2020版《金考卷特快专递·第6期 数学理科》
2020届金太阳联考新高考原创冲刺模拟试卷(六)理科数学

2020届金太阳联考新高考原创冲刺模拟试卷(六)理科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一.选择题:(每题5分,共计60分)1.i 为虚数单位,则201611i i +⎛⎫= ⎪-⎝⎭( )A .i -B .1C .iD .-12.已知集合{|12}A x x =<<,关于x 的不等式22a a x --<的解集为B ,若A B A =,则实数a 的取值范围是( ) A .(-∞,-1] B .(-∞,-1) C .(-1,+∞)D .[-1,+∞)3.函数cos xx y e=的图像大致是( )A .B .C .D .4.在ABC ∆中,60,3,2BAC AB AC ∠=︒==,若D 为BC 的中点,E 为AD 中点,则BE AC ⋅=( )A .54-B .12-C .43D .43-5.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点P 在椭圆上,O 为坐标原点,若121||||2OP F F =,且212||||PF PF a =,则该椭圆的离心率为( )A .34B C .12D .26.在ABC ∆中三条边a ,b ,c 成等差数列,且1a =,3B π=,则ABC ∆的面积为()A B C D .347.设等差数列{}n a 的前n 项和为n S ,若28515a a a +=-,则9S 等于( ) A .18B .36C .45D .608.《孙子算经》中曾经记载,中国古代诸侯的等级从高到低分为:公、侯、伯、子、男,共有五级.若给有巨大贡献的2人进行封爵,则两人不被封同一等级的概率为() A .25B .15C .45D .359.正四棱锥P ABCD -底面ABCD 边长为2,E 为AD 的中点,则BD 与PE 所成角的余弦值为( )A B .13C D .410.将函数sin 2y x =的图象向右平移02πϕϕ⎛⎫<<⎪⎝⎭个单位长度得到()f x 的图象,若函数()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,且()f x 的最大负零点在区间5,126ππ⎛⎫-- ⎪⎝⎭上,则ϕ的取值范围是( ) A .(,]64ππB .(,]124ππC .,62ππ⎛⎫⎪⎝⎭ D .,122ππ⎛⎫⎪⎝⎭ 11.定义在R 上的偶函数()f x 满足(1)(1)f x f x -=+,且当[1,0]x ∈-时,2()f x x =,函数()g x 是定义在R 上的奇函数,当0x >时,()lg g x x =,则函数()()()h x f x g x =-的零点的的个数是( ) A .9B .10C .11D .1212.函数1()eaxf x x x-=-在()0,∞+上有两个零点,则实数a 的取值范围是 A .2,e ⎛⎫-∞ ⎪⎝⎭ B .20,e ⎛⎫ ⎪⎝⎭C .()1,eD .12,e e ⎛⎫⎪⎝⎭ 二.填空题(每题5分,共计20分)13.曲线()ln f x x x =在x e =(其中e 为自然对数的底数)处的切线方程为______. 14.已知0,2πα⎛⎫∈ ⎪⎝⎭,且222sin sin cos 3cos 0αααα-⋅-=,则sin 4sin 2cos 21πααα⎛⎫+ ⎪⎝⎭=++______. 15.已知不等式,若对任意且任意,该不等式恒成立,则实数的取值范围是 .16.已知球O 的表面上三点A 、B 、C 满足:12AB =,16BC =,20AC =,且球心到该截面的距离为球的半径的一半,则A 、C 两点的球面距离是______. 三.解答题17.(12分)已知正项等比数列{}n a 满足12a =,2432a a a =-,数列{}n b 满足212log n n b a =+.(1)求数列{}n a ,{}n b 的通项公式;(2)令n n n c a b =⋅,求数列{}n c 的前n 项和n S ; (3)若0λ>,且对所有的正整数n 都有222nnb k a λλ-+>成立,求k 的取值范围.18.(12分)已知在平面直角坐标系xOy 中,动点P 与两定点(2,0),(2,0)A B -连线的斜率之积为12-,记点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)若过点(1,0)-的直线l 与曲线C 交于,M N 两点,曲线C 上是否存在点E 使得四边形OMEN 为平行四边形?若存在,求直线l 的方程,若不存在,说明理由.19.(12分)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.(1)求图中a 的值;(2)根据已知条件完成下面22⨯列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X ,求X 的分布列与数学期望()E X .(参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++)20(12分)如图,BCD ∆与MCD ∆都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD,AB =(1)证明:直线//AB 平面MCD(2)求直线AM 与平面BCD 所成的角的大小; (3)求平面ACM 与平面BCD 所成的二面角的正弦值.21.(本小题满分12分)已知函数()()2ln 2f x x ax a x =-+-,R a ∈.(1)讨论函数()f x 的单调性; (2)当12a <-,时,若对于任意()()1212,1,x x x x ∈+∞<,都存在()012,x x x ∈,使得()()()21021f x f x f x x x '-=-,证明:1202x x x +<. 二选一,从22和23选一道作答22.(本小题满分10分)选修4-4:坐标系与参数方程 已知极坐标系的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同;曲线的方程是,直线的参数方程为(为参数,),设,直线与曲线交于两点. (1)当时,求的长度; (2)求的取值范围.23.(本小题满分10分)已知()2,()2,(,R )f x x a g x x b a b +=+=-∈. (Ⅰ)当2,1a b ==时,求不等式()()6f x g x +>的解集; (Ⅱ)若111a b+=,求证:()2()9f x g x +≥.参考答案1.B 2.A 3.D 4.A 5.D 6.B 7.C 8.C 9.D 10.B 11.C 12.B 13.2y x e =- 14.151617.(1)设等比数列{}n a 的公比为q ,则0q >,由2432a a a =-可得22222a a q a q =-,20a ≠,22q q ∴=-,即220q q --=,0q >,解得2q =,112n n n a a q -∴==...................................................2分 2212log 12log 221n n n b a n =+=+=+;.........4分(2)由(1)可得()212nn n n c a b n =⋅=+⋅,()123325272212n n S n ∴=⋅+⋅+⋅+++⋅,可得()()23123252212212n n n S n n +=⋅+⋅++-⋅++⋅,上式-下式,得()123132222222212n n n S n +-=⋅+⋅+⋅++⋅-+⋅()()()()1111181262126228212221212n n n n n n n n -++++-=+-+⋅=+⋅--+⋅=---⋅-,因此,()12122n n S n +=-⋅+;....................8分(3)212n n n b n a +=,()()1111123422321122222n n n n n n n n n n b b n n na a ++++++-+++-∴-=-==, n N *∈,120n ∴-<,即1111202n n n n n b b n a a +++--=<,则有11n nn nb b a a ++<. 所以,数列n n b a ⎧⎫⎨⎬⎩⎭是单调递减数列,...........................10分则数列n n b a ⎧⎫⎨⎬⎩⎭的最大项为1132b a =.由题意可知,关于λ的不等式23222k λλ-+>对任意的0λ>恒成立,122k λλ∴<+.由基本不等式可得1222λλ+≥=,当且仅当12λ=时,等号成立,则122λλ+在0λ>时的最小值为2,2k ∴<, 因此,实数k 的取值范围是(),2-∞...............................12分 18.