,3,4},集合B={﹣1,﹣2},设映射f: A →B ,若集合B 中的元素都是A 中元素在f 下的象,那么这样的映射f 有( ) A .16个 B .14个C .12个D .8个8.在某学校,星期一有15名学生迟到,星期二有12名学生迟到,星期三有9名学生迟到,如果有22名学生在这三天中至少迟到一次,则三天都迟到的学生人数的最大可能值是 ( ) A .5 B .6 C .7 D .89.二项式n4x 1x 2⎪⎭⎫ ⎝⎛+ (n ∈N)的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项数是 ( ) A .1 B .2 C .3 D .410.用4种不同的颜色涂入如图的矩形A 、B 、C 、D 中,要求相邻矩形的涂色不得相同,则不同的涂色方法共有A .12种B .24种C .48种D .72种 ( )11.在(1+x )5+(1+x )6+(1+x )7的展开式中,含x 4项的系数是等差数列 a n =3n -5的( )A .第2项B .第11项C .第20项D .第24项12.某班试用电子投票系统选举班候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令 ⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij 其中i =1,2,…,k ,且j =1,2,…,k ,则第1,2号同学都同意的候选人的人数为( ) A .k k a a a a a a 2222111211+++++++ B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .k k a a a a a a 2122122111+++二、填空题:(本大题共4小题,每小题4分,共16分。
湖北云学名校联盟2024-2025学年高二上学期10月月考数学试题(含解析)
2024年湖北云学名校联盟高二年级10月联考数学试卷命题学校:武汉二中 命题人:李凯丰 陈莉 张鹄 审题人:夷陵中学 王方 杨晓璐考试时间:2024年10月15日 15:00-17:00 时长:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,20253i 1i ++的虚部为( )A. i −B. iC. 1−D. 12. 已知一组数据:2,5,7,x ,10平均数为6,则该组数据的第60百分位数为( ) A. 7B. 6.5C. 6D. 5.53. 直线1l :20250ax y −+=,2l :()3220a x ay a −+−=,若12l l ⊥,则实数a 值为( ) A. 0B. 1C. 0或1D.13或1 4. 为了测量河对岸一古树高度AB 的问题(如图),某同学选取与树底B 在同一水平面内的两个观测点C 与D ,测得15BCD ∠=°,30BDC ∠=°,48m CD =,并在点C 处测得树顶A 的仰角为60°,则树高AB 约为( )1.4≈1.7≈)A. 100.8mB. 33.6mC. 81.6mD. 57.12m5. 如果直线ax +by =4与圆x 2+y 2=4有两个不同的交点,那么点P (a ,b )与圆的位置关系是( ) A. P 在圆外 B. P 圆上 C. P 在圆内D. P 与圆的位置关系不确定6. 在棱长为6的正四面体ABCD 中,点P 与Q 满足23AP AB = ,且2CD CQ =,则PQ 的值为( )的的在A.B.C.D.7. 下列命题中正确的是( )A. 221240z z +=,则120z z ==;B 若点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,则点P 、Q 、R 、S 、T 共面; C. 若()()1P A P B +=,则事件A 与事件B 是对立事件;D. 从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为310; 8. 动点Q 在棱长为3的正方体1111ABCD A B C D −侧面11BCC B 上,满足2QA QB =,则点Q 的轨迹长度为( ) A 2πB.4π3C.D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 在平面直角坐标系中,下列说法正确的是( ) A. 若两条直线垂直,则这两条直线的斜率的乘积为1−;B. 已知()2,4A ,()1,1B ,若直线l :20kx y k ++−=与线段AB 有公共点,则21,32k∈−; C. 过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=; D. 若圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1,则1b =−±.10. 如图所示四面体OABC 中,4OB OC ==,3OA =,OB OC ⊥,且60AOB AOC ∠=∠=°,23CD CB =,G 为AD 的中点,点H 是线段OA 上动点,则下列说法正确的是( )A. ()13OG OA OB OC =++; B. 当H 是靠近A 的三等分点时,DH ,OC ,AB共面;..C. 当56OH OA = 时,GH OA ⊥ ;D. DH OH ⋅的最小值为1−.11. 已知()2,3P 是圆C :22810410x y x y a +−−−+=内一点,其中0a >,经过点P 的动直线l 与C 交于A ,B 两点,若|AAAA |的最小值为4,则( ) A. 12a =;B. 若|AAAA |=4,则直线l 的倾斜角为120°;C. 存在直线l 使得CA CB ⊥;D. 记PAC 与PBC △的面积分别为PAC S ,PBC S ,则PAC PBC S S ⋅△△的最大值为8.三、填空题:本题共3小题,每小题5分,共15分.12. 实数x 、y 满足224x y +=,则()()2243x y −++的最大值是______.13. 记ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,已知()cos 2cos a B c b A =−,其中π2B ≠,若ABC 的面积S =,2BE EC = ,且AE = BC 的长为______.14. 如图,已知四面体ABCD 的体积为9,E ,F 分别为AB ,BC 的中点,G 、H 分别在CD 、AD 上,且G 、H 是靠近D 的三等分点,则多面体EFGHBD 的体积为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在对某高中1500名高二年级学生的百米成绩的调查中,采用按学生性别比例分配的分层随机抽样抽取100人,已知这1500名高二年级学生中男生有900人,且抽取的样本中男生成绩的平均数和方差分别为13.2秒和13.36,女生成绩的平均数和方差分别为15.2秒和17.56. (1)求抽取的总样本的平均数;(2)试估计高二年级全体学生的百米成绩的方差.16. 在平面直角坐标系xOy 中,ABC 的顶点A 的坐标为()4,2−,ACB ∠的角平分线所在的直线方程为10x y −+=,AC 边上中线BM 所在的直线方程为220x y +−=.