高二第一学期月考数学试题
高二数学第一学期月考数学试卷

第一学期高二年级第一次月考数学试卷一、选择题(本大题共12小题;每小题5分;共60分)1.若直线1=x 的倾斜角为α;则α ( )A .等于0B .等于4πC .等于2πD .不存在2.与直线0632=-+y x 关于点)1,1(-对称的直线方程是( )A .0832=++y xB .0732=++y xC .01223=--y xD .0223=+-y x3.两条直线022=--y x 与04=-+y x 的夹角的正弦值是( )A .22B .1010C .10103D .510 4.直线01=-+y x 被曲线062222=---+y x y x 所截得的线段的中点坐标是( )A .)21,21(B .(0;0)C .)43,41(D .)41,43( 5.点P(2;3)到直线:ax +(a -1)y+3=0的距离d 为最大时;d 与a 的值依次为 ( )A .3;-3B .5;1C .5; 2D .7;16.如图;设点C(1;0);长为2的线段AB 在y 角 是 )A .30°B .45°C .60°D .90° 7.已知x ;y 满足约束条件 0,04242≥≥≤+≤+y x y x y x ;则y x z +=的最大值是 ( )A .34B .38 C .2 D .4 8.F 1;F 2是定点;且|F 1F 2|=6;动点M 满足|MF 1|+|MF 2|=6;则M 点的轨迹方程是( )A .椭圆B .直线C .圆D .线段9.圆1622=+y x 上的点到直线03=--y x 的距离的最大值是--------------( )A .223B .2234-C .2234+ D .0 10.已知方程122=+my x 表示焦点在y 轴上的椭圆;则m 的取值范围是( )A .m<1B .-1<m<1C .m>1D .0<m<111.当0≠a 时;方程022=-++ay ax y x 所表示的图形----------------( )A .关于x 轴对称B .关于y 轴对称C .关于直线0=-y x 对称D .关于直线0=+y x 对称12.曲线025)3(22=-+-+y x y x 所表示的图形是---------------------( ). D .二、填空题(本大题共6小题;每小题4分;共24分)13.点)3,(a P 到直线0134=+-y x 的距离等于4;且在不等式32<+y x 表示的平面区域内;则点P 的坐标是_______________.14.若实数x ;y 满足xy y x 则,3)2(22=+-的最大值是 .15. 圆422=+y x 截直线0323=-+y x 所得的弦长是 。
重庆市巴蜀中学校2024-2025学年高二上学期第一次月考数学试题

重庆市巴蜀中学校2024-2025学年高二上学期第一次月考数学试题一、单选题1.直线:1l y +的倾斜角为( ) A .0︒B .30︒C .45︒D .60︒2.已知直线1:50l x y ++=,2:10l x y ++=,则1l 与2l 的距离为( )A .1B .2C D .3.已知(1,0)A -、(3,6)B ,则以AB 为直径的圆的一般方程为( ) A .222630x y x y +--+= B .222630x y x y +---= C .222630x y x y ++-+=D .222630x y x y ++--=4.已知直线1:10l ax y ++=,2:2(1)30l x a y +--=,若12l l ⊥,则实数a =( )A B C .-1 D .-2 5.已知动点P 在椭圆22:143y x C +=上,(0,1)F -,(3,3)D -,则D |P PF -的最小值为( )A .5BC .2D .16.已知直线1:12l y x =+与椭圆2222:1(0)x y C a b a b+=>>相交于A 、B ,且AB 的中点为11,2M ⎛⎫- ⎪⎝⎭,则椭圆C 的离心率为( )A B C D .127.已知点A 、B 在圆22:16O x y +=上,且AB 的中点M 在圆22:(2)1C x y -+=上,则弦长AB 的最小值为( )A .B .C .D .8.已知椭圆2222:1(0)x y a b a b Γ+=>>的焦距为2c ,若直线()380kx y k c -++=恒与椭圆Γ有两个不同的公共点,则椭圆Γ的离心率范围为( )A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭二、多选题9.已知ABC V 的三个顶点(2,1)A -,(2,7)B -,(2,1)C -,则下列描述正确的有( ) A .直线BC 的倾斜角不存在 B .直线AB 的斜率为-2C .边AB 上的高所在直线的方程为240x y -+=D .边AB 上的中线所在直线的方程为30x y -+=10.已知动点P 在直线:60l x y +-=上,动点Q 在圆22:(1)(1)4C x y -+-=上,过点P 作圆C 的两条切线,切点分别为A 、B ,则下列描述正确的有( )A .直线l 与圆C 相交B .PQ 的最小值为2C .四边形PACB 面积的最小值为4D .存在P 点,使得120APB ︒∠=11.已知椭圆222:1(20)4x y C b b+=>>的左、右焦点分别为1F 、2F ,上顶点为B ,动点P 在椭圆C 上,则下列描述正确的有( )A .若12PF F V 的周长为6,则b =B .若当12π3F PF ∠=时,12PF F V b =C .若存在P 点,使得12PF PF ⊥,则b ∈D .若PB 的最大值为2b ,则b ∈三、填空题12.焦点在x 轴的椭圆C ,长轴长为10,离心率为35,则椭圆C 的标准方程为.13.经过点()0,0O 作直线l ,若直线l 与连接()1,1A -,()2,2B 两点的线段总有公共点,则直线l 斜率的取值范围为.14.已知点()0,1A ,()0,1B -,()0,2C -,动点P 满足:||||10+=PA PB ,且||2||PC PA ≥,则点P 的轨迹长度为.四、解答题15.已知点()2,1P -,直线:220l x y ++=. (1)求点P 到直线l 的距离;(2)求点P 关于直线l 的对称点Q 的坐标.16.已知(1,2)A 、(3,6)B ,动点P 满足4PA PB ⋅=-u u u r u u u r,设动点P 的轨迹为曲线C . (1)求曲线C 的标准方程;(2)求过点(1,2)A 且与曲线C 相切的直线的方程. 17.已知直线2y kx =+与椭圆2213x y +=相交于不同的两点,P Q . (1)求实数k 的取值范围;(2)若OP OQ ⊥,其中O 为坐标原点,求实数k 的值.18.已知圆22:4x y Γ+=,点Q 在圆Γ上,过Q 作y 轴的垂线,垂足为Q ',动点P 满足23Q Q Q P ''=u u u u r u u u r ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)斜率存在且不过()0,2B 的直线l 与曲线C 相交于M 、N 两点,BM 与BN 的斜率之积为209. ①证明:直线l 过定点; ②求BMN V 面积的最大值.19.如图1,已知圆心C 在x 轴的圆C 经过点(3,0)D 和(E .过原点且不与x 铀重合的直线l 与圆C 交于A 、B 两点(A 在x 轴上方).(1)求圆C 的标准方程;(2)若ABD △l 的方程;(3)将平面xOy 沿x 轴折叠,使y 轴正半轴和x 轴所确定的半平面(平面AOD )与y 轴负半轴和x轴所确定的半平面(平面BOD)互相垂宜,如图2,求折叠后AB的范围.。
山西省大同市浑源县第七中学校2024-2025学年高二上学期第一次月考数学试题(含解析)

2024-2025学年第一学期高二年级第一次月考数学试题考试时间:120分钟 试题满分:150分一、单选题(共8小题)1. (5分)已知a =(-3,2,5),b =(1,x ,-1),且a ·b =2,则实数x 的值是( )A . 3 B . 4 C . 5 D . 62. (5分)已知直线l 的一方向向量为,则直线l 的倾斜角为( )A . 30° B . 60° C . 120° D . 150°3. (5分)如图,若直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A . k 1<k 3<k 2 B . k 3<k 1<k 2C . k 1<k 2<k 3 D . k 3<k 2<k 14. (5分)如图,在三棱锥S -ABC 中,点E ,F 分别是SA ,BC 的中点,点G 满足=,若=a ,=b ,=c ,则=( )A . a +b +cB . a -b +cC . -a -b +cD . a -b +c5. (5分)若直线与平行,则的值为( )A . 0 B . 2 C . 3 D . 2或36. (5分)已知a >0,b >0,直线l 1:(a -1)x +y -1=0,l 2:x +2by +1=0,且l 1⊥l 2,则+的最小值为( )A . 2B . 4C . 8D . 97. (5分)已知点A (2,3),B (-3,-2),若直线l 过点P (1,1),且与线段AB 始终没有交点,则直线l 的斜率k 的取值范围是( )A . B . C . D . {k |k <2}8. (5分)若三条直线l 1:ax +y +1=0,l 2:x +ay +1=0,l 3:x +y +a =0能构成三角形,则实数a 应满足的条件是( )A . a =1或a =-2B . a ≠±1C . a ≠1且a ≠-2D . a ≠±1且a ≠-2二、多选题(共4小题)9. (5分)已知空间三点A (1,0,3),B (-1,1,4),C (2,-1,3).