解:(1)设(,)P x y ,有12PA PB k k ⋅=-, 得1222y y x x ⋅=-+-,..................................2分 整理得22142(2)x y x +=≠±,∴曲线C 的方程为22142x y +=(2)x ≠±;........................4分(2)假设存在符合条件的点()00,E x y ,由题意知直线l 的斜率不为零, 设直线l 的方程为()()11221,,,,x my M x y N x y =- 由22124x my x y =-⎧⎨+=⎩,得:()222230,0m y my +--=∆> 12222my y m ∴+=+.....................................6分则()12122422x x m y y m +=+-=-+ 由四边形OMEN 为平行四边形, 得OE OM ON =+2242,22m E m m -⎛⎫∴- ⎪++⎝⎭....................................................8分点E 坐标代入C 方程得:4220m m +=, 解得20m = (10)分∴此时(2,0)E ,但2x ≠±,所以不存在点E 使得四边形OMEN 为平行四边形...........................12分 19.解:(1)由频率分布直方图各小长方形面积总和为1, 可知(20.0200.0300.040)101a +++⨯=,解得0.005a =;.........................................................2分 (2)由频率分布直方图知,晋级成功的频率为0.200.050.25+=,所以晋级成功的人数为1000.2525⨯=(人),......................................3分 填表如下:假设“晋级成功”与性别无关, 根据上表数据代入公式可得22100(1641349) 2.613 2.0722*******K ⨯⨯-⨯=≈>⨯⨯⨯,................6分所以有超过85%的把握认为“晋级成功”与性别有关;...........................7分 (3)由频率分布直方图知晋级失败的频率为10.250.75-=, 将频率视为概率,则从本次考试的所有人员中,随机抽取1人进行约谈,这人晋级失败的概率为0.75, 所以X 可视为服从二项分布,即34,4X B ⎛⎫~ ⎪⎝⎭, 4431()44k kk P X k C -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭(0,1,2,3,4)k =,故0404311(0)44256P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 13143112(1)44256P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 22243154(2)44256P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 313431108(3)44256P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 4443181(4)44256P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭. 所以X 的分布列为:.........................................................................10分数学期望为()434E X =⨯=.或(1125410881()012343256256256256256E X =⨯+⨯+⨯+⨯+⨯=).....................12分20.(1)取CD 中点O,连接MO ,平面MCD ⊥平面BCD ,则MO ⊥平面BCDAB ⊥平面BCD ,所以MO //AB.......................................2分又⊂MO 面MCD ,⊄AB 面MCD,所以//AB 面MCD.................................4分(2)取CD 中点O ,连OB ,OM ,则OB CD ⊥,OM CD ⊥, 又平面MCD ⊥平面BCD ,则MO ⊥平面BCD .以O 为原点,直线OC 、BO 、OM 为x 轴,y 轴,z 轴,建立空间直角坐标系如图.OB OM ==则各点坐标分别为()0,0,0O ,()1,0,0C,(M,()0,B,(0,A ,(2)设直线AM 与平面BCD 所成的角为α.因(AM =,平面BCD 的法向量为()0,0,1n =,.......................6分则有3sin |cos ,|||||6AM n AM nAM n α⋅=〈〉===⋅45α=︒.............8分(2)(CM =-,(1,CA =-.设平面ACM 的法向量为()1,,n x y z=,由11n CM n CA ⎧⊥⎪⎨⊥⎪⎩得00x x ⎧-=⎪⎨-+=⎪⎩.解得x =,y z =,取()13,1,1n =,....10分又平面BCD 的法向量为()0,0,1n =,则111cos ,||||5nn n n n n⋅==设所求二面角为θ,则sin 5θ==.........................................................12分 21.【详解】(1)解:由题意得()()122f x ax a x -'=+- ()()211x ax x+-=-,0x >,...........1分①当0a ≤时,()0f x '>在()0,+∞上恒成立,()f x ∴在()0,+∞上单调递增;.........2分②当0a >时,令()0f x '>则10x a <<;令()0f x '<则1x a>, ()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减; ......................4分 (2)证明:当12a <-时,()()2121f x f x x x -- ()()2212111ln 2x a x x a x x x =-++--, ()()000122f x ax a x =-+-' ()2210211011ln 2x a x x ax x x x x ∴-+=--, ()1202x x f f x +⎛⎫- ⎪⎝'⎭' ()210210212a x x ax x x x ⎛⎫=-+-- ⎪+⎝⎭22121121ln x x x x x x =-+- ()2122121121ln x x x x x x x x ⎡⎤-=-⎢⎥-+⎣⎦21221111211ln 1x x x x x x x x ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥=-⎢⎥-+⎢⎥⎢⎥⎣⎦..........................6分 令21x t x =,()()21ln 1t g t t t -=-+,1t >,..............................8分 则()()()22101t g t t t '-=-<+,()()10g t g ∴<=,()12002x x f f x +⎛⎫∴-< '⎪⎝⎭',()1202x x f f x +⎛⎫∴< ⎪⎝'⎭',......................10分 设()()()122h x f x ax a x =-+'=-,1x >,则()212110h x a x=--'>-+=, ()()h x f x ∴='在()1,+∞上单调递增,1202x x x +∴<......................12分 22.试题解析:(1)曲线的方程为,其为圆心为,半径为的圆......................2分又当时,直线,所以圆心到到直线的距离为,所以..........................5分 (2)设为相应参数值,, 由,得,,,..8分................................10分23.(Ⅰ)当2,1a b ==时,不等式()(6f x g x +>)可化为:361x x ->⎧⎨≤-⎩,或4612x x +>⎧⎨-<<⎩,或362x x >⎧⎨≥⎩解得:...................................3分 2x <-或2x >,故不等式()(6f x g x +>)的解集为()(),22,-∞-⋃+∞...........5分 (Ⅱ)111a b+=,()()()()2224224f x g x x a x b x a x b ∴+=++-≥+--..7分()1144441459a b a b a b a b a b b a ⎛⎫=+=+=++=+++≥+= ⎪⎝⎭.............9分(当且仅当4a b b a =即2a b =即21,33a b ==时取等号)..........................................10分。
2020年全国100所名校最新高考模拟示范卷 理科数学(六)

必须经过点M,N(点M,N不考虑先后顺序)到达点P ,
则至少需走的步数为(B )
A. 5
B. 6
C. 7
D. 8
由图可知,从N到P只需1步,从M 到N至少需走2步,从A到M至少需 走3步,从A到N至少需走3步,所 以要使得从点A经过点M,N到点 P所走的步数最少,只需从点A先 到点M,再到点N,最后到点P, 这样走的步数为6.