(1)求点C 的坐标; (2)求直线BC 的方程.17. 直三棱柱111ABC A B C −中,12AB AC AA ===,其中,,E F D 分别为棱111,,BC B A B C 的中点,已知11AF A C ⊥,(1)求证:AF DE ⊥;(2)设平面EFD 与平面ABC 的交线为直线m ,求直线AC 与直线m 所成角的余弦值. 18. 已知圆C :22430x y y +−+=,过直线l :12y x =上的动点M 作圆C 的切线,切点分别为P ,Q .(1)当π3PMQ ∠=时,求出点M 的坐标; (2)经过M ,P ,C 三点的圆是否过定点?若是,求出所有定点的坐标; (3)求线段PQ 的中点N 的轨迹方程.19. 四棱锥P ABCD −中,底面ABCD 为等腰梯形,224AB BC CD ===,侧面PAD 为正三角形;(1)当BD PD ⊥时,线段PB 上是否存在一点Q ,使得直线AQ 与平面ABCD 所成角的正弦值为若存在,求出PQ QB 的值;若不存在,请说明理由.(2)当PD 与平面BCD 所成角最大时,求三棱锥P BCD −的外接球的体积.2024年湖北云学名校联盟高二年级10月联考数学试卷命题学校:武汉二中 命题人:李凯丰 陈莉 张鹄 审题人:夷陵中学 王方 杨晓璐考试时间:2024年10月15日 15:00-17:00 时长:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,20253i 1i ++的虚部为( )A. i −B. iC. 1−D. 1【答案】C 【解析】【分析】根据复数乘方、乘法、除法运算法则结合复数的概念运算即可得出结果. 【详解】根据复数的乘方可知()50620254i i i i =⋅=,则()()()()20253i 1i 3i 3i 32i 12i 1i 1i 1i 1i 2+−++−+====−+++−,其虚部为1−. 故选:C2. 已知一组数据:2,5,7,x ,10的平均数为6,则该组数据的第60百分位数为( ) A. 7 B. 6.5C. 6D. 5.5【答案】B 【解析】【分析】先根据平均数求x 的值,然后将数据从小到大排列,根据百分位数的概念求值. 【详解】因为2571065x ++++=⇒6x =.所以数据为:2,5,6,7,10.又因为560%3×=,所以这组数据的第60百分位数为:676.52+=. 故选:B3. 直线1l :20250ax y −+=,2l :()3220a x ay a −+−=,若12l l ⊥,则实数a 的值为( ) A 0 B. 1 C. 0或1 D.13或1 【答案】C.【分析】根据两直线垂直的公式12120A A B B +=求解即可.【详解】因为1l :20250ax y −+=,2l :()3220a x ay a −+−=垂直, 所以()()3210a a a −+−=, 解得0a =或1a =,将0a =,1a =代入方程,均满足题意, 所以当0a =或1a =时,12l l ⊥. 故选:C .4. 为了测量河对岸一古树高度AB 的问题(如图),某同学选取与树底B 在同一水平面内的两个观测点C 与D ,测得15BCD ∠=°,30BDC ∠=°,48m CD =,并在点C 处测得树顶A 的仰角为60°,则树高AB 约为( )1.4≈1.7≈)A. 100.8mB. 33.6mC. 81.6mD. 57.12m【答案】D 【解析】【分析】先在BCD △中,利用正弦定理求出BC ,再在Rt ABC △中求AB 即可.【详解】在BCD △中,15BCD ∠=°,30BDC ∠=°,所以135CBD ∠=°,又48CD =,由正弦定理得:sin sin CD CBCBD CDB=∠∠⇒12CB=⇒CB =在Rt ABC △中,tan 60AB BC =°=24 1.4 1.7≈××57.12=. 故选:D5. 如果直线ax +by =4与圆x 2+y 2=4有两个不同的交点,那么点P (a ,b )与圆的位置关系是( ) A. P 在圆外 B. P 在圆上D. P 与圆的位置关系不确定 【答案】A 【解析】224a b ∴+,所以点(),a b 在圆外考点:1.直线与圆的位置关系;2.点与圆的位置关系6. 在棱长为6的正四面体ABCD 中,点P 与Q 满足23AP AB = ,且2CD CQ =,则PQ 的值为( )A.B.C.D.【答案】D 【解析】【分析】以{},,AB AC AD 为基底,表示出PQ,利用空间向量的数量积求模.【详解】如图:以{},,AB AC AD 为基底,则6AB AC AD ===,60BAC BAD CAD ∠=∠=∠=°,所以66cos 6018AB AC AB AD AC AD ⋅=⋅=⋅=××°=.因为()1223PQ AQ AP AC AD AB =−=+− 211322AB AC AD =−++. 所以22211322PQ AB AC AD =−++222411221944332AB AC AD AB AC AB AD AC AD =++−⋅−⋅+⋅169912129=++−−+19=.所以PQ =故选:D7. 下列命题中正确的是( )A. 221240z z +=,则120z z ==;B. 若点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,则点P 、Q 、R 、S 、T 共面;C. 若()()1P A P B +=,则事件A 与事件B 是对立事件;D. 从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为310; 【答案】D 【解析】【分析】举反例说明ABC 不成立,根据古典概型的算法判断D 是正确的.【详解】对A :若1i z =,22z =,则221240z z +=,但120z z ==不成立,故A 错误;对B :如图:四面体S PRT −中,Q 是棱PR 上一点,则点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,但点P 、Q 、R 、S 、T 不共面,故B 错误; 对C :掷1枚骰子,即事件A :点数为奇数,事件B :点数不大于3, 则()12P A =,()12P B =,()()1P A P B +=,但事件A 、B 不互斥,也不对立,故C 错误; 对D :从长度为1,3,5,7,9的5条线段中任取3条,有35C 10=种选法, 这三条线段能构成一个三角形的的选法有:{}3,5,7,{}3,7,9,{}5,7,9共3种, 所以条线段能构成一个三角形的的概率为:310P =,故D 正确. 故选:D8. 动点Q 在棱长为3的正方体1111ABCD A B C D −侧面11BCC B 上,满足2QA QB =,则点Q 的轨迹长度为( )A. 2πB.4π3C.D.【解析】【分析】结合图形,计算出||BQ =,由点Q ∈平面11BCC B ,得出点Q 的轨迹为圆弧 EQF,利用弧长公式计算即得.【详解】如图,易得AB ⊥平面11BCC B ,因BQ ⊂平面11BCC B ,则AB BQ ⊥,不妨设||BQ r =,则||2AQ r =, ||3AB ===,解得r =又点Q ∈平面11BCC B ,故点Q 的轨迹为以点B EQF,故其长度为π2=. 