若 →AP ∥ →BC ,且||=,则点P 的坐标为( )A . (4,-2,2)B . (-2,2,4)C . (-4,2,-2)D . (2,-2,4)10. (5分)已知直线l 1与l 2为两条不重合的直线,则下列命题正确的是( )A . 若l 1∥l 2,则斜率k 1=k 2 B . 若斜率k 1=k 2,则l 1∥l 2C . 若倾斜角α1=α2,则l 1∥l 2D . 若l 1∥l 2,则倾斜角α1=α211. (5分)下列说法正确的是()()1:240l a x ay -++=()2:2340l a x y -++=aA . 直线的倾斜角为B . 直线与两坐标轴围成的三角形的面积是2C . 过点的直线在两坐标轴上的截距之和为,则该直线方程为D . 过两点的直线方程为12. (5分)在长方体ABCD -A 1B 1C 1D 1中,AB =AD =2,AA 1=3,以D 为坐标原点,,,所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则下列说法正确的是( )A .B 1的坐标为(2,2,3) B .=(-2,0,3)C . 平面A 1BC 1的一个法向量为(-3,3,-2)D . 二面角B -A 1C 1 -B 1的余弦值为三、填空题(共4小题)13. (5分)点到直线的距离为______.14. (5分)已知|a |=13,|b |=19,|a +b |=24,则|a -b |=________.15. (5分)已知直线与互相平行,则__________,与之间的距离为__________.16. (5分)已知点A (λ+1,μ-1,3),B (2λ,μ,λ-2μ),C (λ+3,μ-3,9)三点共线,则实数λ=________,μ=________.四、解答题(共6小题)17. (10分)如图,在空间四面体OABC 中,2=,点E 为AD 的中点,设=a ,=b ,=c .(1)试用向量a ,b ,c 表示向量;(2)若OA =OC =3,OB =2,∠AOC =∠BOC =∠AOB =60°,求·的值.18. (12分)已知直线l 经过点(1,6)和点(8,-8).(1)求直线l 的两点式方程,并化为截距式方程;(2)求直线l 与两坐标轴围成的图形面积.19. (12分)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方20x y --=π420x y --=()1,4030x y -+=()()001,4,x y 、004141y x y x --=--()1,2P 3460x y +-=1:230l x y ++=2:20l x my m -+=m =1l 2l形,PD=DC,E,F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)求DB与平面DEF所成角的正弦值.20.(12分)设直线l的方程为(m2-2m-3)x-(2m2+m-1)y+6-2m=0.(1)已知直线l在x轴上的截距为-3,求m的值;(2)已知直线l的斜率为1,求m的值.21.(12分)直线l经过两直线l1:x+y=0和l2:2x+3y-2=0的交点.(1)若直线l与直线3x+y-1=0平行,求直线l的方程;(2)若点A(3,1)到直线l的距离为5,求直线l的方程.22.(12分)已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,△AOB的面积为S(O为坐标原点),求S 的最小值并求此时直线l的方程.数学参考答案1. 【答案】C【解析】因为a =(-3,2,5),b =(1,x ,-1),所以a ·b =-3+2x -5=2,解得x =5.2. 【答案】B【解析】设直线l 的倾斜角为θ,θ∈[0°,180°),则tan θ=,∴θ=60°.故选B .3. 【答案】A【解析】设直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,则由图知0°<α3<α2<90°<α1<180°,所以tan α1<0,tan α2>tan α3>0,即k 1<0,k 2>k 3>0.4. 【答案】B 【解析】=+=+=(-)+(-)=(-)+×=-+=a -b +c .故选B .5. 【答案】B【解析】由题意,所以,解得,或,当时,,,此时,符合题意,当时,,,此时两直线重合,不符合题意,所以.故选:B .6. 【答案】C【解析】因为l 1⊥l 2,所以(a -1)×1+1×2b =0,即a +2b =1,因为a >0,b >0,所以+=(a +2b )=2+2++≥4+2=8,当且仅当=,即a =,b =时等号成立,所以+的最小值为8.故选C .7. 【答案】A 【解析】∵k AP ==2,k BP ==,如图,12//l l ()()3220a a a ---=2a =3a =2a =1:20l y +=2:340l y +=12//l l 3a =1340:l x y ++=2:340l x y ++=2a=∵直线l 与线段AB 始终没有交点,∴斜率k 的取值范围是.8. 【答案】D【解析】为使三条直线能构成三角形,需三条直线两两相交且不共点.①若l 1∥l 2,是由a ×a -1×1=0,得a =±1.②若l 2∥l 3,则由1×1-a ×1=0,得a =1.③若l 1∥l 3,则由a ×1-1×1=0,得a =1.当a =1时,l 1,l 2与l 3三线重合,当a =-1时,l 1,l 2平行.④若三条直线交于一点,由解得将l 2,l 3的交点(-a -1,1)的坐标代入l 1的方程,解得a =1(舍去)或=-2.所以要使三条直线能构成三角形,需a ≠±1且a ≠-2.9. 【答案】AB【解析】设=λ=(3λ,-2λ,-λ).又||=,∴=,解得λ=±1,∴=(3,-2,-1)或=(-3,2,1).设点P 的坐标为(x ,y ,z ),则=(x -1,y ,z -3),∴或解得或故点P 的坐标为(4,-2,2)或(-2,2,4).10. 【答案】BCD【解析】对于A ,若l 1∥l 2,且l 1与l 2的倾斜角均为,则直线l 1与l 2的斜率不存在,故A 错误;对于B ,若斜率k 1=k 2,且直线l 1与l 2为两条不重合的直线,则l 1∥l 2,故B 正确;对于C ,若倾斜角α1=α2,且直线l 1与l 2为两条不重合的直线,由平行线的性质可得l 1∥l 2,故C 正确;对于D ,若l 1∥l 2,由平行线的性质可得倾斜角α1=α2,故D 正确.故选B 、C 、D .11. 【答案】AB【解析】对于A ,直线的斜率为,其倾斜角为,A 正确;对于B ,直线交轴分别于点,该直线与坐标轴围成三角形面积为,B 正确;20x y --=1k =π420x y --=,x y ()()2,0,0,2-12222S =⨯⨯=对于C ,过点与原点的直线在两坐标轴上的截距都为0,符合题意,即过点且在两坐标轴上的截距之和为的直线可以是直线,C 错误;对于D ,当时的直线或当时的直线方程不能用表示出,D 错误.故选:AB .12. 【答案】ABD【解析】因为AB =AD =2,AA 1=3,所以A 1(2,0,3),B (2,2,0),B 1(2,2,3),C 1(0,2,3),所以=(-2,0,3),=(0,2,-3),故A 、B 正确;设平面A 1BC 1的法向量m =(x ,y ,z ),所以{m ∙→A 1B =0,m ∙→BC 1=0,即令x =-3,则y =-3,z =-2,即平面A 1BC 1的一个法向量为(-3,-3,-2),故C 错误;由几何体易得平面A 1B 1C 1的一个法向量为n =(0,0,1),由于cos 〈m ,n 〉===-,结合图形可知二面角B -A 1C 1 -B 1的余弦值为,故D 正确.故选A 、B 、D .13. 【答案】1【解析】点到直线的距离.故答案为:.14. 【答案】22【解析】|a +b |2=a 2+2a ·b +b 2=132+2a ·b +192=242,∴2a ·b =46,|a -b |2=a 2-2a ·b +b 2=530-46=484,故|a -b |=22.15. 【答案】【解析】因为直线与互相平行,所以,解得,则,()1,4()0,04y x =()1,404y x =001,4x y =≠004,1y x =≠004141y x y x --=--()1,2P 3460x y +-=1d 14-1:230l x y ++=2:20l x my m -+=2123m m -=≠4m =-2:220l x y +-=所以与之间的距离.故答案为:;.16. 【答案】0 0【解析】因为 →AB =(λ-1,1,λ-2μ-3), →AC =(2,-2,6),由A ,B ,C 三点共线,得 →AB ∥ →AC ,即λ―12=- 12=λ-2μ-36,解得λ=0,μ=0.17. 【答案】解 (1)∵2=,∴==(-)=(c -b ),故=+=b +(c -b )=b +c ,∵点E 为AD 的中点,故=(+)=a +b +c .(2)由题意得a ·c =,a ·b =3,c ·b =3,=c -a ,故·=(a +b +c )·(c -a )=-a 2+c 2+a ·c +b ·c -b ·a =-×9+×9+×+×3-×3=-.18. 【答案】解 (1)因为直线l 的两点式方程为=,所以=,即=x -1.所以y -6=-2x +2,即2x +y =8.所以+=1.故所求截距式方程为+=1.(2)如图所示,1l 2ld4-直线l 与两坐标轴围成的图形是直角三角形AOB ,且OA ⊥OB ,由 x 4+y8=1可知|OA |=4,|OB |=8,故S △AOB =×|OA |×|OB |=×4×8=16.故直线l 与两坐标轴围成的图形面积为16.19. 