练_圆的综合练(苏科版)(原卷版)

合集下载

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a 2, a3, a4,则下列关系中正确的是()A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a42、△ABC是⊙O的内接三角形,⊙O的直径为10,∠ABC=45°,则AC的长是()A.5B.10C.5D.103、下列说法错误的是()A.有一个角是直角的菱形是正方形B.相等的圆周角所对的弧不一定相等C.垂直于半径的直线是圆的切线D.有一个锐角对应相等的两个直角三角形相似4、已知点P是半径为5 的⊙O内的一点,且OP=3,则过点P的所有⊙O的弦中,最短的弦长等于()A.4B.6C.8D.105、已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()A. B. C. D.6、如图,AB是⊙O的直径,O为圆心,C是⊙O上的点,D是上的点,若∠D=120°,则∠BOC的大小为()A.60°B.55°C.58°D.40°7、如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB.π+5C.D.8、已知扇形的圆心角为45°,半径长为10,则该扇形的弧长为()A. B. C.3π D.9、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为()A.6B.5C.4D.310、如图,PA、PB、CD与⊙O相切于点为A、B、E,若PA=7,则△PCD的周长为()A.7B.14C.10.5D.1011、如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF的长为()A.5B.6C.7D.812、如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()A.BD⊥ACB.AC 2=2AB•AEC.△ADE是等腰三角形D.BC=2AD13、将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cmB.2cmC.3cmD.4cm14、如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为4的“等边扇形”的面积为()A.8B.16C.2πD.4π15、如图,点在上,是的切线,为切点,的延长线交于点,,则的度数是()A.22.5°B.20°C.30°D.45°二、填空题(共10题,共计30分)16、过A,C,D三点的圆的圆心为E,过B,E两点的圆的圆心为D,如果∠A=60°,那么∠B为________.17、如图,AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D=________°.18、如图,和分别是的直径和弦,且,,交于点,若,则的长是________.19、如图,AB为⊙O直径,CD⊥AB,∠BDC=35°,则∠CAD=________=________cm2.20、将长为8cm的铁丝首尾相接围成半径为2cm的扇形,则S扇形21、圆锥的底面半径是1,母线长是4,则它的侧面展开图的圆心角是________ .22、已知ΔABC,AB=AC=8,∠BAC=120°,则ΔABC的外接圆面积为________。

第2章《对称图形--圆》单元自测卷(1)-2021-2022学年苏科版九年级数学上册培优训练(答案)

第2章《对称图形--圆》单元自测卷(1)-2021-2022学年苏科版九年级数学上册培优训练(答案)

第2章《对称图形--圆》单元自测卷(1)-苏科版九年级数学上册 培优训练一、选择题(本大题共有8小题,每小题3分,共24分)1、已知⊙O 的直径为10,点P 到点O 的距离大于8,那么点P 的位置( )A .一定在⊙O 的内部B .一定在⊙O 的外部C .一定在⊙O 的上D .