故选:D.二、选择题:本题共36分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 在平面直角坐标系中,下列说法正确的是( ) A. 若两条直线垂直,则这两条直线的斜率的乘积为1−;B. 已知()2,4A ,()1,1B ,若直线l :20kx y k ++−=与线段AB 有公共点,则21,32k∈−; C. 过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=;D. 若圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1,则1b =−±. 【答案】BD 【解析】【分析】根据直线是否存在斜率判断A 的真假;数形结合求k 的取值范围判断B 的真假;根据截距的概念判断真假;转化为点(圆心)到直线的距离求b 判断D 的真假.【详解】对A :“若两条直线垂直,则这两条直线的斜率的乘积为1−”成立的前提是两条直线的斜率都存若两条直线1条不存在斜率,另一条斜率为0,它们也垂直.故A 是错误的. 对B :如图:对直线l :20kx y k ++−=⇒()21y k x −=−+,表示过点()1,2P −,且斜率为k −的直线, 且()422213AP k −==−−,()121112BP k −==−−−, 由直线l 与线段AB 有公共点,所以:203k ≤−≤或102k −≤−<,即203k −≤≤或102k <≤,进而得:2132k −≤≤.故B 正确; 对C :过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=或2y x =,故C 错误; 对D :“圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1”可转化为“圆心(1,0)到直线y x b =+的距离等于1”.1⇒1b =−.故D 正确.故选:BD10. 如图所示四面体OABC 中,4OB OC ==,3OA =,OB OC ⊥,且60AOB AOC ∠=∠=°,23CD CB =,G 为AD 的中点,点H 是线段OA 上动点,则下列说法正确的是( )A. ()13OG OA OB OC =++ ;B. 当H 是靠近A 的三等分点时,DH ,OC ,AB共面;C. 当56OH OA = 时,GH OA ⊥ ; D. DH OH ⋅ 的最小值为1−.【答案】BCD【解析】【分析】以{},,OA OB OC 为基底,表示出相关向量,可直接判断A 的真假,借助空间向量共面的判定方法可判断B 的真假,利用空间向量数量积的有关运算可判断CD 的真假.【详解】以{},,OA OB OC 为基底,则3OA = ,4OB OC == ,6OA OB OA OC ⋅=⋅= ,0OB OC ⋅= . 对A :因为23AD AC CD AC CB =+=+ ()23AC AB AC =+− 2133AB AC =+ ()()2133OB OA OC OA =−+− 2133OA OB OC =−++ . 所以12OG OA AG OA AD =+=+ 121233OA OA OB OC =+−++ 111236OA OB OC =++ ,故A 错误;对B :当H 是靠近A 的三等分点,即23OH OA = 时, DH AH AD =− 121333OA OA OB OC =−−−++221333OA OB OC =−− , 又AB OB OA =−,所以13DH AB OC =− .故DH ,AB ,OC 共面.故B 正确; 对C :因为HG OG OH OA AG OH =−=+− 1526OA AD OA =+− 12152336OA OA OB OC OA =+−++− 111336OA OB OC =−++ , 所以:HG OA ⋅= 111336OA OB OC OA −++⋅2111336OA OB OA OC OA =−+⋅+⋅ 1119660336=−×+×+×=, 所以HG OA ⊥ ,故GH OA ⊥ ,故C 正确;对D :设OH OA λ= ,()01λ≤≤.因为:DH OH OD =− ()OA OA AD λ=−+ 2133OA OA OA OB OC λ =−−++2133OA OB OC λ=−− . 所以DH OH ⋅ 2133OA OB OC OA λλ =−−⋅ ()2233OA OA OB OA OC λλλ=−⋅−⋅ 296λλ=−,()01λ≤≤. 当13λ=时,DH OH ⋅ 有最小值,为:1196193×−×=−,故D 正确. 故选:BCD11. 已知()2,3P 是圆C :22810410x y x y a +−−−+=内一点,其中0a >,经过点P 的动直线l 与C 交于A ,B 两点,若|AAAA |的最小值为4,则( )A. 12a =;B. 若|AAAA |=4,则直线l 的倾斜角为120°;C. 存在直线l 使得CA CB ⊥;D. 记PAC 与PBC △的面积分别为PAC S ,PBC S ,则PAC PBC S S ⋅△△的最大值为8.【答案】ACD【解析】【分析】根据点()2,3P 在圆内,列不等式,可求a 的取值范围,在根据弦|AAAA |的最小值为4求a 的值,判断A 的真假;明确圆的圆心和半径,根据1l CP k k ⋅=−,可求直线AB 的斜率,进而求直线AB 的倾斜角,判断B 的真假;利用圆心到直线的距离,确定弦长的取值范围,可判断C 的真假;由三角形面积公式和相交弦定理,可求PAC PBC S S ⋅△△的最大值,判断D 的真假.【详解】对A :由222382103410a +−×−×−+<⇒8a >.此时圆C :()()2245x y a −+−=.因为过P 点的弦|AAAA |的最小值为4,所以CP =又CP ===⇒12a =.故A 正确;对B :因为53142CP k −==−,1l CP k k ⋅=−,所以直线l 的斜率为1−,其倾斜角为135°,故B 错误; 对C :当|AAAA |=4时,如图:sin ACP ∠==cos ACP ∠==,所以41cos 1033ACB ∠=−=>, 所以ACB ∠为锐角,又随着直线AB 斜率的变化,ACB ∠最大可以为平角,所以存在直线l 使得CA CB ⊥.故C 正确;对D :如图:直线CP 与圆C 交于M 、N 两点,链接AM ,BN ,因为MAP BNP ∠=∠,APM NPB ∠=∠,所以APM NPB .所以AP MPNP BP =⇒(4AP BP MP NP ⋅=⋅=+=.又1sin 2PAC S PA PC APC APC =⋅⋅∠=∠ ,PBC S BPC =∠ , 且sin sin APC BPC ∠=∠. 所以22sin PAC PBC S S PA PB APC ⋅=⋅⋅∠ 28sin APC =∠8≤,当且仅当sin 1APC ∠=,即AB CP ⊥时取“=”.故D 正确.故选:ACD【点睛】方法点睛:在求PAC PBC S S ⋅△△的最大值时,应该先结合三角形相似(或者蝴蝶定理)求出AP BP ⋅为定值,再结合三角形的面积公式求PAC PBC S S ⋅△△的最大值.