【答案】(1)证明 以D 为坐标原点,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系如图.设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E (a ,a2,0),P (0,0,a ),F(a 2,a 2,a2).∵ →EF · →DC = (―a2,0,a2)·(0,a ,0)=0,∴ →EF ⊥ →DC ,∴EF ⊥CD .(2)解 设平面DEF 的法向量为n =(x ,y ,z ),则{n ∙→DF =0,n ∙→DE =0,即 {(x ,y ,z )∙(a2,a2,a2)=0,(x ,y ,z )∙(a ,a 2,0)=0,即{a 2(x +y +z )=0,ax +a2y =0.取x =1,则y =-2,z =1,∴n =(1,-2,1)是平面DEF 的一个法向量,∴cos 〈 →BD ,n 〉=→BD ∙n|→BD |∙|n |=a2a ∙6= 36.设DB 与平面DEF 所成的角为θ,则sin θ=|cos〈→BD,n〉|=3.620.【答案】解 (1)由题意知m2-2m-3≠0,即m≠3且m≠-1,令y=0,则x=,∴=-3,得m=-或m=3(舍去).∴m=-.(2)由题意知,2m2+m-1≠0,即m≠且m≠-1.由直线l化为斜截式方程得y=x+,则=1,得m=-2或m=-1(舍去).∴m=-2.【解析】【知识点】根据直线的一般式方程求斜率、截距、参数值及范围21.【答案】解 (1)直线l1方程与l2方程联立得交点坐标为(-2,2),设直线l的方程为3x+y+m=0,代入交点(-2,2)得m=4,所以l的方程为3x+y+4=0.(2)当直线l的斜率不存在时,得l的方程为x=-2,符合条件;当l斜率存在时,设直线l的方程为y-2=k(x+2),根据d==5,解得k=,所以直线l的方程为12x-5y+34=0.综上所述,l的方程为12x-5y+34=0或x=-2.22.【答案】(1)证明 直线l的方程可化为y-1=k(x+2),由点斜式方程可知,直线l过定点(-2,1).(2)解 由方程知,当k≠0时直线在x轴上的截距为-,在y轴上的截距为1+2k,要使直线不经过第四象限,则必须有解得k>0;当k=0时,直线为y=1,符合题意,故k的取值范围是[0,+∞).(3)解 由题意可知k≠0,再由l的方程,得A,B(0,1+2k).依题意得解得k>0.∵S=|OA|·|OB|=·|1+2k|=·=≥×(2×2+4)=4,“=”成立的条件是k>0且4k=,即k=,∴S min=4,此时直线l的方程为x-2y+4=0.。
高二数学上学期第一次月考试题含解析

智才艺州攀枝花市创界学校第二二零二零—二零二壹高二数学上学期第一次月考试题〔含解析〕一、选择题〔本大题一一共13小题,每一小题4分,一共52分.题1—10为单项选择题,题11-13为多项选择题,多项选择题错选得0分,漏选得2分.〕 1.椭圆229225x ky +=的一个焦点是()4,0,那么k =〔〕A.5B.25C.-5D.-25【答案】B 【解析】 【分析】将椭圆方程化为HY 方程,根据焦点坐标求得c ,由此列方程求得k 的值.【详解】椭圆的HY方程为22122525x y k+=,由于椭圆焦点为()4,0,故焦点在x 轴上,且4c =.所以2225254k=+,解得25k =. 应选:B【点睛】本小题主要考察根据椭圆的焦点坐标求参数的值,属于根底题. 2.双曲线22412mx y -=的一条渐近线的方程为20y -=,那么m =〔〕A.3C.4D.16【答案】A 【解析】 【分析】写出双曲线的HY 方程,根据渐近线方程即可得解. 【详解】双曲线22412mx y -=20y -=,即双曲线221213m x y -=的一条渐近线的方程为y x =, 所以124,3m m==. 应选:A【点睛】此题考察根据双曲线的渐近线方程求双曲线HY 方程,关键在于准确掌握双曲线的概念,找准其中的a ,b .3.“x R ∃∈,2440x x -+≤〞的否认是〔〕A.x R ∀∈,2440x x -+>B.x R ∀∈,2440x x -+≥C.x R ∃∈,2440x x -+>D.x R ∃∈,2440x x -+≥【答案】A 【解析】 【分析】 .【详解】A 选项正确. 应选:A 【点睛】. 4.〕 A.2230x x -->,B.π不是无限不循环小数C.直线与平面相交D.在线段AB 上任取一点【答案】B 【解析】【分析】 ACDB.【详解】ACD 均不能判断真假,B. 应选:B 【点睛】.5.平面内,一个动点P ,两个定点1F ,2F ,假设12PF PF -为大于零的常数,那么动点P 的轨迹为〔〕A.双曲线B.射线C.线段D.双曲线的一支或者射线 【答案】D 【解析】【分析】根据双曲线的定义,对动点P 的轨迹进展判断,由此确定正确选项. 【详解】两个定点的间隔为12F F ,当1212PF PF F F -<时,P 点的轨迹为双曲线的一支; 当1212PF PF F F -=时,P 点的轨迹为射线;不存在1212PF PF F F ->的情况.综上所述,P 的轨迹为双曲线的一支或者射线. 应选:D【点睛】本小题主要考察双曲线定义的辨析,属于根底题. 6.〕A.x R ∀∈,2210x x -+>B.0,4x π⎡⎤∀∈⎢⎥⎣⎦,tan 1x <C.a ∀∈R ,in s (s in )a a π-=D.x R ∀∈,12x x+≥ 【答案】C 【解析】 【分析】 .【详解】A.x R ∀∈,2210x x -+>,当21,210x x x =-+=B.0,4x π⎡⎤∀∈⎢⎥⎣⎦,tan 1x <,当,tan 14x x π== C.a ∀∈R ,in s (s in )a a π-=,满足题意; D.x R ∀∈,12x x +≥,当10,2x x x<+≤-. 应选:C 【点睛】.7.假设方程22216x y a a +=-表示双曲线,那么实数a 的取值范围是〔〕A.6a <B.6a <且0a≠ C.2a > D.2a >或者3a <-【答案】B 【解析】 【分析】根据双曲线方程形式得2060a a ⎧≠⎨-<⎩,即可得解.【详解】方程22216x y a a +=-表示双曲线,那么2060a a ⎧≠⎨-<⎩,解得:6a <且0a ≠.应选:B【点睛】此题考察双曲线概念辨析,根据方程表示双曲线求解参数的取值范围,关键在于纯熟掌握双曲线方程的形式.8.1F ,2F 是椭圆(222:13x y C a a+=>的两个焦点,P 是C 上一点.假设1260F PF ∠=︒,那么12F PF △的面积为〔〕B. D.与a 有关【答案】A 【解析】 【分析】根据椭圆的几何性质结合余弦定理求得124F P PF ⋅=,利用三角形面积公式即可得解.【详解】根据椭圆几何性质可得:122F P PF a +=,12F PF △中,由余弦定理:222121212F F F P PF F P PF =+-⋅,即()221212123F F F P PF F P PF =+-⋅()22124343a a F P PF -=-⋅,解得:124F P PF ⋅=12F PF △的面积为121sin 602F P PF ⋅⋅︒=. 应选:A【点睛】此题考察椭圆的几何性质的应用,结合余弦定理和面积公式求三角形面积,关键在于纯熟掌握椭圆根本性质和三角形相关定理公式.9.1F ,2F 是椭圆()222210x y a b a b+=>>的左,右焦点,直线23b y =与该椭圆交于B ,C ,假设2BF C △是直角三角形,那么该椭圆的离心率为〔〕B.【答案】D 【解析】 【分析】联立直线和椭圆求出交点坐标22,,,3333b b B C ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,分别讨论直角情况即可得解.【详解】联立直线和椭圆方程:2222123x y a b b y ⎧=⎪⎪⎨+=⎪⎪⎩ 所以直线23b y =与椭圆()222210x y a b a b+=>>的交点坐标22,33b b B C ⎛⎫⎫⎪⎪ ⎪⎪⎝⎭⎝⎭, 因为椭圆焦点在x 轴,所以角B 不可能为直角,当角Cc =,即e =;当角2F 为直角时,220F B F C ⋅=,即22,,03333b b c c ⎛⎫⎛⎫--⋅-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22254099a b c -+=,2222544099a a c c --+=225c a =,5e =.应选:D【点睛】此题考察根据直线与椭圆位置关系,结合三角形形状求解离心率,关键在于准确求出直线与椭圆的交点坐标,根据垂直关系建立等量关系求椭圆离心率.10.双曲线221916x y -=的左,右焦点分别为1F ,2F ,P 为右支上一点,且1245cos F PF ∠=,那么12F PF △内切圆的面积为〔〕A.211πB.83π C.649π D.176121π【答案】C 【解析】 【分析】 根据1245cos F PF ∠=求出三角形的边长和面积,利用等面积法求出内切圆的半径,即可得到面积. 【详解】由题:1245cos F PF ∠=,那么123sin 5F PF ∠=,P 为右支上一点, 12F PF △中由余弦定理:()()22212111146265F F F P F P F P F P =++-⋅+⨯解得110F P =,12F PF △的面积121310164825F PF S =⨯⨯⨯=△,设其内切圆半径为r ,()101016482r ++=,解得:83r = 那么12F PF △内切圆的面积为286439ππ⎛⎫⨯=⎪⎝⎭【点睛】此题考察根据双曲线的几何性质求解焦点三角形的面积和内切圆的半径,根据等面积法求解半径得到圆的面积. 11.〕A.