设AOB ,半圆O的半径为r,扇形OCD的半径为r1,
依题意有
1r2
2
1 2
r12
1r2
2
5 2
1
,即
r
2
r2
r12
5 1 2
2
所以 r12 r22
3 2
5 62 4
5
5 1 2
, 得 r1 r
5 1 2
5. 函数f ( x) sin x ln x 的部分图象大致是( ) x
因为f ( x) sin x ln x 是奇函数, 排除D, x
A. {4, 2, 0,1}
B. {4, 2, 0}
C. {x | 4 ≤ x 1}
D. {x | 4 ≤ x 5}
P { x | x 2k, k ≥ 2, k Z} {4, 2, 0, 2, 4}, Q { x | ( x 2)2 9} { x | 5 x 1}, 所以P I Q {4, 2, 0}
得m 1, 2, 3,4,5,6
所以S的值依次为 S1 (6 1)1 5, S2 (5 2) 2 6, S3 (6 3) 3 9, S4 (9 4) 4 20, S5 (20 5) 5 75, S6 (75 6) 6 414
9.已知等差数列{an }的前n项和为Sn , 满足a3 3, Sn Sn2 2Sn1 2 (n ≥ 3), 则( B )
专题1.8 -2020冲刺高考用好卷之高三理数优质金卷快递(押题卷)(考试版).docx

绝密★启用前【4月优质错题重组卷】高三数学理科新课标版第二套一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U 是实数集R ,函数()2ln 4y x =-的定义域为M ,()1,3N =,则()U N C M ⋂=( )A .{|21}x x -≤<B .{|22}x x -≤≤C .{|2}x x <D .{|12}x x <≤ 2.设复数z 满足()11z i i +=-,则z = ( )A .2i --B .1i --C .2i -+D .1i -+3.某几何体的三视图如图所示,则该几何体的体积为 ( )A .22π+B .322π+C .2π+D .22π+ 4.已知命题p :0n N ∃∈,0303nn >,则p ⌝为 ( )A .n N ∀∈,33nn > B .0n N ∃∈,0303nn ≤ C .n N ∀∈,33nn ≤ D .0n N ∃∈,0303n n =5.《九章算术》卷第六《均输》中,提到如下问题:“今有竹九节,下三节容量四升,上四节容量三升.问中间..二节欲均容,各多少?”其中“欲均容”的意思是:使容量变化均匀,即每节的容量成等差数列.在这个问题中的中间..两节容量分别是( ) A .6766升、4133升 B .2升、3升 C .322升、3733升 D .6766升、3733升 6.将函数()()sin f x x ωϕ=+ (0,)2πωϕ><的图像向右平移6π个单位后,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图像,则函数()f x 的单调增区间为 ( )A .,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B .,,63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ C .,,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ D .2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦7.已知函数()f x 是[]2,26m m -- (m R ∈)上的偶函数,且()f x 在[]2,0m -上单调递减,则()f x 的解析式不可能为 ( ) A .()2f x x m =+ B .()xf x m =- C .()mf x x = D .()()log 1m f x x =+8.已知三棱锥P ABC -的四个顶点都在球O 的球面上,PA ⊥平面ABC ,ABC ∆是边长为2的等边三角形,若球O,则直线PC 与平面PAB 所成角的正切值为 ( ) A.11 B.11 C.10 D.109.在ABC ∆中,2AB =,3AC =,BC =若向量m 满足23m AB AC --=,则m 的最大值与最小值的和为 ( )A .7B .8C .9D .1010.过双曲线22221(0,0)x y a b a b-=>>的左焦点F 作一条渐近线的垂线,垂足为A ,与另外一条渐近线交于点B ,若2AB a =,则ba= ()A .2B .12C.12 D.1211.已知函数()()()()223xf x x m ae mm R =-+-∈的最小值为910,则正实数a = A .3 B .23e - C .23e D .3或23e - ( ) 12.已知函数()()22log (0){220x x f x x x x >=++≤,方程()0f x a -=有四个不同的根,记最大的根的所有取值为集合D ,若函数()()F x f x kx =- ()x D ∈有零点,则k 的取值范围是 ( )A .10,ln2e ⎛⎤ ⎥⎝⎦B .11,2ln2e ⎡⎤⎢⎥⎣⎦C .30,ln2e ⎛⎤ ⎥⎝⎦D .13,2ln2e ⎡⎤⎢⎥⎣⎦ 二、填空题:本题共4小题,每小题5分,共20分.13.设实数x ,y 满足{62 1x yy x x ≤≤-≥,则2z x y =-+的最小值为 .14.函数()2cos 2f x x x =- 0,2x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是__________. 15.设函数()()()1,0{,0x x x f x f x x -≥=--<,则满足()()12f x f x +-<的x 的取值范围是_____________.16.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(本小题满分10分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且cos cos 3A B Ca b a+=. (1)求角B 的大小; (2)若ABC ∆B 是钝角,求b 的最小值.18.(本小题满分12分)如图,四棱锥F ABCD -中,底面ABCD 为边长是2的方形,E ,G 分别是CD ,AF 的中点,4AF =,FAE BAE ∠=∠,且二面角F AE B --的大小为90︒.(1)求证:AE BG ⊥;(2)求二面角B AF E --的余弦值.19.(本小题满分12分)某工厂生产的10000件产品的质量评分服从正态分布()115,25N .现从中随机抽取了50件产品的评分情况,结果这50件产品的评分全部介于80分到140分之间.现将结果按如下方式分为6组,第一组[)80,90,第二组[)90,100,,第六组[]130,140,得到如下图所示的频率分布直方图.(1)试用样本估计该工厂产品评分的平均分(同一组中的数据用该区间的中间值作代表);(2)这50件产品中评分在120分(含120分)以上的产品中任意抽取3件,该3件在全部产品中评分为前13名的件数记为X ,求X 的分布列.附:若()2,X N μσ~,则()0.P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=,(33)0.9974P X μσμσ-<<+=.20.(本小题满分12分)设抛物线2:2(0)C y px p =>的焦点为F ,准线为l .已知以F 为圆心,半径为4的圆与l 交于A 、B 两点,E 是该圆与抛物线C 的一个交点,90EAB ∠=︒. (1)求p 的值;(2)已知点P 的纵坐标为1-且在C 上,Q 、R 是C 上异于点P 的另两点,且满足直线PQ 和直线PR 的斜率之和为1-,试问直线QR 是否经过一定点,若是,求出定点的坐标,否则,请说明理由.21.(本小题满分12分)已知函数()()22ln 12x f x x ax =+--. (1)若2a =,求证:()0f x ≤;(2)若存在00x >,当()00,x x ∈时,恒有()0f x >,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴,长度单位相同,建立极坐标系,直线l 的参数方程为0{x tcos y y tsin αα==+(t 为参数,α为I 的倾斜角),曲线E 的根坐标方程为4sin ρθ=,射线θβ=,+6πθβ=,6πθβ=-与曲线E 分别交于不同于极点的,,A B C 三点.(1)求证:OB OC OA +=; (2)当3πβ=时,直线l 过B ,C 两点,求0y 与α的值.23.【选修4-5:不等式选讲】(本小题满分10分)已知函数()1f x x =-.(1)解不等式()()246f x f x ++≥;(2)若a 、b R ∈,1a <,1b <,证明:()()1f ab f a b >-+.。
2020年高考全国名校联考冲刺金卷全国Ⅱ卷 数学(理)(三) Word版含答案

2020届百校联考高考百日冲刺金卷全国II 卷·理数(三)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
2.答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。
3.全部答案写在答题卡上,写在本试卷上无效。
4.本试卷满分150分,测试时间120分钟。
5.考试范围:高考全部内容。
第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M ={x ∈N|x ≤6},A ={-2,-1,0,1,2},B ={y|y =x 2,x ∈A},则M ðB = (A){2,5,6} (B){2,3,6} (C){2,3,5,6} (D){0,2,3,5,6} (2)已知i 是虚数单位,z(2-i)=5(1+i),则z = (A)1+3i (B)1-3i (C)-1+3i (D)-1-3i(3)在△ABC 中,AB =23,AC =4,D 为BC 上一点,且3BC BD =u u u r u u u r,AD =2,则BC 的长为 (A)42 (B)42 (C)4 (D)42 (4)在正多边形中,只有三种形状能用来铺满一个平面图形而中间没有空隙,分别是正三角形、正方形、正六边形,称之为“正多边形的镶嵌规律”。
已知如图所示的多边形镶嵌的图形T ,在T 内随机取一点,则此点取自正方形的概率是(A)23 43743+ 743+ (D)12 (5)某几何体的三视图如图所示,则该几何体的体积为(A)2433π+ (B)21233π+ (C)4433π+ (D)41233π+ (6)已知O 为坐标原点,双曲线C :22221(0,0)x y a b a b -=>>的右焦点为F ,点A ,B 分别在双曲线C 的两条渐近线上,AF ⊥x 轴,BO BA ⋅u u u r u u u r<0,四边形OAFB 为梯形,则双曲线C 离心率的取值范围是 (A)(1,233) (B)(233,+∞) (C)(1,23) (D)(23,+∞) (7)函数f(x)=(x 2-2|x|)e |x|的图象大致为(8)如图给出的是计算1111124640384040-+-⋅⋅⋅+-的值的程序框图,其中判断框内应填入的是(A)i ≤4034? (B)i ≤4036? (C)i ≤4038? (D)i ≤4042?(9)已知大于1的实数x ,y 满足log x 2x =log y 3y ,则下列结论正确的是(A)221111x y <++ (B)ln(x 2+1)<ln(y 2+1) (C)tanx<tany >(10)已知抛物线C :y 2=2px(p>0)的焦点到准线的距离为1,若抛物线C 上存在关于直线l :x -y -2=0对称的不同两点P 和Q ,则线段PQ 的中点坐标为 (A)(1,-1) (B)(2,0) (C)(12,-32) (D)(1,1) (11)已知三棱柱ABC -A 1B 1C 1,四边形A 1ACC 1与B 1BCC 1均为边长为2的正方形,M ,N 分别是C 1B 1,CC 1的中点,CA CB ⋅u u u r u u u r=0,则异面直线BM 与AN 所成角的余弦值为(A)15 (B)25 (C)45(D)5(12)设函数f(x)=asin ωx +bcos ωx(ω>0)在区间[6π,2π]上单调,且f(2π)=f(23π)=-f(6π),当x =12π时,f(x)取到最大值4,若将函数f(x)的图象上各点的横坐标伸长为原来的2倍得到函数g(x)的图象,则函数y =g(x)(A)4 (B)5 (C)6 (D)7第II 卷本卷包括必考题和选考题两部分。
金考卷—百校联盟—领航高考冲刺卷(理数答案)

平”的原则.