三、填空题:本题共3小题,每小题5分,共15分.12. 实数x 、y 满足224x y +=,则()()2243x y −++的最大值是______.【答案】49【解析】【分析】根据()()2243x y −++几何意义为圆上的点(),x y 与()4,3−距离的平方,找出圆上的与()4,3−的最大值,再平方即可求解.【详解】解:由题意知:设(),p x y ,()4,3A −,则(),p x y 为圆224x y +=上的点,圆224x y +=的圆心OO (0,0),半径2r =,则()()2243x y −++表示圆上的点(),p x y 与()4,3A −距离的平方,又因为max27PA AO r =+=+=, 所以22max749PA ==; 故()()2243x y −++的最大值是49.故答案为:49.13. 记ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,已知()cos 2cos a B c b A =−,其中π2B ≠,若ABC 的面积S =,2BE EC = ,且AE = BC 的长为______.【解析】【分析】利用正弦定理对()cos 2cos a B c b A =−化简,可得π3A =,再由三角形面积公式求出8bc =,根据题意写出1233AE AB AC =+ ,等式两边平方后,可求出,b c 的值,由余弦定理2222cos a b c bc A =+−,求出BC 的长.【详解】()cos 2cos a B c b A =−,由正弦定理可得:sin cos 2sin cos sin cos A B C A B A =−, sin cos cos sin 2sin cos A B A B C A +=,()sin 2sin cos A B C A +=,()sin πC 2sin cos C A −=,sin 2sin cos (sin 0)C C A C =>,即1cos 2A =,π3A =,1sin 2ABC S bc A == ,得8bc =, ∵2BE EC = ,∴1233AE AB AC =+ ,221233AE AB AC =+, 即2228144cos 3999c b bc A =++,由8bc =,解得42b c = = 或18b c = = , 根据余弦定理2222cos a b c bc A =+−,当42b c = =时,a =,此时π2B =,不满足题意, 当18b c = =时,a =.14. 如图,已知四面体ABCD 的体积为9,E ,F 分别为AB ,BC 的中点,G 、H 分别在CD 、AD 上,且G 、H 是靠近D 的三等分点,则多面体EFGHBD 的体积为______.【答案】72##3.5 【解析】 【分析】多面体EFGHBD 的体积为三棱锥G DEH −与四棱锥E BFGD −的体积之和,根据体积之比与底面积之比高之比的关系求解即可.【详解】连接ED,EG,因为H为AAAA上的靠近D的三分点,所以13DH AD=,因为E为AAAA的中点,所以点E到AAAA的距离为点B到AAAA的距离的一半,所以16DEH BADS S=,又G为CCAA上靠近D的三分点,所以点G到平面ABD的距离为点C到平面ABD的距离的13,所以111119663182G DEH G BAD C BADV V V−−−==×=×=,1233BCD FCG BCD BCD BCD BFGDS S S S S S=−=−=四边形,所以2211933323E BFGD E BCD A BCDV V V−−−==×=×=,所以多面体EFGHBD的体积为17322 G DEH E BFGDV V−−+=+=.故答案为:7 2 .【点睛】关键点点睛:将多面体转化为两个锥体的体积之和,通过体积之比与底面积之比高之比的关系求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在对某高中1500名高二年级学生的百米成绩的调查中,采用按学生性别比例分配的分层随机抽样抽取100人,已知这1500名高二年级学生中男生有900人,且抽取的样本中男生成绩的平均数和方差分别为13.2秒和13.36,女生成绩的平均数和方差分别为15.2秒和17.56.(1)求抽取的总样本的平均数;(2)试估计高二年级全体学生的百米成绩的方差.【答案】(1)14 (2)16【解析】【分析】(1)先确定样本中男生、女生的人数,再求总样本的平均数.(2)根据方差的概念,计算总样本的方差.【小问1详解】样本中男生的人数为:100900601500×=;女生的人数为:1006040−=.所以总样本的平均数为:6013.24015.214100x×+×==.【小问2详解】记总样本的方差为2s , 则()(){}22216013.3613.2144017.5615.214100s =×+−+×+− 16=. 所以,估计高二年级全体学生的百米成绩的方差为16.16. 在平面直角坐标系xOy 中,ABC 的顶点A 的坐标为()4,2−,ACB ∠的角平分线所在的直线方程为10x y −+=,AC 边上中线BM 所在的直线方程为220x y +−=.(1)求点C 的坐标;(2)求直线BC 的方程.【答案】(1)(3,4)C ;(2)72130x y −−=【解析】【分析】(1)设(,1)C m m +,则43(,)22m m M −+,代入220x y +−=,求解即可; (2)设直线BC 的方程为:340x ny n +−−=,在直线10x y −+=取点(0,1)P ,利用点P 到直线AC 的距离等于点P 到直线BC 的距离,求解即可.【小问1详解】解:由题意可知点C 在直线10x y −+=上,所以设(,1)C m m +,所以AC 中点43(,)22m m M −+, 又因为点43(,)22m m M −+在直线220x y +−=上, 所以34202m m +−+−=,解得3m =, 所以(3,4)C ;【小问2详解】解:因为(3,4)C ,设直线BC 的方程为:340x ny n +−−=,又因为(4,2)A −,所以直线AC 的方程为:27220x y −+=,.又因为ACB ∠的角平分线所在的直线方程为10x y −+=,在直线10x y −+=取点(0,1)P ,则点P 到直线AC 的距离等于点P 到直线BC 的距离,=21453140n n ++=, 解得:72n =−或27n =−, 当72n =−时,所求方程即为直线AC 的方程, 所以27n =−, 所以直线BC 的方程为: 72130x y −−=.17. 直三棱柱111ABC A B C −中,12AB AC AA ===,其中,,E F D 分别为棱111,,BC B A B C 的中点,已知11AF A C ⊥,(1)求证:AF DE ⊥;(2)设平面EFD 与平面ABC 的交线为直线m ,求直线AC 与直线m 所成角的余弦值.