假设a ba c ⋅=⋅,那么bc =B.正数,a b ,假设2a b+≠a bC.0x N +∃∈,使200x x ≤D.正数,x y ,那么1xy =是lg lg 0x y +=的充要条件【答案】BCD 【解析】 【分析】 考虑0a=可断定A.【详解】A 选项:假设0a =,任意向量,b c ,0a b a c ⋅=⋅=,不能推出b c =B ,a b ,假设ab =,那么2a b+= C 选项:当01x =D 选项:正数,x y ,lg lg 0x y +=等价于lg 0xy =,等价于1xy =,那么1xy =是lg lg 0x y +=的充要条件应选:BCD 【点睛】.12.〔多项选择题〕双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第三象限三等分,那么双曲线1C 的离心率可能为〔〕C.2D.3【答案】CD 【解析】 【分析】根据渐近线的平分关系求出斜率,根据斜率为b a =b a =.【详解】双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第三象限三等分,根据双曲线对称性可得:双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第一象限三等分,所以第一象限的两条渐近线的倾斜角为30°和60°,其斜率为b a =b a =,所以其离心率为2或者3. 应选:CD【点睛】此题考察根据双曲线的渐近线关系求离心率,关键在于对题目所给条件进展等价转化,利用双曲线根本量之间的关系求解.13.〔多项选择题〕以下说法正确的选项是〔〕 A.方程2xxy x +=表示两条直线B.椭圆221102x y m m +=--的焦距为4,那么4m =C.曲线22259x y xy +=关于坐标原点对称D.双曲线2222x y a b λ-=的渐近线方程为b y x a=±【答案】ACD 【解析】 【分析】B 选项漏掉考虑焦点在y 轴的情况,ACD 说法正确. 【详解】方程2xxy x +=即()10x x y +-=,表示0x =,10x y +-=两条直线,所以A 正确;椭圆221102x ym m+=--的焦距为4,那么()1024m m---=或者()2104m m---=,解得4m=或者8m=,所以B选项错误;曲线22259x yxy+=上任意点(),P x y,满足22259x yxy+=,(),P x y关于坐标原点对称点(),P x y'--也满足()()()()22259x yx y--+=--,即(),P x y'--在22259x yxy+=上,所以曲线22259x yxy+=关于坐标原点对称,所以C选项正确;双曲线2222x ya bλ-=即0λ≠,其渐近线方程为by xa=±正确,所以D选项正确.应选:ACD【点睛】此题考察曲线方程及简单性质辨析,涉及认识曲线方程,研究对称性,根据椭圆性质求参数的取值,求双曲线的渐近线.二、填空题〔本大题一一共4小题,每一小题4分,一共16分.〕14.方程22157x ya a+=--表示椭圆,那么实数a的取值范围是_______.【答案】()()5,66,7【解析】【分析】根据方程表示椭圆,列不等式组可得507057aaa a->⎧⎪->⎨⎪-≠-⎩,即可求解.【详解】由题方程22157x ya a+=--表示椭圆,那么507057aaa a->⎧⎪->⎨⎪-≠-⎩,解得()()5,66,7a ∈故答案为:()()5,66,7【点睛】此题考察根据曲线方程表示椭圆求参数的取值范围,关键在于纯熟掌握椭圆的HY方程特征,此题容易漏掉考虑a =6的情况不合题意.15.假设“0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <〞m 的取值范围是________. 【答案】0m >【解析】【分析】 根据0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <,实数m 的取值范围,即()min tan x m <. 【详解】0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <,即()min tan x m <, tan y x =在0,4x π⎡⎤∈⎢⎥⎣⎦单调递增,()min tan 0x = 即0m >.故答案为:0m >【点睛】.16.2F 是椭圆2211612x y +=的右焦点,P 是椭圆上的动点,(A 为定点,那么1PA PF +的最小值为_______.【答案】6【解析】【分析】 将问题进展转化12288PA PF PA PF PA PF +=+-=+-,根据动点到两个定点间隔之差的最值求解. 【详解】()22,0F 是椭圆2211612x y +=的右焦点,()12,0F -是椭圆2211612x y +=的左焦点,128PF PF +=(A 在椭圆内部,1222888826PA PF PA PF PA PF AF +=+-=+-≥-=-=,当P 为2F A 的延长线与椭圆交点时获得最小值.故答案为:6【点睛】此题考察椭圆上的点到椭圆内一点和焦点的间隔之和最值问题,关键在于利用椭圆的几何性质进展等价转化,结合平面几何知识求解.17.点A ,B 分别是射线()1:0l y x x =≥,2(:0)l y x x =-≤上的动点,O 为坐标原点,且AOB 的面积为定值4.那么线段AB 中点M 的轨迹方程为_________. 【答案】22144-=y x ,0y > 【解析】【分析】设出中点坐标,根据面积关系建立等量关系化简即可得到轨迹方程.【详解】由题:()1:0l y x x =≥,2(:0)l y x x =-≤互相垂直,()()112212,,,,0,0A x x B x x x x -><,设线段AB 中点(),M x y , AOB 的面积为定值4,即)12142x -=,即124x x =- 121222x x x x x y +⎧=⎪⎪⎨-⎪=⎪⎩,两式平方得:222121222212122424x x x x x x x x x y ⎧++=⎪⎪⎨+-⎪=⎪⎩, 两式相减得:22124x y x x -==- 即22144-=y x ,0y >故答案为:22144-=y x ,0y > 【点睛】此题考察求轨迹方程,关键在于根据给定的条件建立等量关系,此类题目容易漏掉考虑取值范围的限制.三、解答题〔本大题一一共6小题,总分值是82分.解容许写出文字说明,证明过程或者演算步骤〕18.集合{}2(3)0A x x a x a =+-+=,{}0B x x =>.假设A B =∅.务实数a 的取值范围.【答案】(](),19,a ∈-∞+∞【解析】【分析】 将问题转化考虑A B =∅a 的取值范围,即可得到假设A B =∅a 的取值范围. 【详解】考虑A B =∅2(3)0x a x a +-+=没有正根, ①()2340a a ∆=--<得()1,9a ∈; ②()2340a a ∆=--=得1a =,或者9a =, 当9a =时{}{}26903A x x x =++==-符合题意,当1a =时{}{}22101A x x x =-+==,不合题意,所以9a =; ③()23403020a a a a ⎧∆=-->⎪-⎪<⎨⎪>⎪⎩无解; 综受骗A B =∅(]1,9a ∈,所以假设A B =∅(](),19,a ∈-∞+∞【点睛】.19.对称中心在坐标原点的椭圆关于坐标轴对称,该椭圆过1212,55⎛⎫ ⎪⎝⎭,且长轴长与短轴长之比为4:3.求该椭圆的HY 方程. 【答案】221169x y +=或者221169y x += 【解析】【分析】根据椭圆的长轴短轴长度之比设椭圆的HY 方程,根据椭圆经过的点求解参数即可得解.【详解】由题:对称中心在坐标原点的椭圆关于坐标轴对称,长轴长与短轴长之比为4:3,当焦点在x 轴上,设椭圆的HY 方程为221169x y m m+=,m >0,椭圆过1212,55⎛⎫ ⎪⎝⎭, 14414412516259m m+=⨯⨯,解得:m =1, 所以椭圆的HY 方程为221169x y += 同理可得当焦点在y 轴上,椭圆的HY 方程为221169y x +=, 所以椭圆的HY 方程为221169x y +=或者221169y x += 【点睛】此题考察求椭圆的HY 方程,关键在于根据长轴短轴长度关系设方程,根据椭圆上的点的坐标求解,易错点在于漏掉考虑焦点所在位置.20.“[]0,2x ∃∈,使方程251020x x m -+-=有解〞.〔1〕务实数m 的取值集合A ;〔2〕设不等式()()1120x a x a -+-<+的解集为集合B ,假设x B ∈是x A ∈的必要不充分条件,务实数a 的取值范围.【答案】〔1〕{}32A m m =-≤≤;〔2〕()(),23,a ∈-∞-+∞【解析】【分析】〔1〕将问题转化为()225102513m x x x =-+=--在[]0,2x ∈有解,即可求解;〔2〕分类讨论求解A B ⊆即可得到参数的取值范围.【详解】〔1“[]0,2x ∃∈,使方程251020x x m -+-=有解〞是.即()225102513m x x x =-+=--在[]0,2x ∈有解,所以[]3,2m ∈- 即{}32A m m =-≤≤;〔2〕不等式()()1120x a x a -+-<+的解集为集合B ,假设x B ∈是x A ∈的必要不充分条件, 当23a =不合题意; 当23<a 时,112a a -<-,()1,12B a a =--,13122a a -<-⎧⎨->⎩,得2a <-; 当23a >时,112a a ->-,()12,1B a a =--,12123a a ->⎧⎨-<-⎩,得3a >; 所以()(),23,a ∈-∞-+∞【点睛】此题考察根据方程有解求参数的取值范围,根据充分条件和必要条件关系求解参数的取值范围,关键在于弄清充分条件和必要条件关系,利用分类讨论求解.21.