〃答案速查
镶2 静
4
鳞
辩
拱″
慧鳞
~ ~
酗ii!10
~|~~~|~
B|[
∩
\
D|B
B
A~{C~|[〕
】
■
■ [考查目标] 本题考查集合的并运算`简单指数不等式和一元二次
辩
11
辫
刁
·
′
●
[考查目标]
蕊
嚣霹撼嗡慧霉 ″
∏
/I∏+2 | 了
四
4
2
′
气
‖
勺
烂
本题考查三角恒等变换`三角函数的图象和性质’考
第
14垫[考查目标] 本题主要; α厕ˉl≠0,所以α″ˉα″ˉ|=1,又易知αl=1 ’故数列{α鹏}是首项和公
本题主要考 查双曲线的离心率,考查了分析
一
差都为l的等差数列,故α,="`s"=÷″(″+l) ’则b"= 2
模
问题和解决问题的能力。
(—]),警二(—])馏(←击) ,则数列|h鹏|的煎2022项和
考生的逻辑椎理能力以及运算求解能力,考查的核心素养是逻辑椎
面积,再利用几何概型的概率计算公式求解即可。
≤沪 [解析] 如图所示,设AB=α,连接CF,根据
题意可知乙CEF=90°’乙CFE=45°,EF=
\.~
÷』则cF=粤α;正八边形的面积为α2+4×
理`数学运算。 [解题思路] 分公比是否为l进行讨论,再利用等比数列的前门项 和公式及定义求解即可。 [解析] 设等比数列{α′』 }的公比为q’当q=1时,S"_2α| =nαl
司
∩■
』
|三
乙
γ 几
全国大联考2020届高三第六次联考理科数学试题 PDF

%&'()*+,$!"-.
,/01&
!#!"#$!$%%#&"'(!&%%)#
&#*+"#,-./"#012,3#4#
'#!"#56&"78&9&:;78#
2'345&657!&85(985$:(7(%:!;985<=>?@3AB(CD2A
EFG5HIJ>!
ห้องสมุดไป่ตู้
!!&"!#"""
#$!"!#$"%
更多资料请关注微信公众号:高中数学客栈 ''TO5&75%:!TO U V = W X Y Z'[ Z \ ] ^ _ ` a b!( !5&! 5 c d ,
5(9@-5,/edfgO!(&&'&'5c3,5(,/hiIJgO! !2"d,5&7(%:! !5!!Þßà-R!&R"
ÒÓ7!!!!!
!$!$%_7" '5Ô`"$+, D(,")(%>(Õ3M;$, Ö×(عÙ1M "* $,*+ 7!&%>(Ú6"($(+(, /nt1I((«t5Û1±7!!!!!
!(!/-"$+ D(M"($(+ 53_R7'(((*(8<08"+<08$) '<08+(a*)!(( -"$+ 1±5Üݲ7!!!!!
专题1.7-2020冲刺高考用好卷之高三理数优质金卷快递(押题卷)(考试版).docx
名师精准押题绝密★启用前【4月优质错题重组卷】高三数学理科新课标版第一套一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1A =-,2{|}B x x x ==,则AB = ( )A .{}1B .{}1-C .{}0,1D .{}1,0- 2.设复数z 满足12ii z+=,则z 的虚部为 ( ) A .-1 B .i - CD .13.一只蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点距离都大于2的区域内的概率为 ( )A.1 B .34 CD .144.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为 ( )A .100-B .100C .110-D .110 5.在()62x -展开式中,二项式系数的最大值为 a ,含5x 项的系数为b ,则ab=( ) A .53 B .53- C .35 D .35-6.已知某几何体的三视图如图所示,则该几何体的最大边长为 ( )ABCD.7.已知向量a ,b 满足1a =,(1,3b =-,且()a ab ⊥-,则a 与b 的夹角为( )A .30︒B .60︒C .120︒D .150︒8.执行下面的程序框图,如果输入1a =,1b =,则输出的S = ( )A .54B .33C .20D .7 9.已知直线:l y m =+与圆()22:36C x y +-=相交于A ,B 两点,若120ACB ∠=︒,则实数m 的值为 ( )A .3或3-B .3+或3- C .9或3- D .8或2-10.已知函数()31sin 31x x f x x x -=+++,若[]2,1x ∃∈-,使得()()20f x x f x k ++-<成立,则实数k 的取值范围是 ( ) A .()1,-+∞ B .()3,+∞ C .()0,+∞ D .(),1-∞- 11.在ABC ∆中,,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()3222113f x x bx a c ac x =+++-+有极值点,则sin 23B π⎛⎫- ⎪⎝⎭的最小值是 ( ) A .0B .CD .-112.已知函数()()()2ln ln f x ax x x x x =+--,有三个不同的零点,(其中123x x x <<),则2312123ln ln ln 111x x x x x x ⎛⎫⎛⎫⎛⎫---⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值为 ( ) A .1a - B .1a - C .-1 D .1 二、填空题:本题共4小题,每小题5分,共20分.13.已知变量x ,y 满足30{40 240x x y x y +≥-+≥+-≤,则3z x y =+的最大值为__________.14.若函数()sin 4f x m x π⎛⎫=+ ⎪⎝⎭x 在开区间70,6π⎛⎫⎪⎝⎭内,既有最大值又有最小值,则正实数m 的取值范围为 .15.已知点()1,0F c -,()2,0(0)F c c >是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 是这个椭圆上位于x 轴上方的点,点G 是12PF F ∆的外心,若存在实数λ,使得120GF GF GP λ++=,则当12PF F ∆的面积为8时,a 的最小值为________. 16.已知四面体ABCD 的所有棱长都为 ,O 是该四面体内一点,且点O 到平面ABC 、平面ACD 、平面ABD 、平面BCD 的距离分别为,x ,和y ,则 +的最小值是 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(本小题满分10分)已知数列{}n a 满足11a =,12n n a a λ+=+(λ为常数).(Ⅰ)试探究数列{}n a λ+是否为等比数列,并求n a ; (II )当1λ=时,求数列(){}n n a λ+的前n 项和n T .18.(本小题满分12分)如图,在矩形ABCD 中,4AB =,2AD =,E 是CD 的中点,以AE 为折痕将DAE ∆向上折起,D 变为'D ,且平面'D AE ⊥平面ABCE . (Ⅰ)求证:'AD EB ⊥;(Ⅱ)求二面角'A BD E --的大小.名师精准押题19.(本小题满分12分)第23届冬季奥运会于2020年2月9日至2月25日在韩国平昌举行,期间正值我市学校放寒假,寒假结束后,某校工会对全校教职工在冬季奥运会期间每天收看比赛转播的时间作了一次调查,得到如下频数分布表:(Ⅰ)若将每天收看比赛转播时间不低于3小时的教职工定义为“体育达人”,否则定义为“非体育达人”,请根据频数分布表补全22⨯列联表:男并判断能否有90%的把握认为该校教职工是否为“体育达人”与“性别”有关;(II)在全校“体育达人”中按性别分层抽样抽取6名,再从这6名“体育达人”中选取2名作冬奥会知识讲座.记其中女职工的人数为ξ,求的ξ分布列与数学期望.附表及公式:()()()()()22n ad bcKa b c d a c b d-=++++.20.(本小题满分12分)已知长度为AB的两个端点A、B分别在x轴和y轴上运动,动点P满足2BP PA=,设动点P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(II)过点()4,0且斜率不为零的直线l与曲线C交于两点M、N,在x轴上是否存在定点T,使得直线MT与NT的斜率之积为常数.若存在,求出定点T的坐标以及此常数;若不存在,请说明理由.21.(本小题满分12分)已知函数()2ln f x a x =+且()f x a x ≤.(Ⅰ)求实数a 的值; (II )令()()xf x g x x a=-在(),a +∞上的最小值为m ,求证:()67f m <<.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,直线l :2{2x ty t=+=-(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C :2sin ρθ=.(Ⅰ)求直线l 的极坐标方程及曲线C 的直角坐标方程; (II ) 记射线0,02πθαρα⎛⎫=≥<<⎪⎝⎭与直线l 和曲线C 的交点分别为点M 和点N (异于点O ),求ON OM的最大值.24.【选修4-5:不等式选讲】(本小题满分10分)已知函数()1f x x =-.(Ⅰ)解关于x 的不等式()21f x x ≥-;(II )若关于x 的不等式()21f x a x x <-++的解集非空,求实数a 的取值范围.。