不能确定2、下列说法:①三角形的外心到三角形三边的距离相等②若两个扇形的圆心角相等,则它们所对的弧长也相等③三点确定一个圆④平分弧的直径垂直于弦⑤等弧所对的圆周角相等⑥在同圆或等圆中,相等的弦所对的弧相等,其中正确的个数有( )A .0个B .1个C .2个D .3个3、已知正六边形的边长是2,则该正六边形的边心距是( )A .1B .3C .2D .324、圆锥的高是4cm ,其底面圆半径为3cm ,则它的侧面展开图的面积为( )A .212πcmB .224πcmC .215πcmD .230πcm5、如图,半圆的圆心为0,直径AB 的长为12,C 为半圆上一点,∠CAB =30°,AC 的长是( ) A .12π B .6π C .5π D .4π(5) (6) (7) (8)6、如图所示,AB 是O 的直径,PA 切O 于点A ,线段PO 交O 于点C ,连接BC ,若36P ∠=︒,则B ∠等于( )A .27︒B .32︒C .36︒D .54︒7、如图,在菱形ABCD 中,以AB 为直径画弧分别交BC 于点F ,交对角线AC 于点E ,若AB =4,F 为BC 的中点,则图中阴影部分的面积为( )A .2233π-B .23C .4333π-D .23π 8、如图,已知A 、B 两点的坐标分别为(2,0)-、(0,1),C 的圆心坐标为(0,1)-,原点(0,0)在C 上,E 是C 上的一动点,则ABE ∆面积的最小值为( )A .1B .522- C .312- D .25588- 二、填空题(本大题共有8小题,每小题3分,共24分)9、O 的圆心是原点()0,0O ,半径为5,点()3,A a 在O 上,如果点A 在第一象限内,那么a =______. 10、平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)11、如图,五边形ABCDE 为O 的内接正五边形,则CAD ∠= .(11) (12)12、如图所示,若用半径为6,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计), 则这个圆锥的底面半径是______.13、⊙O 的半径为2,弦BC =23,点A 是⊙O 上一点,且AB =AC ,直线AO 与BC 交于点D , 则AD 的长为_____.14、在如图所示的网格中,每个小正方形的边长均为1cm ,则经过A 、B 、C 三点的弧长是 cm (结果保留π).(14) (15) (16)15、如图,⊙C 过原点,且与两坐标轴分别交于点A ,点B ,点A 的坐标为(0,3),M 是第三象限内弧OB上一点,∠BMO =120°,则⊙C 的半径为______.16、如图,直线a b ⊥,垂足为H ,点P 在直线b 上,4PH cm =,O 为直线b 上一动点,若以1cm 为半径的O 与直线a 相切,则OP 的长为 .三、解答题(本大题共有11小题,共102分.)17、(6分)如图,点P 是⊙O 的直径AB 延长线上的一点(PB <OB ),点E 是线段OP 的中点.(1)尺规作图:在直径AB 上方的圆上作一点C ,使得EC =EP ,连接EC ,PC (保留清晰作图痕迹,不要求写作法);并证明PC 是⊙O 的切线;(2)在(1)的条件下,若BP =4,EB =1,求PC 的长.18、(6分)已知:如图点O 是∠EPF 的角平分线上的一点,以点O 为圆心的圆和∠EPF 的两边交于点A 、B 、C 、D .求证:∠OBA=∠OCD19、(8分) 已知PA ,PB 分别切⊙O 于A ,B ,E 为劣弧AB 上一点,过E 点的切线交PA 于C ,交PB 于D .(1)若PA =6,求△PCD 的周长;(2)若∠P =50°,求∠DOC .20、(8分)如图ABC 内接于O ,60B ∠=,CD 是O 的直径,点P 是CD 延长线上一点,且AP AC =.()1求证:PA 是O 的切线;()2若5PD =,求O 的直径.21、(8分)如图,AB=AC ,CD ⊥AB 于点D ,点O 是∠BAC 的平分线上一点⊙O 与AB 相切于点M ,与CD相切于点N(1)求证:∠AOC=135°(2)若NC=3,BC=5DM 的长22、(10分)如图,AB 、CD 是⊙O 中两条互相垂直的弦,垂足为点E ,且AE =CE ,点F 是BC 的中点,延长FE 交AD 于点G ,已知AE =1,BE =3,OE =2.