【答案】(1)证明见解析(2【解析】【分析】(1)取AB 的中点G ,连接1,EG A G 证得四边形ADEG 为平行四边形,得到1//DE A G ,利用1A AG ABF ≌,证得90AHG ∠= ,得到1AF A G ⊥,即可证得AF DE ⊥;(2)根据题意,证得11A C ⊥平面11ABB A ,得到1111A C A B ⊥,以A 为原点,建立空间直角坐标系,求得(0,2,0)AC = ,再取AC 的中点M ,延长,MB DF 交于点N ,得到直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,求得(4,1,0)N −,得到(3,2,0)EN =− ,结合向量的夹角公式,即可求解.【小问1详解】证明:取AB 的中点G ,连接1,EG A G ,因为E 的中点,可得//EG AC ,且12EG AC =, 又因为1//A D AC ,且112A D AC =,所以1//EG A D ,且1EG A D =, 所以四边形ADEG 平行四边形,所以1//DE A G ,在正方形11ABB A 中,可得1A AG ABF ≌,所以1A GA AFB ∠=∠,因为90AFB AFB ∠+∠= ,所以190AFB A GA ∠+∠= ,AGH 中,可得90AHG ∠= ,所以1AF A G ⊥,又因为1//DE A G ,所以AF DE ⊥.【小问2详解】解:在直三棱柱111ABC A B C −中,可得1AA ⊥平面111A B C ,因为11AC ⊂平面111AB C ,所以111AA AC ⊥, 又因为11AF A C ⊥,且1AA AF A ∩=,1,AA AF ⊂平面11ABB A ,所以11A C ⊥平面11ABB A , 因为11A B ⊂平面11ABB A ,所以1111A C A B ⊥,即直三棱柱111ABC A B C −的底面为等腰直角三角形,以A 为原点,以1,,AB AC AA 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,因为12AB AC AA ===,可得(0,0,0),(0,2,0)A C ,则(0,2,0)AC = ,为在取AC 的中点M ,连接,MB DM ,可得1//DM CC 且1DM CC =,因为11//BB DD 且11BB DD =,所以//BF DM ,且12BF DM =, 延长,MB DF 交于点N ,可得B 为MN 的中点,连接EN ,可得EN 即为平面DEF 与平面ABC 的交线,所以直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,又由(0,1,0),(2,0,0),(1,1,0)M B E ,设(,,)N x y z ,可得MB BN =,即(2,1,0)(2,,)x y z −=−, 可得4,1,0x y z ==−=,所以(4,1,0)N −,可得(3,2,0)EN =− ,设直线EN 与直线AC 所成角为θ,可得cos cos ,AC EN AC EN AC EN θ⋅==== , 即直线AC 与直线m18. 已知圆C :22430x y y +−+=,过直线l :12y x =上的动点M 作圆C 的切线,切点分别为P ,Q .(1)当π3PMQ ∠=时,求出点M 的坐标; (2)经过M ,P ,C 三点的圆是否过定点?若是,求出所有定点的坐标; (3)求线段PQ 的中点N 的轨迹方程.【答案】(1)(0,0)或84(,)55(2)过定点(0,2)或42(,)55(3)22173042x y x y +−−+= 【解析】【分析】(1)点M 在直线l 上,设(2,)M m m ,由对称性可知30CMP ∠= ,可得2MC =,从而可得点M 坐标.(2)MC 的中点,12m Q m+,因为MP 是圆P 的切线,进而可知经过C ,P ,M 三点的圆是以Q 为圆心,以MC 为半径的圆,进而得到该圆的方程,根据其方程是关于m 的恒等式,进而可求得x 和y ,得到结果;(3)结合(2)将两圆方程相减可得直线PQ 的方程,且得直线PQ 过定点13,42R,由几何性质得MN RN ⊥,即点N 在以MR 为直径的圆上,进而可得结果.【小问1详解】(1)直线l 的方程为20x y −=,点M 在直线l 上,设(2,)M m m , 因为π3PMQ ∠=,由对称性可得:由对称性可知30CMP ∠= , 由题1CP =所以2MC =,所以22(2)(2)4+−=m m , 解之得:40,5==m m 故所求点M 的坐标为(0,0)或84(,)55. 【小问2详解】设(2,)M m m ,则MC 的中点(,1)2m E m +,因为MP 是圆C 的切线, 所以经过,,C P M 三点的圆是以Q 为圆心,以ME 为半径的圆,故圆E 方程为:2222()(1)(1)22m m x m y m −+−−=+−化简得:222(22)0x y y m x y +−−+−=,此式是关于m 的恒等式,故2220,{220,x y y x y +−=+−=解得02x y = = 或4525x y = =, 所以经过,,C P M 三点的圆必过定点(0,2)或42(,)55.【小问3详解】 由()22222220,430x y mx m y m x y y +−−++= +−+= 可得PQ :()22320mx m y m +−+−=,即()22230m x y y +−−+=,由220,230x y y +−= −= 可得PQ 过定点13,42R . 因为N 为圆E 的弦PQ 的中点,所以MN PQ ⊥,即MN RN ⊥,故点N 在以MR 为直径的圆上,点N 的轨迹方程为22173042x y x y +−−+=. 19. 四棱锥P ABCD −中,底面ABCD 为等腰梯形,224AB BC CD ===,侧面PAD 为正三角形;(1)当BD PD ⊥时,线段PB 上是否存在一点Q ,使得直线AQ 与平面ABCD所成角的正弦值为若存在,求出PQ QB 的值;若不存在,请说明理由. (2)当PD 与平面BCD 所成角最大时,求三棱锥P BCD −的外接球的体积.【答案】(1)存在;1.(2【解析】【分析】(1)先证平面PAD ⊥平面ABCD ,可得线面垂直,根据垂直,可建立空间直角坐标系,用空间向量,结合线面角的求法确定点Q 的位置.(2)根据PD 与平面BCD 所成角最大,确定平面PAD ⊥平面ABCD ,利用(1)中的图形,设三棱锥P BCD −的外接球的球心,利用空间两点的距离公式求球心和半径即可.【小问1详解】因为底面ABCD 为等腰梯形,224AB BC CD ===,所以60BAD ∠=°,120BCD ∠=°,30CBD ABD ∠=∠=°,所以90ADB ∠=°.所以BD AD ⊥,又BD PD ⊥,,AD PD ⊂平面PAD ,且AD PD D = ,所以BD ⊥平面PAD .又BD ⊂平面ABCD ,所以平面PAD ⊥平面ABCD .取AD 中点O ,因为PAD △是等边三角形,所以PO AD ⊥,平面PAD ∩平面ABCD AD =,所以⊥PO 平面ABCD .再取AB 中点E ,连接OE ,则//OE BD ,所以OE AD ⊥.所以可以O 为原点,建立如图空间直角坐标系.则()0,0,0O ,()1,0,0A ,()1,0,0D −,()E ,()1,B −,(P ,()C −.(1,PB =− .设PQ PB λ= ,可得)()1Q λλ−−所以)()1,1AQ λλ=−−− ,取平面ABCD 的法向量()0,0,1n = .