2020年高考全国II卷理科数学试题(含解析)
2020年全国统一高考数学试卷(理科)(全国新课标Ⅱ)一、选择题1.已知集合{2,1,0,1,2,3}U =--,{1,0,1}A =-,{1,2}B =,则()U C A B ⋃=( ) A.{2,3}- B.{2,2,3}-C.{2,1,0,3}--D.{2,1,0,2,3}--【答案】A 【解析】∵{1,0,1,2}AB =-,∴ (){2,3}UC A B ⋃=-.2.若α为第四象限角,则( ) A.cos20α> B.cos20α<C.sin 20α>D.sin 20α<【答案】D 【解析】∵22()2k k k Z ππαπ-+<<∈,∴424()k k k Z ππαπ-+<<∈,∴2α是第三象限角或第四象限角,∴sin 20α<.3.在新冠肺炎疫情期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某日积压500份订单未配货,预计第二天新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A.10名 B.18名 C.24名 D.32名 【答案】B【解析】因为公司可以完成配货1200份订单,则至少需要志愿者为160050012001850+-=名.4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)( ) A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设每一层有n 环,由题可知从内到外每环之间构成等差数列,公差9d =,19a =,由等差数列性质知n S ,2n n S S -,32n n S S -成等差数列,且2322()()n n n n S S S S n d ---=,则29729n =,得9n =,则三层共有扇形面石板为3271272627934022n S S a ⨯==+⨯=块. 5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.【答案】B【解析】设圆心为(,)a a ,则半径为a ,圆过点(2,1),则222(2)(1)a a a -+-=,解得1a =或5a =,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是5d =. 6.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( )A.2B.3C.4D.5【答案】C【解析】取1m =,则11n n a a a +=,又12a =,所以12n na a +=,所以{}n a 是首项为2,公比为2的等比数列,则2nn a =,所以11011115512102(12)222212k k k k k k a a a ++++++-+++==-=--,得4k =.7.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H【答案】A【解析】该几何体是两个长方体拼接而成,如图所示,显然选A.8.设O 为坐标原点,直线x a =与双曲线2222:1x yC a b-=(0,0)a b >>的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为( ) A.4 B.8 C.16 D.32 【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==号成立,所以min 4c =,焦距min (2)8c =.9.设函数()ln |21|ln |21|f x x x =+--,则()f x ( )A. 是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】函数()ln |21|ln |21|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,则()f x 为奇函数,故排除A 、C ;当11(,)22x ∈-时,()ln(21)ln(12)f x x x =+--,根据函数单调性的性质可判断()f x 在11(,)22-上单调递增,故排除B ;当1(,)2x ∈-∞-时,212()ln(21)ln(12)lnln(1)2121x f x x x x x +=----==+--,根据复合函数单调性可判断()f x 在1(,)2-∞-上单调递减,故D 正确.10.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为( )B.32C.1【答案】C【解析】设ABC ∆的外接圆圆心为1O ,记1OO d =,圆1O 的半径为r ,球O 半径为R ,等边三角形ABC ∆的边长为a ,则2ABC S ∆==,可得3a =,于是r ==,由题知球O 的表面积为16π,则2R =,由222R r d =+易得1d =,即O 到平面ABC 的距离为1.11.若2233x y x y ---<-,则( ) A.ln(1)0y x -+> B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -<【答案】A【解析】2323x x y y---<-,设()23x x f x -=-,则()2ln 23ln30x xf x -'=+>,所以函数()f x 在R 上单调递增,因为()()f x f y <,所以x y <,则11y x -+>,ln(1)0y x -+>,选A.12.01-周期序列在通信技术中有着重要应用,若序列12......n a a a 满足{}10,1(1,2,...)a i ∈=,且存在正整数m ,使得(1,2,...)i m i a a i +==成立,则称其为01-周期序列,并称满足(1,2,...)i m i a a i +== 的最小正整数m 为这个序列的周期,对于周期为m的01-序列12......n a a a ,11()(1,2,...,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的01-序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A. 11010... B.11011... C. 10001... D.11001... 【答案】C【解析】对于A 选项:511111(1)(10000)555i i i C a a +===++++=∑,5211121(2)(01010)5555i i i C a a +===++++=>∑,不满足,排除;对于B 选项,5111131(1)(10011)5555i i i C a a +===++++=>∑,不满足,排除;对于C 选项,511111(1)(00001)555i i i C a a +===++++=∑,52111(2)(00000)055i i i C a a +===++++=∑,53111(3)(00000)055i i i C a a +===++++=∑,541111(4)(10000)555i i i C a a +===++++=∑,满足;对于D 选项,5111121(1)(10001)5555i i i C a a +===++++=>∑,不满足,排除;故选C 。
金考卷语文2022特快专递第6期答案