(1)求证:△AED ≌△CEB ;(2)求证:FG ⊥AD ;(3)若一条直线l 到圆心O 的距离d =5,试判断直线l 是否是圆O 的切线,并说明理由.23、(10分)如图,AB 为⊙O 的直径,C 是⊙O 上一点,过点C 的直线交AB 的延长线于点D ,AE ⊥DC ,垂足为E ,F 是AE 与⊙O 的交点,AC 平分∠BAE(1)求证:DE 是⊙O 的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.24、(8分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,60EAC D ∠=∠=︒. (1)求证:AE 是⊙O 的切线;(2)当4BC =时,求阴影部分的面积.25、(12分)如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A 、B 、C ,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格确定该圆弧所在圆的圆心D 点的位置,并写出D 点的坐标为 ;(2)连接AD 、CD ,⊙D 的半径为 ,∠ADC 的度数为 ;(3)若扇形DAC 是一个圆锥的侧面展开图,求该圆锥底面半径.26、(12分)如图,在△ABC 中,AB=AC ,点D 在BC 上,BD=DC ,过点D 作DE ⊥AC ,垂足为E ,⊙O 经过A ,B ,D 三点.(1)求证:AB 是⊙O 的直径;(2)判断DE 与⊙O 的位置关系,并加以证明;(3)若⊙O 的半径为3,∠BAC=60°,求DE 的长.27、(14分)Rt ABC 中,90ACB ∠=︒,2BC =,60B ∠=︒,点D 是AB 的中点,点P 是直线AC 上方平面内一点(不与A 、C 重合),且PD AD =,以P 为圆心,PA 为半径作P .(1)如图1,当P 经过点D 时,①PAD △为______ 三角形; ②求证:P 一定经过点C ; ③阴影部分的面积为______;(2)如图2,过点D 作直线l AB ⊥于点D ,且P 与直线l 相切,求AP 的长;(3)设P 与AB 的另一个交点为Q ,当1DQ =时,直接写出AP 的长.第2章《对称图形--圆》单元自测卷(1)-苏科版九年级数学上册 培优训练(解析)一、选择题(本大题共有8小题,每小题3分,共24分)1、已知⊙O 的直径为10,点P 到点O 的距离大于8,那么点P 的位置( )A .一定在⊙O 的内部B .一定在⊙O 的外部C .一定在⊙O 的上D .不能确定试题分析:O 的直径为10,半径为5,点P 到点O 的距离大于8,,r d <点P 一定在O 的外部,故选B .2、下列说法:①三角形的外心到三角形三边的距离相等②若两个扇形的圆心角相等,则它们所对的弧长也相等③三点确定一个圆④平分弧的直径垂直于弦⑤等弧所对的圆周角相等⑥在同圆或等圆中,相等的弦所对的弧相等,其中正确的个数有( )A .0个B .1个C .2个D .3个【分析】根据确定圆的条件,垂径定理,三角形外心的性质,圆周角定理,弦、圆心角、弧的关系判断即可.【答案】解:①三角形的外心到三角形三个顶点的距离相等;故不符合题意;②在同圆或等圆中,若两个扇形的圆心角相等,则它们所对的弧长也相等,故不符合题意; ③不在同一条直线上的三点确定一个圆,故不符合题意;④平分弧的直径垂直于这条弧所对的弦;故不符合题意;⑤等弧所对的圆周角相等,故符合题意;⑥在同圆或等圆中,相等的弦所对的优弧或劣弧相等,故不符合题意;故选:B .3、已知正六边形的边长是2,则该正六边形的边心距是( )A .1 BC .2 D【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出.【详解】如图,连接OA ,作OM ⊥AB .∵正六边形ABCDEF 的边长为2,∴∠AOM =30°,AM 12=AB 12=⨯2=1,∴正六边形的边心距是OM tan AM AOM ∠===故选B .4、圆锥的高是4cm ,其底面圆半径为3cm ,则它的侧面展开图的面积为( )A .212πcmB .224πcmC .215πcmD .230πcm 【答案】C【分析】利用勾股定理易得圆锥的母线长,圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解析】∵圆锥的高为4cm ,底面半径为3cm ,∴圆锥的母线长为:22435+=(cm ),∴圆锥的侧面展开图的面积为:π×3×5=15π(cm 2).故选:C .5、如图,半圆的圆心为0,直径AB 的长为12,C 为半圆上一点,∠CAB =30°,AC 的长是( )A .12πB .6πC .5πD .4π【分析】如图,连接OC ,利用等腰三角形的性质及内角和定理求得∠AOC 的度数,然后利用弧长公式进行解答即可.