因为AQ 与平面ABCD ,所以AQ nAQ n ⋅==⋅ ,解得12λ=或5λ=(舍去). 所以:线段PB 上存在一点Q ,使得直线AQ 与平面ABCD ,此时1PQ QB =. 【小问2详解】当平面PAD ⊥平面ABCD 时, PD 与平面BCD 所成角为PDA ∠.当平面PAD 与平面ABCD 不垂直时,过P 做PH ⊥平面ABCD ,连接HD ,则PDH ∠为PD 与平面BCD 所成角,因为PH PO <,sin PH PDH PD ∠=,sin PO PDA PD∠=,s s n i i n PDA PDH ∠∠<,所以A PDH PD ∠∠<. 故当平面PAD ⊥平面ABCD 时,PD 与平面BCD 所成角最大.此时,设棱锥P BCD −的外接球球心为(),,G x y z ,GP GB GC GD R====,所以(()(()(()2222222222222222121x y z R x y z R x y z R x y z R ++= ++−+= +++=+++=,解得20133x y z R = = = = 所以三棱锥P BCD −的外接球的体积为:34π3V R ==. 【点睛】方法点睛:在空间直角坐标系中,求一个几何体的外接球球心,可以利用空间两点的距离公式,根据球心到各顶点的距离相等列方程求解..。
最新理科数学高二下第一次月考试卷(人教版)
宣城市第三中学高二第二学期第一次月考数学试卷(理科)命卷人:孙述虎第I卷 (选择题 共50分)一、 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知函数c ax x f +=2)(,且 (2)4f '=则a 的值为( )A.1 -1 D. 02.函数2(21)y x =+在12-处的导数值是( ) A. 0 B .8 C .10 D .123.函数()x x f 2sin =的导函数()f x '=( )A. 2sin xB. 22sin xC. cos2xD.sin 2x4.已知曲线2(x)x 2f =+,在点(1,3)处的切线方程是( )A. 41y x =-B. 21y x =+C. 2-1y x =D.63y x =-5.函数f(x)=(x-3)e x 的单调递减区间是( )A .(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) 6. 如果10N 的力能使弹簧压缩10cm ,为在弹性限度内将弹簧拉长10cm ,则力所做的功为( )A . 0.5JB .0.12JC .0.26JD .0.18J7. 函数xx y 1+=的极值情况是( ) A.有极大值2,极小值-2 B.有极大值-2,极小值2C.无极大值,但有极小值-2D.有极大值2,无极小值.8. 已知函数f(x)的导函数2()x f 的图像可能是( )9. 已知3)2(3123++++=x b bx x y 是R 上的单调增函数,则b 的取值范围是( ) A. 16b b <->,或 B. 12b b ≤-≥,或 C. 16b -≤≤ D. 12b -≤≤10. 若ln 7ln8ln 9,,789a b c ===则c b a ,,的大小关系是( ) A. c b a << B. a b c << C . b a c << D. c a b <<第Ⅱ卷 (非选择题 共100分)二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11. 计算32422sin cos x dx x xππ-=+⎰___________. 12. 已知函数3()128f x x x =-+在区间[4,4]-上的最大值与最小值分别为,M m ,则M m -= .13. 物体的运动方程是32125,3s t t =-+-则物体在t 1=时的瞬时速度为__________. 14. 设)(x f 的导函数是()0f x ',若()01f x '=,则()()0004limx f x x f x x→+-=△△△ __________. 15.现有下列命题:①若0(x )0,f '=则函数f(x)在0x x =取得极值; ②函数f(x)的极值点可以出现在区间的内部,也可以出现在区间的端点;③函数的极大值,极小值可以有多个,所以最大值,最小值也可以有多个;④函数f(x)是闭区间上的连续函数,则函数f(x)在此闭区间上必有最大值和最小值;⑤函数f(x)在开区间内有唯一的极大值,而无极小值,则此极大值即为函数f(x)在此开区间内的最大值。
吉林延边第二中学高二12月月考数学(理)试题含答案
延边第二中学2019—2020学年第一学期第二次阶段测试高二理科数学试卷一、选择题(共12小题,每小题4分,共48分,每题只有一个选项正确) 1.数列2,6,12,20, ⋯ ,的第6项是( ) A .42 B .56 C .90D .722.设x ∈R ,则“21x -<”是“260x x +-<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件3.设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A .4B .6C .8D .124.如图,在空间四边形ABCD 中,设E ,F 分别是BC ,CD 的中点,则等于( )A .B .C .D .5.已知,a b 为非零实数,且a b <,则下列命题成立的是( ) A .22a b < B .22ab a b <C .2211ab a b< D .b a a b< 6.若实数满足约束条件,则的最大值是( )A .B .1C .10D .127.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A .(¬p )∨(¬q ) B .p ∨(¬q )C .(¬p )∧(¬q )D .p ∨q8.已知122,,,8a a --成等差数列,1232,,,,8b b b --成等比数列,则212a ab -等于( )A .14B .12C .12-D .12或12-9.方程(3x -y +1)(y=0表示的曲线为( ) A .一条线段和半个圆 B .一条线段和一个圆 C .一条线段和半个椭圆D .两条线段10.已知a ,b , 0c >,且1a b c ++=) A .3B.C .18D .911.已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2F 2的直线l 交C 与A,B 两点,若△AF 1B的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y +=12.已知数列{}n a 是递增的等差数列,且2a ,3a 是函数()256f x x x -=+的两个零点.设数列21n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若不等式1log (1)3na T a >-对任意正整数n 恒成立,则实数a 的取值范围为( ) A .10,4⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .()01,二、填空题(共4小题,每小题4分,共16分,请将答案写在答题纸上) 13.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”; ②“1x =-”是“2560x x --=”的必要不充分条件;③命题“x R ∃∈, 210x x +-<”的否定是:“x R ∀∈, 210x x -->”; ④命题“若x y =,则 sin sin x y =”的逆否命题为真命题其中所有正确命题的序号是________.14.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(c,0)F 到一条渐近线,则其离心率的值是________. 15.已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 .16. 设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________.三、解答题(共5小题,17、18题各10分,19、20、21题各12分,请写出必要的解答过程)17.在锐角ΔABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且2sin a B =. (1)求角A 的大小;(2)若8a =,10b c +=,求ΔABC 的面积.18.已知数列{}n a 的前n 项和为n S ,且4133n n S a =-. (1)求{}n a 的通项公式;(2)若1n b n =+,求数列{}n n a b 的前n 项和n T .19.设函数()52f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤恒成立,求a 的取值范围.20.在直角坐标系xOy 中,点P 到两点(0,,(的距离之和为4,设点P 的轨迹为C ,直线1y kx =+与轨迹C 交于,A B 两点. (1)求出轨迹C 的方程; (2)若,求弦长AB 的值.21.己知二次函数()2f x ax bx c =++(a 、b 、c 均为实常数,a N *∈)的最小值是0,函数()y f x x =-的零点是x =x ,函数()g x 满足()()21f x g x x k =⋅+-,其中k为常数,且2k ≥.(1)已知实数1x 、2x 满足120x k x <<<,且212x x k ⋅>,试比较()1g x 与()2g x 的大小关系,并说明理由;(2)求证:()()()()()()1211221g g g k g k g k g k ++⋅⋅⋅+->++++⋅⋅⋅+-.延边第二中学2019—2020学年第一学期第二次阶段测试高二数学试卷参考答案(理科和文科)13.④ 14.2 15.2⎛⎫- ⎪ ⎪⎝⎭16.92.17. 解:(1)由2asinB b ,利用正弦定理得:2sinAsinB ,∵sinB ≠0,∴sin A =,又A 为锐角,则A =3π;(2)由余弦定理得:2222cos a b c bc A =+-,即22264()31003b c bc b c bc bc =+-=+-=-,∴bc =12,又sin 2A =,则1sin 2ABC S bc A ∆==.18.(1)因为4133n n S a =-,所以()1141233n n S a n --=-≥, 所以当2n ≥时,14433n nn a a a -=-,即14n n a a -=, 当1n =时,114133S a =-,所以11a =,所以14n n a -=. (2)()114n n n a b n -=+⨯,于是()01221243444414n n nT n n --=⨯+⨯+⨯++⨯++⨯,①()12314243444414n n n T n n -=⨯+⨯+⨯++⨯++⨯,②由①-②,得()121223244414433n n n n T n n -⎛⎫-=++++-+⨯=-+⨯ ⎪⎝⎭, 所以322499n n n T +=⨯-.19.(1)当1a =时,()24,1,2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤.(2)()1f x ≤等价于24x a x ++-≥.而22x a x a ++-≥+,且当2x =时等号成立.故()1f x ≤等价于24a +≥. 由24a +≥可得6a ≤-或2a ≥,所以a 的取值范围是][(),62,-∞-⋃+∞. 20. (1)设(,)P x y,12(0,F F ,满足124PF PF +=, 由椭圆的定义可知,点P的轨迹是以12(0,F F 为焦点,且长轴为4的椭圆,即2,a c ==1b ==,所以曲线C 的方程2214y x +=.(2)设1122(,),(,)A x y B x y ,联立方程组22114y kx y x =+⎧⎪⎨+=⎪⎩,整理得22(4)230k x kx ++-=, 则12122223,44k x x x x k k +=-=-++,因为OA OB ⊥,所以12120x x y y +=, 又由2121212()1y y k x x k x x =+++,所以212121212(1)()10x x y y k x x k x x +=++++=,于是21212222324110444k k x x y y k k k -++=--+==+++,化简得2410k -+=,即214k =,又由AB ====21. (1)由二次函数()2f x ax bx c =++的最小值为0可知,240b ac ∆=-=①,又()2(1)a x x x c y f x b +-==+-的零点是32x +=和x =,由根与系数的关系可得,33122b a +--+=-②,3322ca=③,由①②③可得1a =或15a =(舍去),由1a =可得2b =-,1c =,所以()221f x x x =-+.根据条件,()22()12f x k k g x x x x+-==+-,则()()222121212121122()()x x k x x k k x x x x x x g x x g -=--+--=, 又120x k x <<<,且212x x k ⋅>,所以()()120g x g x -<,即()()12g x g x <.(2)由(1)知,()()222121212121122()()x x k x x k k x x x x x x g x x g -=--+--=, 若120x k x <<<,且212x x k ⋅<,则()()12g x g x >,令1x k n =-,2x k n =+,其中n *∈N 且1n k ≤-,则120x k x <<<,且212x x k ⋅<, 所以()()12g x g x >,即()()g k n g k n ->+,其中n *∈N 且1n k ≤-, 即()()121g g k >-,()()222g g k >-,,()()11g k g k ->+,故()()()()()()1211221g g g k g k g k g k ++⋅⋅⋅+->++++⋅⋅⋅+-,得证.。
高二数学第一次月考试卷理科 试题
卜人入州八九几市潮王学校2021年地区高二数学第一次月考试卷(理科)说明:本套试卷分第一卷(选择题)和第二卷(非选择题)两局部。