设1F ,2F 分别是椭圆222:14x y E b+=的左,右焦点,假设P 是该椭圆上的一个动点,12PF PF ⋅的最大值为1.求椭圆E 的方程. 【答案】2214x y += 【解析】【分析】设出焦点坐标,表示出12PF PF ⋅利用函数关系求出最大值,即可得到21b =.【详解】由题:()1F ,)2F 分别是椭圆222:14x y E b +=的左,右焦点,设(),P x y 施椭圆上的动点,即[]222221,0,4,44x y x b b+=∈<, ()22222221124444x b x b x b b ⎛⎫⎛⎫=-+-=-+- ⎪ ⎪⎝⎭⎝⎭-,当2x =4时,获得最大值, 即21b =, 所以椭圆的方程为2214x y +=. 【点睛】此题考察求椭圆的HY 方程,关键在于根据椭圆上的点的坐HY 确计算,结合取值范围求解最值.22.平面直角坐标系中两个不同的定点()1,0F a -,()2,0,0F a a >,过点1F 的直线1l 与过点2F 的直线2l 相交于点P ,假设直线1l 与直线2l 的斜率之积为(0)m m ≠,求动点P 的轨迹方程,并说明此轨迹是何种曲线.【答案】见解析.【解析】【分析】 根据斜率关系化简得22221x y a ma-=,分类讨论得解. 【详解】设(),P x y ,过点1F 的直线1l 与过点2F 的直线2l 相交于点P ,假设直线1l 与直线2l 的斜率之积为(0)m m ≠, 即y y m x a x a ,222y mx ma =-,22221x y a ma-=, 当1m =-轨迹是圆,不含点()1,0F a -,()2,0,0F a a >;当0m >,轨迹是以()1,0F a -,()2,0F a 为顶点的双曲线,不含顶点()1,0F a -,()2,0F a ; 当10m -<<,轨迹是以()1,0F a -,()2,0F a 为长轴顶点的椭圆,不含()1,0F a -,()2,0F a ; 当1m <-,轨迹是以()1,0F a -,()2,0F a 为短轴顶点的椭圆,不含()1,0F a -,()2,0F a .【点睛】此题考察曲线轨迹的辨析,关键在于根据题意建立等量关系,根据曲线轨迹方程分类讨论得解.23.椭圆221:1169x y C +=和双曲线222:1169x y C -=,点A ,B 为椭圆的左,右顶点,点P 在双曲线2C 上,直线OP 与椭圆1C 交于点Q 〔不与点A ,B 重合〕,设直线AP ,BP ,AQ ,BQ 的斜率分别为1k ,2k ,3k ,4k .〔1〕求证:12916k k ⋅=; 〔2〕求证:1234k k k k +++的值是定值.【答案】〔1〕证明见解析;〔2〕证明见解析.【解析】【分析】〔1〕设(),P x y ,表示出斜率即可求得斜率之积;〔2〕设直线:OP y kx =,0k≠,依次求解P ,Q 坐标,表示出斜率之和化简即可得解. 【详解】〔1〕由题:()()()4,0,4,0,,A B P x y -满足221169x y -=,229116x y ⎛⎫=- ⎪⎝⎭ 21229441616y y y k k x x x ⋅=⋅==+--; 〔2〕根据曲线的对称性不妨设直线:OP y kx =,0k ≠, 联立221169y kx x y =⎧⎪⎨+=⎪⎩得2221169x k x +=,22144916x k =+,不妨取Q ⎛⎫,同理可得:P ⎛⎫ 所以1234k k k k +++的值是定值.【点睛】此题考察椭圆与双曲线对称性辨析,求解直线与曲线交点坐标,根据坐标表示斜率求解斜率之积和斜率之和证明结论.。
四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。
高二数学第一次月考试题

高二数学第一次月考试题高二数学第一次月考试题第一部分:选择题(每小题5分,共计50分)1.设函数f(x) = 2x + 3,g(x) = x^2 - 4x + 1,则f(g(2))的值为() A.-3 B. 3 C. 7 D. 112.已知函数f(x) = x^2 - 2x - 3,则方程f(x) = 0的根为() A. 1和-3B. 3和-1C. 1和3D. -1和33.若两个正整数x和y满足x^2 - y^2 = 48,则x - y的值为() A. 4 B.6 C. 8 D. 124.已知函数f(x) = 2x + 5,g(x) = 3x - 1,则f(g(x))的值为() A. 6x+ 14 B. 6x - 4 C. 6x + 4 D. 6x - 145.若函数f(x) = x^2 + kx + 8与函数g(x) = 2x^2 - 3x - 4相等,则k的值为() A. -4 B. -2 C. 2 D. 46.若两个正整数x和y满足x + y = 7,x - y = 3,则x的值为() A. 5B. 4C. 3D. 27.已知函数f(x) = x^2 - 2x - 3,g(x) = x + 1,则f(g(2))的值为() A.6 B. 3 C. 0 D. -38.若函数f(x) = x^2 - 5x + 6与函数g(x) = x - 2相等,则x的值为()A. 6B. 4C. 2D. 19.若两个正整数x和y满足x^2 + y^2 = 34,x - y = 2,则x + y的值为() A. 8 B. 9 C. 10 D. 1110.设函数f(x) = 2x + 3,g(x) = x^2 - 2x + 1,则f(g(1))的值为() A.-1 B. 1 C. 3 D. 5第二部分:填空题(每小题5分,共计50分)1.函数f(x) = x^2 - 4x - 3的图像开口向上,顶点的坐标为()。
四川省德阳2024-2025学年高二上学期第一次月考数学试题含答案

德阳高2023级2024年秋季第一学月考试数学试题(答案在最后)考试范围:必修二第十章、选修第一册第一章;考试时间:120分钟;命题人:高二数学组注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一、单选题1.已知集合{}2,0,1,3A =-,{}0,2,3B =,则A B = ()A.{}2,1- B.{}2,1,2- C.{}0,3 D.{}2,0,1,2,3-【答案】C 【解析】【分析】运用交集性质即可得.【详解】由{}2,0,1,3A =-,{}0,2,3B =,则{}0,3A B ⋂=.故选:C.2.2(2i)4z =+-在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】将复数化为标准形式再根据复数的几何意义即可确定.【详解】2(2i)414i z =+-=-+,则z 在复平面内对应的点位于第二象限,故选:B.3.某实验中学共有职工150人,其中高级职称的职工15人,中级职称的职工45人,一般职员90人,现采用分层抽样抽取容量为30的样本,则抽取的高级职称、中级职称、一般职员的人数分别为()A.5、10、15B.3、9、18C.3、10、17D.5、9、16【答案】B 【解析】【分析】利用分层抽样的定义求出对应人数,得到答案.【详解】抽取的高级职称人数为15303150⨯=,中级职称人数为45309150⨯=,一般职员的人数为903018150⨯=,故抽取的高级职称、中级职称、一般职员的人数分别为3、9、18.故选:B4.已知一组数据:4,6,7,9,11,13,则这组数据的第50百分位数为()A .6B.7C.8D.9【答案】C 【解析】【分析】借助百分位数定义计算即可得.【详解】由60.53⨯=,故这组数据的中位数为7982+=.故选:C.5.从1,2,3,4,5中任取2个不同的数,取到的2个数之和为偶数的概率为()A.13B.23C.12D.25【答案】D 【解析】【分析】应用列举法求古典概型的概率即可.【详解】任取2个不同数可能有(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5),共10种情况,其中和为偶数的情况有(1,3)、(1,5)、(2,4)、(3,5),共4种情况,所以取到的2个数之和为偶数的概率为42105=.故选:D6.已知空间中非零向量a ,b ,且1a = ,2b = , 60a b =,,则2a b - 的值为()A.1B.C.2D.4【答案】C 【解析】【分析】根据向量的模长公式即可求解.【详解】因为2222222(2)4444cos a b a b a a b b a a b a b b -=-=-⋅+=- ,14412442=-⨯⨯⨯+=,所以22a b -= .故选:C7.已知空间向量()1,2,3m = ,空间向量n 满足//m n u r r 且7⋅=m n ,则n =()A.13,1,22⎛⎫ ⎪⎝⎭B.13,1,22⎛⎫--- ⎪⎝⎭C.31,1,22⎛⎫--- ⎪⎝⎭ D.31,1,22⎛⎫⎪⎝⎭【答案】A 【解析】【分析】由空间向量共线的坐标表示与数量积的坐标表示求解即可.【详解】∵()1,2,3m = ,且空间向量n满足//m n u r r ,∴可设(),2,3n m λλλλ==,又7⋅= m n ,∴1233147λλλλ⨯+⨯+⨯==,得12λ=.∴113,1,222n m ⎛⎫== ⎪⎝⎭,故A 正确.故选:A.8.已知四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的正方形,侧棱与底面垂直,若点C 到平面AB 1D 1的距离为5,则直线1B D 与平面11AB D 所成角的余弦值为()A.B.3710C.1010D.10【答案】A 【解析】【分析】先由等面积法求得1AA 的长,再以1A 为坐标原点,建立如图所示的空间直角坐标系1A xyz -,运用线面角的向量求解方法可得答案.