【详解】解:如图,连接OC ,∵OA =OC ,∠CAB =30°,∴∠C =∠CAB =30°,∴∠AOC =120°,∴弧AC 的长度l =12064180ππ⨯=. 故选:D .6、如图所示,AB 是O 的直径,PA 切O 于点A ,线段PO 交O 于点C ,连接BC ,若36P ∠=︒,则B ∠等于( )A .27︒B .32︒C .36︒D .54︒【分析】直接利用切线的性质得出90PAO ∠=︒,再利用三角形内角和定理得出54POA ∠=︒,结合圆周角定理得出答案.【详解】∵PA 切O 于点A ,∴90PAO ∠=︒, ∵36P ∠=︒, ∴903654POA ∠=︒-︒=︒,∴1272B POA ∠=∠=︒, 故答案为:A .7、如图,在菱形ABCD 中,以AB 为直径画弧分别交BC 于点F ,交对角线AC 于点E ,若AB =4,F 为BC 的中点,则图中阴影部分的面积为( )A .2233π-B .3C .4333π-D .23π【分析】取AB 的中点O ,连接AF ,OF ,先证明△ABC 是等边三角形,再把问题转化为S 阴=S 扇形OBF ,由此即可解决问题.【详解】解:如图,取AB 的中点O ,连接AF ,OF .∵AB 是直径,∴∠AFB =90°,∴AF ⊥BF ,∵CF =BF ,∴AC =AB ,∵四边形ABCD 是菱形,∴AB =BC =AC ,∴△ABC 是等边三角形,∴AE =EC ,易证△CEF ≌△BOF ,∴S 阴=S 扇形OBF =2602360π⋅⋅=23π, 故选D .8、如图,已知A 、B 两点的坐标分别为(2,0)-、(0,1),C 的圆心坐标为(0,1)-,原点(0,0)在C 上,E 是C 上的一动点,则ABE ∆面积的最小值为( )A .1B .52C .31D .2558- 解:如图,过点C 作CD AB ⊥,交C 于E ,此时ABE ∆面积的值最小(AB 是定值,只要圆上一点E 到直线AB 的距离最小,设直线AB 的解析式为(0)y kx b k =+≠,(2,0)A -,(0,1)B ,∴201k b b -+=⎧⎨=⎩,∴121k b ⎧=⎪⎨⎪=⎩,∴直线AB 的解析式为112y x =+①, 设直线CD 的解析式为y k x b ='+', CD AB ⊥,2k ∴'=-,(0,1)C -,1b ∴=-,∴直线CD 的解析式为21y x =--②,联立①②得,4(5D -,3)5,(0,1)C -,224345()(1)555CD ∴=++=, C 的半径为1,4515DE CD CE ∴=-=-, (2,0)A -,(0,1)B ,22215AB ∴=+=,455111522252ABE S AB DE ∆⎛⎫∴=⋅=-⨯=- ⎪ ⎪⎝⎭的最小值,故选:B .二、填空题(本大题共有8小题,每小题3分,共24分)9、O 的圆心是原点()0,0O ,半径为5,点()3,A a 在O 上,如果点A 在第一象限内,那么a =______.【分析】如图,可得OA=5,OB=3,运用勾股定理可以求得AB 的长,即为a 的值.【详解】解:如图由题意得:OA=5,OB=3,由勾股定理可得:2222534OA OB -=-=即a=410、平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)【答案】不能【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【解析】解:∵B (0,-3)、C (2,-3),∴BC ∥x 轴,而点A (1,-3)与C 、B 共线,∴点A 、B 、C 共线,∴三个点A (1,-3)、B (0,-3)、C (2,-3)不能确定一个圆.故答案为:不能.11、如图,五边形ABCDE 为O 的内接正五边形,则CAD ∠= .【解答】解:五边形ABCDE 是O 的内接正五边形,AB BC ∴=,(52)1801085B BAE -⨯︒∠=∠==︒, 36ACB BAC ∴∠=∠=︒, 同理36EAD ∠=︒,108363636CAD ∴∠=︒-︒-︒=︒,故答案为:36︒.12、如图所示,若用半径为6,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是______.【答案】2【分析】根据半径为6,圆心角为120°的扇形弧长,等于圆锥的底面周长,列方程求解即可.