试卷总分值是150,考试时间是是120分钟。
第Ⅰ卷(选择题一共60分)一、选择题:本大题一一共12小题,每一小题5分,一共60分。
在每一小题给出的四个选项里面,有一项为哪一项哪一项符合题目要求的,请将所选答案填在指定的答题栏内。
1.函数f(x)=2x+5,当x 从2变化到4时,函数的平均变化率是〔〕A2B4 C2D-2 2.以下求导运算正确的选项是〔〕 A 、3211)1(x x x -='+B 、2ln 1)(log '2x x =C 、'2)cos (x x =-2xsinxD 、e xx 3'log 3)3(= 3.一个物体的运动方程为21s tt 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是〔〕A 、7米/秒B 、6米/秒C 、5米/秒D 、8米/秒4.设f(x)在[a,b]上连续,将[a,b]n 等分,在每个小区间上任取i ξ,那么dx x f b a)(⎰是〔〕A 、∑=∞→ni i n f 1)(lim ξB 、∑=∞→-•ni i n n ab f 1)(lim ξC 、∑=∞→•n i i i n f 1)(lim ξξD 、∑=∞→ni i n f 1)(lim ξ•-i ξ()1-i ξ 5.函数2mnymx 的导数为3'4x y =,那么〔〕A 、m=-1,n=-2B 、m=-1,n=2C 、m=1,n=-2D 、m=1,n=2 6.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的〔〕A 、充要条件B 、即不充分又不必要条件C 、充分非必要条件D 、必要非充分条件7.函数1ln 1ln xyx的导数为〔〕A 、2')ln 1(2x y +-=B 、2')ln 1(2x x y +=C 、2')ln 1(1x x y +-=D 、2')ln 1(2x x y +-=8、以下积分不正确的选项是〔〕A 、3ln 131=⎰dx x B 、xdx sin 0⎰π=-2 C 、31210=⎰dx x D 、23ln 29)1(232+=+⎰dx xx9.函数5224+-=x x y 的单调减区间是〔〕A 、[-1,1]B 、[-1,0],[1,+∞]C 、〔-∞,-1〕,〔0,1〕D 、(-∞,-1),[1,+∞] 10.曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短间隔是〔〕 A 、5B 、25C 、35D 、011.方程076223=+-x x在〔0,2〕内根的个数有〔〕A .0B .1C .2D .312、设P 点是曲线3233+-=x x y 上的任意一点,P 点处切线倾斜角为α,那么角α的取值范围是 A .2[0,)[,)23πππ⋃B .5[0,)[,)26πππ⋃C .),32[ππD .)65,2(ππ第二卷(非选择题一共90分)二、填空题:本大题一一共4小题,每一小题4分,一共16分.把答案填在题中的横线上. 13、定积分cdx b a⎰〔c 为常数〕的几何意义是:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二年级第三次月考试卷
(数学理科 分值150分,考试时间120分钟)
一、选择题(每小题5分,共60分.每小题只有一个答案正确,请将正确的
答案选项填在答题栏中,否则零分)
1、抛物线28yx的焦点坐标是
A、4,0 B、2,0 C、10,2 D、10,32
2、命题“若1x,则2320xx”以及它的逆命题、否命题和逆否命题中,其中
正确的命题个数是
A.0 B、2 C、3 D、4
3、命题“存在实数x,使212xx”的否定为
A.存在实数x,使212xx B、对所有实数x,都有212xx
C、不存在实数x,使212xx D、实数x,都有212xx
4、已知空间向量a、b,且2,3,,60abab,则23ab
A.97 B、97 C、61 D、61
5、已知椭圆与双曲线22132xy有共同的焦点,且离心率为15,则椭圆的标准方程
为
A.2212025xy B、2212520xy C、 221255xy D、221525xy
6、已知命题:p所有的有理数都是实数;命题:qmR时,0m。则下列说法正确
的是
A.p是假命题 B、p且q是真命题 C、p或q是真命题 D、p或q是假命题
7、已知空间向量a、b,且2,56,72ABabBCabCDab,则一定共线
的三点是
A.ABD、、 B、ABC、、 C、BCD、、 D、ACD、、
8、下列命题中是全称命题且是真命题的是
A.有些实数是无限不循环小数 B、平行四边形的对角线互相平分
C、所有能被3整除的数都是奇数 D、每一个二次函数的图像都与x轴相交
9、已知向量(2,1,3),(1,2,9)axby,若a与b共线,则有
A.1,1xy B、11,22xy C、13,62xy D、13,62xy
10、与向量(1,2,2)a共线的单位向量是
A.122(,,)333B、122(,,)333和122(,,)333C、122(,,)333D、无数个
11、已知命题:p21x;命题:q21032xx;则“p”是“q”的
A.充分不必要条件 B、必要不充分条件C、充要条件 D、既不充分也不必要条件
12、已知12FF、是椭圆的两个焦点,满足12MFMF的点M总在椭圆的内部,则椭圆
的离心率的取值范围是
A、0,1 B、10,2 C、20,2 D、2,12
题
号
1 2 3 4 5 6 7 8 9 10 11 12
答
案
二、填空题(每小题5分,共20分。请直接填写答案)
13、已知点P在抛物线28yx,点F是它的焦点,(2,1)Q是一定点,则
PQPF
取得最小值时,点P的坐标为
14、椭圆2221xmy的一个焦点为0,2,则m
15、已知双曲线C:221916xy的左、右焦点分别为12FF、,P为C的右支上一点,
且112PFFF,则12PFF的面积为
16、若动点M到定点(2,0)F的距离与到定直线:1lx的距离之比为2,则动点的
轨迹方程为
三、解答题(共70分,要有必要的解题过程和文字说明)
17、(10分)求双曲线22916144xy的实轴长、虚轴长、焦点坐标、离心率、渐
近线方程。
18、(12分)(1)求顶点在原点,坐标轴为对称轴,且过点(2,4)P的抛物线的标准
方程;(2)求过点(2,0)A和点(2,1)B的椭圆的标准方程;
(3)求渐近线为yx,且过点(2,3)P的双曲线方程。
19、(12分)如图正四棱柱1111ABCDABCD中,124AAAB,E在1CC上,且
1
3CEEC
20、(12分)过(1,2)P作直线直线l与双曲线2214xy交于A、B两点,若P为线
段AB的中点,求直线l的方程。
21、(12分)过抛物线28yx的焦点F作斜率为1的直线与抛物线交于A、B两点。
(1)求线段AB的长 (2)求ABO的面积
22、(12分)已知椭圆C的中心为直角坐标系的原点,焦点在x轴上,它的一个顶点到
两个焦点的距离分别是22和22。
(1)求椭圆C的方程 (2)若P为椭圆C上的动点,M为过P且垂直于x轴
的直线上的点,OPeOM(e为椭圆C的离心率),求点M的轨迹方程,并说明轨迹
是什么曲线。