金考卷语文2022特快专递第6期答案1、下列词语中,加着重号字的注音不正确的一项是()[单选题] *A、爱而不见(xiàn)B、搔首踟蹰(zhī)(正确答案)C、静女其娈(luán)D、彤管有炜(wěi)2、1“静女其姝,俟我于城隅”一句表现了小伙子焦急万分的心情。
[判断题] *对(正确答案)错3、含情脉脉中的脉读作()[单选题] *māimǎimǒmò(正确答案)4、1《氓》中女子自诉长年累月起早贪黑、操持家务的语句是夙兴夜寐,靡有朝也。
[判断题] *对(正确答案)错5、1我国四大古典名著《水浒传》《三国演义》《西游记》《红楼梦》都是章回体的长篇小说。
[判断题] *对错(正确答案)6、下列词语中,加着重号字的注音不正确的一项是()[单选题] *A、马厩(jì)嶙峋(lín)(正确答案)B、惬意(qiè)珍馐(xiū)C、钳制(qián)敕造(chì)D、搭讪(shàn)粜卖(tiào)7、1《我的空中楼阁》是一篇托物言志、寄情于景的散文,作者是台湾作家李乐薇。
[判断题] *对错(正确答案)8、下列选项中加着重号字的读音和注释全部正确的一项是()[单选题] *A、匪我愆期(读音:yǎn)女也不爽(注释:过失,差错)B、将子无怒(读音:qiāng)以我贿迁(注释:贿赂)C、淇水汤汤(读音:tāng)体无咎言(注释:怪罪)D、渐车帷裳(读音:jiān)自我徂尔(注释:到,往)(正确答案)9、《雨中登泰山》作者写到天街上的“小店”典型特点是()[单选题] *新颖别致险峻狭窄(正确答案)古朴别致贫穷简陋10、1“都门帐饮无绪,留恋处,兰舟催发”的下一句是“执手相看泪眼,竟无语凝噎。
”[判断题] *对(正确答案)错11、下列选项中加着重号字注音正确的一项是()[单选题] *A、槁暴pù輮使之然róu舟楫jì舆马yúB、蛟龙jiāo跬步kuǐ骐骥jì爪牙zhǎo(正确答案)C、镂金lóu 弩马nǔ洞穴xué生非异也xìngD、跂而望qì锲而不舍qì二螯áo 参省乎己xǐng12、嵬的正确读音()[单选题] *wéi(正确答案)guǐwēiguí13、1《念奴娇赤壁怀古》是豪放派词人辛弃疾的代表作。
2020年全国统一高考数学试卷(理科)(I卷)【含详答】
2020年全国统一高考数学试卷(理科)(新课标I)一、选择题(本大题共12小题,共60.0分)1.若z=1+i,则−2z|=()A. 0B. 1C.D. 22.设集合A={−40},B={x|2x+a0},且A B={x|−2x1},则a=()A. −4B. −2C. 2D. 43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. B. C. D.4.已知A为抛物线C:=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A. 2B. 3C. 6D. 95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(i=1,2,,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是()A. y=a+bxB. y=a+C. y=a+D. y=a+b x6.函数f(x)=−的图像在点(1,f(1))处的切线方程为()A. y=−2x−1B. y=−2x+1C. y=2x−3D. y=2x+17.设函数f(x)=(x+)在[−,]的图像大致如下图,则f(x)的最小正周期为()A. B. C. D.8.(x+y2)(x+y)5的展开式中x3y3的系数为()xA. 5B. 10C. 15D. 209.已知(0,),且3cos2α−8cosα=5,则=()A. B. C. D.10.已知A,B,C为球O的球面上的三个点,为ABC的外接圆,若的面积为4,AB=BC=AC=,则球O的表面积为()A. 64B. 48C. 36D. 3211.已知M:+−2x−2y−2=0,直线l:2x+y+2=0,P为l上的动点,过点P作M的切线PA,PB,且切点为A,B,当|PM||AB|最小时,直线AB的方程为()A. 2x−y−1=0B. 2x+y−1=0C. 2x−y+1=0D. 2x+y+1=012.若2a+log2a=4b+2log4b,则()A. a>2bB. a<2bC. a>D. a<二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件则z=x+7y的最大值为__________.14.设,为单位向量,且||=1,则||=__________.15.已知F为双曲线的右焦点,A为C的右顶点,B为C:−=1(a>0,b>0)C上的点且BF垂直于x轴.若AB的斜率为3,则C的离心率为__________.16.如图,在三棱锥P−ABC的平面展开图中,AC=1,AB=AD=,AB AC,AB AD,CAE=,则FCB=__________.三、解答题(本大题共7小题,共82.0分)17.设{}是公比不为1的等比数列,为,的等差中项.(1)求{}的公比;(2)若=1,求数列{}的前n项和.18.如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.ABC是底面的内接正三角形,P为DO上一点,PO=DO.(1)证明:PA平面PBC;(2)求二面角B−PC−E的余弦值.19.甲、乙、丙三位同学进行羽毛球比赛,预定赛制如下:累计负两场者被淘汰;比赛前抽签决定首次比赛的两个人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.20.已知A,B分别为椭圆的左、右顶点,G为E的上顶点,E:+=1(a>1)=8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D,(1)求E的方程;(2)证明:直线CD过定点.21.已知函数f(x)=+−x.(1)当a=1时,讨论f(x)的单调性;(2)当x0时,,求a的取值范围.f(x)+122.[选修4−4:坐标系与参数方程]为参数).以坐标原点在直角坐标系xOy中,曲线的参数方程为(t为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为4−16+3=0.(1)当k=1时,是什么曲线?(2)当k=4时,求与的公共点的直角坐标.23.[选修4−4:坐标系与参数方程]已知函数f(x)=|3x+1|−2|x−1|.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.2020年全国统一高考数学试卷(理科)(新课标I)一、选择题(本大题共12小题,共60.0分)1.若z=1+i,则−2z|=()A. 0B. 1C.D. 2【答案】D【解析】【分析】本题考查了复数的四则运算与模长,属于基础题.【解答】解:由z=1+i得z2=2i,2z=2+2i,|z2−2z|=|2i−(2+2i)|=2.故答案选D.2.设集合A={−40},B={x|2x+a0},且A B={x|−2x1},则a=()A. −4B. −2C. 2D. 4【答案】B【解析】【分析】本题考查了集合的交集运算,属于基础题.【解答】},解:由已知可得A={x|−2⩽x⩽2},B={x|x⩽−a2又因为A∩B={x|−2⩽x⩽1},=1,从而a=−2,所以−a2故答案选B.3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. B. C. D.【答案】C【解析】【分析】本题考查了立体几何中的比例关系,属于基础题. 根据题意列出a,ℎ′,ℎ的关系式,化简即可得到答案. 【解析】 解:如图,设正四棱锥的高为h ,底面边长为a,侧面三角形底边上的高为ℎ′, 则由题意可得{ℎ2=12aℎ′ℎ2=(ℎ′)2−(a2)2,故(ℎ′)2−(a2)2=12aℎ′,化简可得4(ℎ′a )2−2(ℎ′a )−1=0,解得ℎ′a=√5+14.故答案选C .4. 已知A 为抛物线C:=2px(p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A. 2 B. 3 C. 6 D. 9 【答案】C 【解析】【分析】本题考查了抛物线的性质,属于基础题. 利用抛物线的性质建立等式,即可求得p 的值. 【解析】解:设点A 的坐标为(x,y),由点A 到y 轴的距离为9,可得x =9,由点A 到点C 的焦点的距离为12,可得x +p2=12 解得p =6. 