【详解】如图,连接11A C 交11B D 于O 点,过点C 作CH AO ⊥于H ,则CH ⊥平面11AB D,则5CH =,设1AA a =,则AO CO AC ===,则根据三角形面积得1122AOC S AO CH AC ∆=⨯⨯=⨯,代入解得a =以1A 为坐标原点,建立如图所示的空间直角坐标系1A xyz -.则1111(2,0,0),(0,2,0),(0,2,2(2,0,A B D D AD AB =-=-,1(B D =- ,设平面11AB D 的法向量为(n x =,y ,)z ,则1100n AD n AB ⎧⋅=⎨⋅=⎩,即2020y x ⎧-=⎪⎨-=⎪⎩,令x =,得n =.11110cos ,10||||B D n B D n B D n ⋅〈〉==,所以直线1B D 与平面1111D C B A故选:A.二、多选题9.设,A B 是两个概率大于0的随机事件,则下列结论正确的是()A.若A 和B 互斥,则A 和B 一定相互独立B.若事件A B ⊆,则()()P A P B ≤C.若A 和B 相互独立,则A 和B 一定不互斥D.()()()P A B P A P B <+ 不一定成立【答案】BC 【解析】【分析】对于AC :根据互斥事件和独立事件分析判断即可;对于B :根据事件间关系分析判断即可;对于D :举反例说明即可.【详解】由题意可知:()()0,0P A P B >>,对于选项A :若A 和B 互斥,则()0P AB =,显然()()()P AB P A P B ≠,所以A 和B 一定不相互独立,故A 错误;对于选项B :若事件A B ⊆,则()()P A P B ≤,故B 正确;对于选项C :若A 和B 相互独立,则()()()0P AB P A P B =>,所以A 和B 一定不互斥,故C 正确;对于选项D :因为()()()()P A B P A P B P AB =+- ,若A 和B 互斥,则()0P AB =,则()()()P A B P A P B =+ ,故D 错误;故选:BC.10.如图,点,,,,A B C M N 是正方体的顶点或所在棱的中点,则下列各图中满足//MN 平面ABC 的是()A. B.C. D.【答案】ACD 【解析】【分析】结合题目条件,根据线面平行的判断定理,构造线线平行,证明线面平行.【详解】对A :如图:连接EF ,因为,M N 为正方体棱的中点,所以//MN EF ,又//EF AC ,所以//MN AC ,AC ⊂平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC .故A 正确;对B :如图:因为,,,,A B C M N 是正方体棱的中点,所以//MN GH ,//BC EF ,//GH EF ,所以//BC MN ,同理://AB DN ,//AM CD .所以,,,,A B C M N 5点共面,所以//MN 平面ABC 不成立.故B 错误;对C :如图:因为,B C 是正方体棱的中点,所以//BC EF ,//MN EF ,所以//BC MN .⊂BC 平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC .故C 正确;对D :如图:因为,.B C M 为正方体棱的中点,连接ME 交AC 于F ,连接BF ,则BF 为MNE 的中位线,所以//BF MN ,BF ⊂平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC .故D 正确.故选:ACD11.如图,在平行四边形ABCD 中,1AB =,2AD =,60A ∠=︒,沿对角线BD 将△ABD 折起到△PBD 的位置,使得平面PBD ⊥平面BCD ,连接PC ,下列说法正确的是()A.平面PCD ⊥平面PBDB.三棱锥P BCD -外接球的表面积为10πC.PD 与平面PBC 所成角的正弦值为34D.若点M 在线段PD 上(包含端点),则△BCM 面积的最小值为217【答案】ACD 【解析】【分析】结合线线垂直,线面垂直与面面垂直的相互转化关系检验A,根据外接球的球心位置即可结合三角形的边角关系求解半径,可判断B,结合空间直角坐标系及空间角及空间点到直线的距离公式检验CD .【详解】BCD △中,1CD =,2BC =,60A ∠=︒,所以3BD =,故222BD CD BC +=,所以BD CD ⊥,因为平面PBD ⊥平面BCD ,且平面PBD 平面BCD BD =,又BD CD ⊥,CD ⊂平面BCD 所以CD ⊥平面PBD ,CD ⊂平面PCD ,所以平面PCD ⊥平面BPD ,故A 正确;取BC 的中点为N ,PB 中点为Q ,过N 作12ON //PB,ON PB =,由平面PBD ⊥平面BCD ,且平面PBD 平面BCD BD =,又BD PB ⊥,PB ⊂平面PBD ,故PB ⊥平面BCD ,因此ON ⊥平面BCD ,由于BCD △为直角三角形,且N 为斜边中点,所以OB OC OD ==,又12ON //PB,ON PB =,所以QB ON ,BQ //ON =,因此OP OB =,因此O 为三棱锥P BCD -外接球的球心,且半径为2OB ==,故球的表面积为54π=5π4´,故B错误,以D为原点,联立如图所示的空间直角坐标系,则B 0,0),(0C ,1,0),P ,0,1),因为(0BP = ,0,1),(BC =,1,0),)01DP ,= ,设平面PBC 的法向量为(),,m x y z =,所以0000z m BP y m BC ⎧=⎧⋅=⎪⎪⇒⎨⎨+=⎪⋅=⎪⎩⎩,取x =)30m ,=所以cos ,4||||m DP m DP m DP⋅<>==,故PD 与平面PBC所成角的正弦值为4,故C 正确,因为M 在线段PD上,设M ,0,)a,则MB=,0,)a -,所以点M 到BC的距离d ==,当37a =时,d 取得最小值217,此时MBC ∆面积取得最小值12121277BC ⨯=,D 正确.故选:ACD.第Ⅱ卷(选择题)三、填空题12.如果从甲口袋中摸出一个红球的概率是14,从乙口袋中摸出一个红球的概率是13,现分别从甲乙口袋中各摸出1个球,则2个球都是红球的概率是________.【答案】112【解析】【分析】根据相互独立事件概率乘法公式求解.【详解】从甲口袋中摸出一个红球的概率是14,从乙口袋中摸出一个红球的概率是13,现分别从甲乙口袋中各摸出1个球,则2个球都是红球的概率1114312P =⨯=.故答案为:112.13.已知正方体1111ABCD A B C D -的棱长为2,点E 是11A B 的中点,则点A 到直线BE 的距离是__________.【答案】5【解析】【分析】以D 为原点,以1,,DA DC DD的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,利用点到直线的向量公式可得.【详解】以D 为原点,以1,,DA DC DD的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.则()()()2,0,0,2,2,0,2,1,2A B E ,所以()()0,2,0,0,1,2BA BE =-=-,记与BE同向的单位向量为u ,则5250,,55u ⎛=-⎝⎭,所以,点A 到直线BE 的距离455d ===.故答案为:514.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AB ==,点,E F 分别为,CD CP 的中点,点T 为PAB 内的一个动点(包括边界),若CT ∥平面AEF ,则点T 的轨迹的长度为__________.【答案】53153【解析】【分析】记AB 的中点为G ,点T 的轨迹与PB 交于点H ,则平面//CHG 平面AEF ,建立空间直角坐标系,利用CH垂直于平面AEF ,的法向量确定点H 的位置,利用向量即可得解.【详解】由题知,,,AB AD AP 两两垂直,以A 为原点,,,AB AD AP 所在直线分别为,,x y z 轴建立空间直角坐标系,记AB 的中点为G ,连接CG ,因为ABCD 为正方形,E 为CD 中点,所以//AG CE ,且AG CE =,所以AGCE 为平行四边形,所以//CG AE ,又CG ⊄平面AEF ,AE ⊂平面AEF ,所以//CG 平面AEF ,记点T 的轨迹与PB 交于点H ,由题知//CH 平面AEF ,因为,CH CG 是平面CHG 内的相交直线,所以平面//CHG 平面AEF ,所以GH 即为点T 的轨迹,因为()()()()()()0,0,0,1,2,0,1,1,1,2,2,0,0,0,2,2,0,0A E F C P B ,所以()()()()2,0,2,2,2,2,1,2,0,1,1,1PB CP AE AF =-=--== ,设PH PB λ=,则()()()2,2,22,0,222,2,22CH CP PH CP PB λλλλ=+=+=--+-=--- ,设(),,n x y z =为平面AEF 的法向量,则200AE n x y AF n x y z ⎧⋅=+=⎪⎨⋅=++=⎪⎩ ,令1y =得()2,1,1n =- ,因为CH n ⊥ ,所以()2222220λλ---+-=,解得23λ=,则22,2,33CH ⎛⎫=-- ⎪⎝⎭ ,又()1,2,0GC AE == 所以()22121,2,0,2,,0,3333GH GC CH ⎛⎫⎛⎫=+=+--= ⎪ ⎪⎝⎭⎝⎭ ,所以12145,0,33993GH ⎛⎫==+= ⎪⎝⎭.故答案为:53【点睛】关键点睛:本题关键在于利用向量垂直确定点T 的轨迹与PB 的交点位置,然后利用向量运算求解即可.四、解答题15.《中华人民共和国民法典》于2021年1月1日正式施行.某社区为了解居民对民法典的认识程度,随机抽取了一定数量的居民进行问卷测试(满分:100分),并根据测试成绩绘制了如图所示的频率分布直方图.(1)估计该组测试成绩的平均数和第57百分位数;(2)该社区在参加问卷且测试成绩位于区间[)80,90和[]90,100的居民中,采用分层随机抽样,确定了5人.若从这5人中随机抽取2人作为该社区民法典宣讲员,设事件A =“两人的测试成绩分别位于[)80,90和[]90,100”,求()P A .【答案】(1)平均数76.2;第57百分位数79;(2)()35P A =.【解析】【分析】(1)利用频率分布直方图计算平均数及百分位数;(2)根据分层抽样确定测试成绩分别位于[)80,90和[]90,100的人数,按照古典概型计算即可.【小问1详解】由频率分布直方图可知测试成绩的平均数450.04550.06650.2750.3850.24950.1676.2x =⨯+⨯+⨯+⨯+⨯+⨯=.测试成绩落在区间[)40,70的频率为()0.0040.0060.02100.3++⨯=,落在区间[)40,80的频率为()0.0040.0060.020.03100.6+++⨯=,所以设第57百分位数为a ,有()0.3700.030.57a +-⨯=,解得79a =;【小问2详解】由题知,测试分数位于区间[)80,90、[)90,100的人数之比为0.2430.162=,所以采用分层随机抽样确定的5人,在区间[)80,90中3人,用1A ,2A ,3A 表示,在区间[)90,100中2人,用1B ,2B 表示,从这5人中抽取2人的所有可能情况有:()12,A A ,()13,A A ,()11,A B ,()12,A B ,()23,A A ,()21,A B ,()22,A B ,()31A B ,()32,A B ,()12,B B ,共10种,其中“分别落在区间[)80,90和[)90,100”有6种,所以()35P A =.16.在直三棱柱ABC A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.(1)证明:B 1D ⊥平面ABD ;(2)证明:平面EGF ∥平面ABD .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)建立空间直角坐标系,利用向量法来证得1B D ⊥平面ABD .(2)利用向量法证得平面//EGF 平面ABD .【小问1详解】以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD .又BA ∩BD =B ,因此B 1D ⊥平面ABD .【小问2详解】由(1)知,E (0,0,3),G ,1,42a ⎛⎫ ⎪⎝⎭,F (0,1,4),则EG uuu r =,1,12a ⎛⎫ ⎪⎝⎭,EF =(0,1,1),1B D ·EG uuu r =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF .又EG ∩EF =E ,因此B 1D ⊥平面EGF .结合(1)可知平面EGF ∥平面ABD .17.已知甲射击的命中率为0.8,乙射击的命中率为0.9,甲乙两人的射击相互独立.(1)甲乙两人同时命中目标的概率;(2)甲乙两人中至少有1人命中目标的概率.【答案】(1)0.72(2)0.98【解析】【分析】(1)利用相互独立事件概率乘法公式即可求出答案.(2)利用对立事件概率计算公式和相互独立事件概率乘法公式即可求得答案.【小问1详解】因为甲射击的命中率为0.8,乙射击的命中率为0.9,甲乙两人的射击相互独立,设事件A 表示甲命中,事件B 表示乙命中,则()0.8P A =,()0.9P B =所以甲、乙两人同时命中目标的概率()()()0.80.90.72P AB P A P B ==⨯=,【小问2详解】甲乙两人中至少有1人命中目标的对立事件是甲、乙都没击中目标,甲、乙都没击中目标的概率()()()()()10.810.90.02P AB P A P B ==--=,所以甲乙两人中至少有1人命中目标的概率为:()()110.020.98P A B P AB =-=-= 18.如图,圆柱的轴截面ABCD 是正方形,点E 在底面圆周上,,AF DE F ⊥为垂足.(1)求证:AF DB ⊥.(2)当直线DE 与平面ABE 所成角的正切值为2时,①求平面EDC 与平面DCB 夹角的余弦值;②求点B 到平面CDE 的距离.【答案】(1)证明见解析(2)①41919;②25719【解析】【分析】(1)利用线面垂直得到AF ⊥平面BED ,进而证明AF DB ⊥即可.(2)①建立空间直角坐标系,利用二面角的向量求法处理即可.②利用点到平面的距离公式求解即可.【小问1详解】由题意可知DA ⊥底面,ABE BE ⊂平面ABE ,故BE DA ⊥,又,,,BE AE AE DE E AE DE ⊥⋂=⊂平面AED ,故BE ⊥平面AED ,由AF ⊂平面AED ,得AF BE ⊥,又,,,AF DE BE DE E BE DE ⊥⋂=⊂平面BED ,故AF ⊥平面BED ,由DB ⊂平面BED ,可得AF DB ⊥.【小问2详解】①由题意,以A 为原点,分别以AB ,AD 所在直线为y 轴、z 轴建立如图所示空间直角坐标系,并设AD 的长度为2,则(0,0,0),(0,2,0),(0,2,2),(0,0,2)A B C D ,因为DA ⊥平面ABE ,所以DEA ∠就是直线DE 与平面ABE 所成的角,所以tan 2DA DEA AE∠==,所以1AE =,所以31,,022E ⎛⎫ ⎪ ⎪⎝⎭由以上可得1(0,2,0),,,222DC DE ⎛⎫==- ⎪ ⎪⎝⎭ ,设平面EDC 的法向量为(,,)n x y z = ,则0,0,n DC n DE ⎧⋅=⎪⎨⋅=⎪⎩ 即20,3120,22y x y z =⎧+-=⎪⎩取4x =,得n = .又(1,0,0)m = 是平面BCD 的一个法向量,设平面EDC 与平面DCB 夹角的大小为θ,所以cos cos ,19m n m n m n θ⋅==== ,所以平面EDC 与平面DCB 夹角的余弦值为41919.②因为33,,022BE ⎛⎫=- ⎪ ⎪⎝⎭,所以点B 到平面CDE的距离19BE n d n ⋅== .19.图1是直角梯形ABCD ,AB CD ∥,90D Ð=°,四边形ABCE 是边长为4的菱形,并且60BCE ∠=︒,以BE 为折痕将BCE 折起,使点C 到达1C的位置,且1AC =,如图2.(1)求证:平面1BC E ⊥平面ABED ;(2)在棱1DC 上是否存在点P ,使得P 到平面1ABC 的距离为2155,若存在,则1DP PC 的值;(3)在(2)的前提下,求出直线EP 与平面1ABC 所成角的正弦值.【答案】(1)证明见详解(2)存在,11DP PC =(3)155【解析】【分析】(1)作出辅助线,得到AF ⊥BE ,1C F ⊥BE ,且123AF C F ==,由勾股定理逆定理求出AF ⊥1C F ,从而证明出线面垂直,面面垂直;(2)建立空间直角坐标系,求平面1ABC 的法向量,利用空间向量求解出点P 的坐标,(3)根据(2)可得31,322EP ⎛= ⎝uu r ,利用空间向量求线面夹角.【小问1详解】取BE 的中点F ,连接AF ,1C F,因为四边形ABCE 是边长为4的菱形,并且60BCE ∠=︒,所以1,ABE BEC 均为等边三角形,故AF ⊥BE ,1C F ⊥BE,且1AF C F ==,因为1AC =,所以22211AF C F AC +=,由勾股定理逆定理得:AF ⊥1C F ,又因为AF BE F ⋂=,,AF BE ⊂平面ABE ,所以1C F ⊥平面ABED ,因为1C F ⊂平面1BEC ,所以平面1BC E ⊥平面ABED ;【小问2详解】以F 为坐标原点,FA 所在直线为x 轴,FB 所在直线为y 轴,1FC 所在直线为z轴,建立空间直角坐标系,则()()()()()10,0,0,,0,2,0,0,0,,3,0,0,2,0F A B C D E --,设(),,P m n t ,1DP DC λ= ,[]0,1λ∈,即()(3,m n t λ+=,解得:,33,m n t λ==-=,故),33,P λ--,设平面1ABC 的法向量为(),,v x y z = ,则()(12,0,AB AC =-=-,则1200v AB y v AC ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令1x =,则1y z ==,故()v = ,其中1,33,C P λ=--则15C P v d v⋅=== ,解得:12λ=或32(舍去),所以否存在点P ,使得P 到平面1ABC 的距离为2155,此时11DP PC =.【小问3详解】由(2)可得:()3331,0,2,0,2222EP ⎛⎛=---= ⎝⎝ ,设直线EP 与平面1ABC 所成角为θ,则15sin cos ,5EP v EP v EP v θ⋅===⋅,所以直线EP 与平面1ABC 所成角的正弦值为5.。
重庆市第八中学2024-2025学年高二上学期第一次月考数学试题