故答案选C .5.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(i=1,2,,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是()A. y=a+bxB. y=a+C. y=a+D. y=a+b x 【答案】D【解析】【分析】本题考查函数模型的应用,属于基础题.连接各点,判断图象的大致走向,可判断函数为对数模型.【解析】解:用光滑的曲线把图中各点连接起来,由图象的走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为y=a+bln x.故答案选D.6.函数f(x)=−的图像在点(1,f(1))处的切线方程为()A. y=−2x−1B. y=−2x+1C. y=2x−3D. y=2x+1【答案】B【解析】【分析】本题考查了函数的切线方程,属于基础题.求出导函数与点(1,f(1))的切线斜率,由直线方程的点斜式可得切线方程,即可得解.【解析】解:先求函数的导函数f′(x)=4x3−6x2,则由函数的几何意义可知在点(1,f(1))的切线斜率为k=f′(1)=−2.又因为f(1)=−1,则切线方程为y−(−1)=−2(x−1),则y=−2x+1.故答案选B.7.设函数f(x)=(x+)在[−,]的图像大致如下图,则f(x)的最小正周期为()A. B. C. D.【答案】C【解析】【分析】本题考查了余弦函数的图象与性质,属于中档题.先利用f(−4π9)=0得到w=−3+9k4(k∈Z),由T<2π<2T,可得,由w=−3+9k4(k∈Z)可得k的值,w的值可得,即可求解.【解析】解:由图可知f(−4π9)=cos(−4π9w+π6)=0,所以−4π9w+π6=π2+kπ(k∈Z),化简可得w=−3+9k4(k∈Z),又因为T<2π<2T,即2π|w|<2π<4π|w|,所以,当且仅当k=−1时,所以w=32,所以最小正周期T=2π|w|=4π3.故答案选C.8.(x+y2x)(x+y)5的展开式中x3y3的系数为()A. 5B. 10C. 15D. 20【答案】C【解析】【分析】本题考查二项式定理,属基础题.【解答】解:(x+y)5的展开式通项为C5r x5−r y r,r=0,1,2,3,4,5,则(x+y2x )(x+y)5的展开式有xC5r x5−r y r,y2xC5r x5−r y r,取r=3和r=1时可得10x3y3,5x3y3,合并后系数为15,故答案为C.9.已知(0,),且3cos2α−8cosα=5,则=()A. B. C. D.【答案】A【解析】【分析】本题考查二倍角公式,同角三角函数的基本关系,属基础题.【解答】解:∵3cos2α−8cosα=5,∴3(2cos2α−1)−8cosα=5,即3cos2α−4cosα−4=0,(3cosα+2)(cosα−2)=0,即cosα=−23,又α∈(0,π),sinα>0,∴sinα=√1−cos2α=√53,故答案为A.10.已知A,B,C为球O的球面上的三个点,为ABC的外接圆,若的面积为4,AB=BC=AC=,则球O的表面积为()A. 64B. 48C. 36D. 32【答案】A【解析】【分析】本题考查球的结构与性质,球的表面积公式,属中档题.【解答】解:由圆O1的面积为4π=πr2,故圆O1的半径ρ=2,∵AB=BC=AC=OO1,则三角形ABX是正三角形,=2r=4,得AB=OO1=2√3,由正弦定理:ABsin60∘由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,故答案为A.11.已知M:+−2x−2y−2=0,直线l:2x+y+2=0,P为l上的动点,过点P作M的切线PA,PB,且切点为A,B,当|PM||AB|最小时,直线AB的方程为()A. 2x−y−1=0B. 2x+y−1=0C. 2x−y+1=0D. 2x+y+1=0【答案】D【解析】【分析】本题考查直线与圆的位置关系,点到直线距离公式,切线的性质,属较难题.【解答】解:圆M方程化为:(x−1)2+(y−1)2=4,圆心M(1,1),半径r=2,根据切线的性质及圆的对称性可知,则|PM|⋅|AB|=4S△PAM=2|PA|⋅|AM|,要使其值最小,只需|PA|最小,即|PM|最小,此时,=√5,|PA|=√|PM|2−|AM|2=1,∴|PM|=√5(x−1),联立l的方程解得P(−1,0),过点M且垂直于l的方程为y−1=12以P为圆心,|PA|为半径的圆的方程为(x+1)2+y2=1,即x2+y2+2x=0,结合圆M的方程两式相减可得直线AB的方程为2x+y+1=0,故答案为D.12.若2a+log2a=4b+2log4b,则()A. a>2bB. a<2bC. a>D. a<【答案】B【解析】【分析】本题考查指数及对数的运算性质,指数及对数函数的单调性,属中档题.【解答】解:根据指数及对数的运算性质,4b+2log4b=22b+log2b,∵log2(2b)=log2b+1>log2b,∴22b+log2(2b)>22b+log2b=2a+log2a,根据函数f(x)=2x+log2x是定义域上的增函数,由f(2b)>f(a),得a<2b,故答案为B.二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件则z=x+7y的最大值为__________.【答案】1【解析】【分析】本题考查利用线性规划求最值问题,属基础题.【解答】解:根据约束条件画出可行域为:由z=x+7y得y=−17x+17z,平移直线y=−17x,要使z最大,则y=−17x+17z在y轴上的截距最大,由图可知经过点A(1,0)时截距最大,此时z=1,故答案为1.14.设,为单位向量,且||=1,则||=__________.【答案】√3【解析】【分析】本题考查平面向量数量积与平面向量模之间的关系,属于中档题.【解答】解:|a⃗+b⃗ |2=a⃗2+b⃗ 2+2a⃗⋅b⃗ =2+2a⃗⋅b⃗ =1,a⃗⋅b⃗ =−12,|a⃗−b⃗ |2=a⃗2+b⃗ 2−2a⃗⋅b⃗ =2−2a⃗⋅b⃗ =3,∴|a⃗−b⃗ |=√3.故答案为√3.15.已知F为双曲线C:−=1(a>0,b>0)的右焦点,A为C的右顶点,B为C上的点且BF垂直于x轴.若AB的斜率为3,则C的离心率为__________.【答案】2【解析】【分析】本题考查双曲线的几何性质,属于中档题.分别求出A、B点坐标,再根据条件列方程即可求解.【解答】解:由题意可知,B在双曲线C的右支上,且在x轴上方,∵BF垂直于x轴,把x=c代入x2a2−y2b2=1,得y=b2a,∴B点坐标为(c,b2a),又A点坐标为(a,0),∴k AB=b2a−0c−a=3,化简得b2=3ac−3a2=c2−a2,即2a2−3ac+c2=0,解得c=2a或c=a(舍),故e=ca=2.故答案为2.16.如图,在三棱锥P−ABC的平面展开图中,AC=1,AB=AD=,AB AC,AB AD,CAE=,则FCB=__________.【答案】−14【解析】【分析】本题考查利用正余弦定理解三角形,属于中档题.【解答】解:由已知得BD=√2AB=√6,∵D、E、F重合于一点,∴AE=AD=√3,BF=BD=√6,∴△ACE中,由余弦定理得,∴CE=CF=1,∴在△BCF中,由余弦定理得.故答案为.三、解答题(本大题共7小题,共82.0分)17.设{}是公比不为1的等比数列,为,的等差中项.(1)求{}的公比;(2)若=1,求数列{}的前n项和.【答案】解:⑴设等比数列{a n}的公比为q(q≠1),由题意知:2a1=a2+a3,即2a1=a1q+a1q2,所以q2+q−2=0,解得q=−2.(2)若a1=1,则a n=(−2)n−1,所以数列{na n}的前n项和为T n=1+2×(−2)+3×(−2)2+⋯+n(−2)n−1,则−2T n=−2+2×(−2)2+3×(−2)3+⋯+n(−2)n,两式相减得3T n=1+(−2)+(−2)2+(−2)3+(−2)n−1−n(−2)n=1−(−2)n1−(−2)−n(−2)n=1−(3n+1)(−2)n3,所以T n=1−(3n+1)(−2)n9.【解析】本题考查等差数列、等比数列的综合应用,错位相减法的应用,属于中档题.(1)设出等比数列的公比,由等差中项的性质,列方程求解即可;(2)由题意写出数列{a n}的通项公式,从而可根据错位相减法求出数列{na n}的前n项和.18.