重庆市第八中学2024-2025学年高二上学期第一次月考数学试题一、单选题1.复数z 满足()2i 34i z -=+(i 为虚数单位),则z 的值为( )A.1B C D .2.已知α,β是两个不同的平面,l ,m 是两条不同的直线,下列说法正确的是( ) A .若//αβ,l α⊂,m β⊂,则//l m B .若αβ⊥,l α⊂,则l β⊥ C .若l α⊥,αβ⊥,则//l βD .若l α∥,m α⊥,则l m ⊥3.“直线()680ax a y -++=与350x ay a -+-=平行”是“6a =”的( )条件 A .充分不必要 B .必要不充分 C .充分必要D .既不充分也不必要4.已知两个单位向量1e u r ,2e uu r 的夹角为120o ,则()()12212e e e e +⋅-=u r u u r u u r u r ( )A .32B .3C .52D .55.圆222460x y mx my ++++=关于直线30mx y ++=对称,则实数m =( ) A .1B .-3C .1或-3D .-1或36.直线:0l x 与圆22:(2)(1)2C x y ++-=交于A ,B 两点,则直线AC 与直线BC 的倾斜角之和为( ) A .120o B .145oC .165oD .210o7.已知4tan23θ=,π0,4θ⎛⎫∈ ⎪⎝⎭,若ππcos cos 44m ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭θθ,则实数m 的值为( ) A .13-B .12-C .13D .128.已知圆22:(2)(1)5C x y -++=及直线()():2180l m x m y m ++---=,下列说法正确的是( )A .圆C 被x 轴截得的弦长为2B .直线l 过定点()3,2C .直线l 被圆C 截得的弦长存在最大值,此时直线l 的方程为10x y +-=D .直线l 被圆C 截得的弦长存在最小值,此时直线l 的方程为50x y --=二、多选题9.在边长为2的正方形ABCD 中,,E F 分别为BC ,CD 的中点,则( )A .2AB AD EF -=u u u r u u u r u u u rB .4AE AF ⋅=u u u r u u u rC .()32AE AF AB AD +=+u u u r u u u r u u u r u u u rD .AE u u u r 在AD u u u r上的投影向量为12AE u u u r10.如图,直三棱柱111ABC A B C -所有棱长均为4,D ,E ,F ,G 分别在棱1111,,A B AC AB ,AC 上,(不与端点重合)且11A D A E BF CG ===,H ,P 分别为BC ,1A H 中点,则( )A .11//BC 平面PFGB .过D ,F ,G 三点的平面截三棱柱所得截面一定为等腰梯形C .M 在111A B C △内部(含边界),1π6A AM ∠=,则M 到棱11B C D .若M ,N 分别是平面11A ABB 和11A ACC 内的动点,则MNP △周长的最小值为3 11.已知圆221:1C x y +=和圆222:()(2)4C x m y m -+-=,0m ≥.点Q 是圆2C 上的动点,过点Q 作圆1C 的两条切线,切点分别为G ,H ,则下列说法正确的是( )A .当m ⎡∈⎢⎣⎭时,圆1C 和圆2C 没有公切线 B .当圆1C 和圆2C 有三条公切线时,其公切线的倾斜角的和为定值C .圆1C 与x 轴交于M ,N ,若圆2C 上存在点P ,使得π2MPN >∠,则m ∈⎝⎭D .圆1C 和2C 外离时,若存在点Q ,使四边形1QGC H 面积为m ∈⎝三、填空题12.将函数πcos 46y x ⎛⎫=- ⎪⎝⎭的图象向右平移π 02φφ⎛⎫<< ⎪⎝⎭个单位长度后,所得函数为奇函数,则 φ=.13.已知点()3,0P 在直线l 上,且点P 恰好是直线l 夹在两条直线1:220--=l x y 与2:30l x y ++=之间线段的一个三等分点,则直线l 的方程为.(写出一条即可)14.台风“摩羯”于2024年9月1日晚在菲律宾以东洋面上生成.据监测,“摩羯”台风中心位于某海滨城市O (如图)的东偏南1cos 7θθ⎛⎫= ⎪⎝⎭方向350km 的海面P 处,并以20km /h 的速度向西偏北60o 方向移动,台风侵袭的范围为圆形区域,当前半径为130km ,并以10km/h 的速度不断增大,小时后,该海滨城市开始受到台风侵袭.四、解答题15.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4a =,2π3C =,D 为AB 边上一点.(1)若D 为AB 的中点,且CD =c ;(2)若CD 平分ACB ∠,且ABC V 的面积为CD 的长.16.如图,在正三棱柱111ABC A B C -中,6CA =,E 为棱AC 的中点,P 为BC 边上靠近B 的三等分点,且11PB BC ⊥.(1)证明:1//CB 平面1EBA ;(2)求平面11ABB A 与平面1BEC 夹角的余弦值.17.圆心为C 的圆经过A 0,3 ,B 2,1 两点,且圆心C 在直线:320l x y -=上. (1)求圆C 的标准方程;(2)过点()1,2M 作圆C 的相互重直的两条弦DF ,EG ,求四边形DEFG 的面积的最大值与最小值.18.如图、三棱锥P ABC -中,PA ⊥平面ABC ,O 为AB 的中点,AC BC ⊥,1OC =,4PA =.(1)证明:面ACP ⊥面BCP ;(2)若点A 到面BCP 的距离为43,证明:OC AB ⊥;(3)求OP 与面PBC 所成角的正弦值的取值范围.19.在平面直角坐标系xOy 中,已知圆C :222120x y x +---=,1M ,2M 是圆C 上的动点,且12M M =12M M 的中点为M . (1)求点M 的轨迹方程;(2)设点A 是直线0l y -+=上的动点,AP ,AQ 是M 的轨迹的两条切线,P ,Q 为切点,求四边形APCQ 面积的最小值;(3)若垂直于y 轴的直线1l 过点C 且与M 的轨迹交于点D ,E ,点N 为直线3x =-上的动点,直线ND ,NE 与M 的轨迹的另一个交点分别为F ,(G FG 与DE 不重合),求证:直线FG 过定点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二第一学期月考数学试题
一.填空题(本大题满分36分)本大题共有12题,考生应在答题纸相对应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分。
1.lim3n2 . n2n1
2.等差数列an中,Sn40,a113,d2,则n_________.
3.2,x,y,z,18成等比数列,则y_________.
4.若数列an的前n项和Sn3,则数列an的通项公式是n
5.若向量a,b满足a1,b2,且a与b的夹角为,则a
3
6.在等差数列an中,a1a38,a23,则公差d
7.已知an是等比数
列,a22,a48,则a1a2a2a3a3a4anan1=___________.
8.等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则{an}的公比为 .
9.若不等式xax20对x(2,3)恒成立,则实数a的取值范围是
10.等差数列an中,公差d0,且2a3a72a110,数列bn是等比数列,且b7a7,22
则b6b811.设数列an满足a13a23a3…32n1ann*,nN,则数列an的通项公式3
为.
12.已知两个等差数列an、bn的前n项和分别为An和Bn,若
整数的正整数的个数是 .
错误!未找到引用源。
二. 选择题(本大题满分12分)本大题共有4题,每题有且只有一个准确答案,考生应在答案纸的相对应编号上填上代表相对应选项的字母,选对得3分,否则一律得零分。
13.设等比数列an的前n项和为Sn,若S510,S1050,则S20等于()
A. 90 B. 250 C. 210 D. 850 aAn7n45,则使n为bnBnn3 14.若函数f(x)ag(x)bh(x)2(a0,b0)在0,上有值5,其中g(x)、h(x)都是定义在R上的奇函数.则f(x)在,0上有()
A.最小值-5 B.值-5 C.最小值-1 D.值-3
15.设等差数列an的前n项和为Sn,若a111,a4a66,则当Sn取最小值时,n等于()
A.6 B.7 C.8 D.9
16.设等比数列an的公比为q,前n项和为Sn,若Sn1,Sn,Sn2成等差数列,则公比q为()
A.q2 B.q1 C.q2或q1 D.q2或q1
三.解答题(本大题满分52分)本大题共5题,解答下列各题必须在答题纸相对应编号的规定区域内写出必要的步骤 .
17.(本题满分8分)本题共有2个小题,第1小题3分,第2小题5分已知函数f(x)x2a
x(x0,常数aR).
(1)当a2时,解不等式f(x)f(x1)2x1;
(2)讨论函数f(x)的奇偶性,并说明理由.
18.(本题满分8分)本题共有2个小题,第1小题4分,第2小题4分
数列an满足a11,an1an11(n2) 2
(1)若bnan2,求证bn为等比数列;
(2)求an的通项公式.
19.(本题满分10分)本题共有3个小题,第1小题2分,第2小题3分,第3小题5分已知等比数列an中,a12,a416
(1)求数列an的通项公式;
(2)若a3,a5分别为等差数列bn的第3项和第5项,求数列bn的通项公式;
(3)将bn中的第2项,第4项,…,第2项按原来的顺序排成一个新数列cn,求此数列n
的前n项和Gn.
第2 / 3页
20. (本题满分12分)本题共有3个小题,第1小题3分,第2小题3分,第3小题6分国家助学贷款是由财政贴息的信用贷款(即无利息贷款),旨在协助高校家庭经济困难学生支付在校学习期间所需的学费、住宿费及生活费.某大学2013届毕业生小飞在本科期间申请了助学贷款,并打算在毕业后还清贷款.
小飞签约的单位提供的工资标准为第一年内每月1500元,第13个月开始,每月工资比前一个月增加5%直到4000元.小飞计划毕业后前12个月每个月还款额为500,第13个月开始,每月还款额比前一月多x 元.
(Ⅰ)用x和n表示小飞第n个月的还款额an;
(Ⅱ)若小飞在本科期间申请了24000元助学贷款,并于毕业后三年(第36个月)恰好还清贷款,求x的值;。