如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.ABC是底面的内接正三角形,P为DO上一点,PO=DO.(1)证明:PA平面PBC;(2)求二面角B−PC−E的余弦值.【答案】(1)证明:不妨设⊙O的半径为1,则AO=OB=OC=1,AE=AD=2,AB=BC=CA=√3,DO=√DA2−OA2=√3,PO=√66DO=√22,PA=PB=PC=√PO2+AO2=√62,在△PAC中,PA2+PC2=AC2,故PA⊥PC,同理可得PA⊥PB,PB∩PC=P,PB,PC⊂平面PBC,∴PA⊥平面PBC.(2)解:以OE,OD所在直线分别为y,z轴,圆锥底面内垂直于OE的直线为x轴,建立如图所示的空间直角坐标系O−xyz,则有B (√32,12,0),C (−√32,12,0),P (0,0,√22),E (0,1,0), BC ⃗⃗⃗⃗⃗ =(−√3,0,0),CE ⃗⃗⃗⃗⃗ =(√32,12,0),CP⃗⃗⃗⃗⃗ =(√32,−12,√22), 设平面PBC 的法向量为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),则{BC ⃗⃗⃗⃗⃗ ⋅n ⃗ =0CP ⃗⃗⃗⃗⃗ ⋅n ⃗ =0,解得n 1⃗⃗⃗⃗ =(0,√2,1), 同理可得平面PCE 的法向量n 2⃗⃗⃗⃗ =(√2,−√6,−2√3), 由图形可知二面角B −PC −E 为锐角,则cosθ=|n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ ||=2√55, 故二面角B −PC −E 的余弦值为2√55.【解析】本题考查线面垂直的证明和二面角的求法,属于中档题; (1)求出各线段长度,用勾股定理找出垂直关系即可证明 (2)建立空间直角坐标系,求法向量即可求解.19. 甲、乙、丙三位同学进行羽毛球比赛,预定赛制如下:累计负两场者被淘汰;比赛前抽签决定首次比赛的两个人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为. (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.【答案】解:(1)甲连胜四场只能是前四场全胜,则P =(12)4=116.(2)设甲输掉一场比赛为事件A ,乙输掉一场比赛为事件B ,丙输掉一场比赛为事件C ,四场比赛能结束为事件N ,则P(N)=P(ABAB)+P(ACAC)+P(BABA)+P(BCBC)=116×4=14所以需要进行第五场比赛的概率为P =1−P(N)=1−14=34(3) 丙获胜的概率为:P =P (ABAB )+P(BABA)+P(ABACB)+P(BABCA)+P(ABCAB)+P(ABCBA) +P(BACAB)+P(BACBA)+P(ACABB)+P(ACBAB)+P(BCABA)+P(BCBAA) =(12)4×2+(12)5×10=716.【解析】本题考查概率的计算,属于中档题; 分类讨论求概率即可.20. 已知A ,B 分别为椭圆E:+=1(a >1)的左、右顶点,G 为E 的上顶点,=8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D , (1)求E 的方程;(2)证明:直线CD 过定点. 【答案】解:由题意A (−a,0),B (a,0),G (0,1),AG ⃗⃗⃗⃗⃗ =(a,1),GB ⃗⃗⃗⃗⃗ =(a,−1), AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =a 2−1=8⇒a 2=9⇒a =3, ∴椭圆E 的方程为x 29+y 2=1.(2)由(1)知A (−3,0),B (3,0),P (6,m ), 则直线PA 的方程为y =m 9(x +3),联立{y=m9(x+3)x29+y2=1⇒(9+m2)x2+6m2x+9m2−81=0,由韦达定理−3x C=9m2−819+m2⇒x C=−3m2+279+m2,代入直线PA的方程y=m9(x+3)得,y C=6m9+m2,即C(−3m2+279+m2,6m9+m2),直线PB的方程为y=m3(x−3),联立{y=m3(x−3)x29+y2=1⇒(1+m2)x2−6m2x+9m2−9=0,由韦达定理3x D=9m2−91+m2⇒x D=3m2−31+m2,代入直线PA的方程y=m3(x−3)得,y D=−2m 1+m2,即D(3m2−31+m2,−2m1+m2),∴直线CD的斜率k CD=6m9+m2−−2m1+m2−3m2+279+m2−3m2−31+m2=4m3(3−m2),∴直线CD的方程为y−−2m1+m2=4m3(3−m2)(x−3m2−31+m2),整理得y=4m3(3−m2)(x−32),∴直线CD过定点(32,0).【解析】本题考查直线于椭圆的位置关系,定点问题,属于较难题;(1)求出各点坐标,表示出向量;(2)求出C,D两点坐标,进而求出直线CD,即可证明.21.已知函数f(x)=+−x.(1)当a=1时,讨论f(x)的单调性;(2)当x0时,f(x)+1,求a的取值范围.【答案】解:(1)当a=1时,f(x)=e x+x2−x,f′(x)=e x+2x−1,记g(x)=f′(x),因为g′(x)=e x+2>0,所以g(x)=f′(x)=e x+2x−1在R上单调递增,又f′(0)=0,得当x>0时f′(x)>0,即f(x)=e x+x2−x在(0,+∞)上单调递增;当x<0时f′(x)<0,即f(x)=e x+x2−x在(−∞,0)上单调递减.所以f(x)=e x+x2−x在(−∞,0)上单调递减,在(0,+∞)上单调递增.(2)①当x=0时,a∈R;②当x>0时,f(x)≥12x3+1即a≥12x3+x+1−e xx2,令ℎ(x)=12x3+x+1−e xx2,ℎ′(x)=(2−x)(e x−12x2−x−1)x3记m(x)=e x−12x2−x−1,m′(x)=e x−x−1令q(x)=e x−x−1,因为x>0,所以q′(x)=e x−1>0,所以m′(x)=q(x)=e x−x−1在(0,+∞)上单调递增,即m′(x)=e x−x−1> m′(0)=0所以m(x)=e x−12x2−x−1在(0,+∞)上单调递增,即m(x)=e x−12x2−x−1>m(0)=0,故当x∈(0,2)时,ℎ′(x)>0,ℎ(x)=12x3+x+1−e xx2在(0,2)上单调递增;当x∈(2,+∞)时,ℎ′(x)<0,ℎ(x)=12x3+x+1−e xx2在(2,+∞)上单调递减;所以[ℎ(x)]max=ℎ(2)=7−e24,所以a≥7−e24,综上可知,实数a的取值范围是[7−e24,+∞).【解析】本题考查利用导数研究函数的单调性、导数与不等式等知识,考查运算求解、逻辑推理能力及分类讨论的数学思想,难度较大.22.[选修4−4:坐标系与参数方程]在直角坐标系xOy中,曲线的参数方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为4−16 +3=0.(1)当k =1时,是什么曲线? (2)当k =4时,求与的公共点的直角坐标.【答案】解:(1)当k =1时,曲线C 1的参数方程为{x =cost y =sint ,化为直角坐标方程为x 2+y 2=1,表示以原点为圆心,半径为1的圆.(2)k =4时,曲线C 1的参数方程为{x =cos 4t y =sin 4t,化为直角坐标方程为√x +√y =1, 曲线C 2化为直角坐标方程为4x −16y +3=0,联立{√x +√y =14x −16y +3=0,解得{x =14y =14, 所以曲线C 1与曲线C 2的公共点的直角坐标为(14,14).【解析】本题考查简单曲线的参数方程、极坐标方程,参数方程、极坐标方程与直角坐标方程的互化等知识,考查运算求解能力,难度一般.23. [选修4−4:坐标系与参数方程]已知函数f(x)=|3x +1|−2|x −1|.(1)画出y =f(x)的图像;(2)求不等式f(x)>f(x +1)的解集.【答案】解:(1)函数f(x)=|3x +1|−2|x −1|=,图像如图所示:(2)函数f(x+1)的图像即为将f(x)的图像向左平移一个单位所得,如图,联立y=−x−3和y=5x+4解得交点横坐标为x=−,原不等式的解集为.【解析】本题考查解绝对值不等式,考查了运算求解能力及数形结合的思想,难度一般.。