【解析】设圆锥的底面半径为r ,由题意得,12062180r ππ⨯=, 解得,r =2,故答案为:2.13、⊙O的半径为2,弦BC=23,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为_____.【分析】根据垂径定理,得AB=AC,AO⊥BC,由勾股定理得OD=1,分两种情况分别求出AD的值,即可【详解】如图所示:∵⊙O的半径为2,弦BC=23,点A是⊙O上一点,且AB=AC,∴=,∴AO⊥BC,∴BD=BC=3,在Rt△OBD中,∵BD2+OD2=OB2,即(3)2+OD2=22,解得OD=1,∴当如图1所示时,AD=OA﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为1或3.14、在如图所示的网格中,每个小正方形的边长均为1cm,则经过A、B、C三点的弧长是cm(结果保留π).【分析】先作图确定圆心,然后计算圆心角,最后,再依据弧长公式求解即可.【解析】连接BC、AB,作BC与AB的垂直平分线交于点O,点O即为A、B、C所在圆的圆心,则OA2=22+42=20,OA=25可知∠AOC=90°,∴过A、B、C三点的弧:故答案为 515、如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则⊙C的半径为______.【分析】根据圆内接四边形的对角互补求出∠A的度数,得到∠ABO的度数,根据直角三角形的性质求出AB的长,得到答案.【详解】解:∵点A的坐标为(0,3),∴OA=3,∵四边形ABMO是圆内接四边形,∴∠BMO+∠A=180°,又∠BMO=120°,∴∠A=60°,则∠ABO=30°,∴AB=2OA=6,则则⊙C的半径为3,故答案为:3.16、如图,直线a b=,O为直线b上一动点,若以1cm为半径PH cm⊥,垂足为H,点P在直线b上,4的O与直线a相切,则OP的长为.⊥,O为直线b上一动点,【解答】解:直线a b∴与直线a相切时,切点为H,O∴=,1OH cm当点O在点H的左侧,O与直线a相切时,如图1所示:=-=-=;413()OP PH OH cm当点O在点H的右侧,O与直线a相切时,如图2所示:=+=+=;415()OP PH OH cm∴与直线a相切,OP的长为3cm或5cm,O故答案为:3cm或5cm.三、解答题(本大题共有11小题,共102分.)17、(6分)如图,点P是⊙O的直径AB延长线上的一点(PB<OB),点E是线段OP的中点.(1)尺规作图:在直径AB上方的圆上作一点C,使得EC=EP,连接EC,PC(保留清晰作图痕迹,不要求写作法);并证明PC是⊙O的切线;(2)在(1)的条件下,若BP=4,EB=1,求PC的长.【分析】(1)利用尺规作图:以点E为圆心,EP长为半径画弧,在直径AB上方的圆上交一点C,再根据已知条件可得OE=EC=EP,根据三角形内角和可得∠ECO+∠ECP=90°,进而证明PC是⊙O的切线;(2)在(1)的条件下,根据BP=4,EB=1,可得EP的长,进而可得半径,再根据勾股定理即可求PC的长.【答案】解:(1)如图,点C即为所求;证明:连接OC,∵点E是线段OP的中点,∴OE=EP,∵EC=EP,∴OE=EC=EP,∴∠COE=∠ECO,∠ECP=∠P,∵∠COE+∠ECO+∠ECP+∠P=180°,∴∠ECO+∠ECP=90°,∴OC⊥PC,且OC是⊙O的半径,∴PC是⊙O的切线;(2)∵BP=4,EB=1,∴OE=EP=BP+EB=5,∴OP=2OE=10,∴OC=OB=OE+EB=6,在Rt△OCP中,根据勾股定理,得PC8.则PC的长为8.18、(6分)已知:如图点O是∠EPF的角平分线上的一点,以点O为圆心的圆和∠EPF的两边交于点A、B、C、D.求证:∠OBA=∠OCD【答案】见解析.【分析】过点O分别作OM⊥AB,ON⊥CD,则可知OM=ON,且OB=OC,则可证得△OMB≌△ONC,可得出∠OBA=∠OCD.证明:过点O分别作OM⊥AB,ON⊥CD,垂足分别为M、N∵∠EPO=∠FPO,∴OM=ON,在Rt△OMB和Rt△ONC中,OM=ON OB=OC⎧⎨⎩,∴Rt△OMB≌Rt△ONC(HL),∴∠OBA=∠OCD.19、(8分)已知PA,PB分别切⊙O于A,B,E为劣弧AB上一点,过E点的切线交PA于C,交PB于D.(1)若PA=6,求△PCD的周长;(2)若∠P=50°,求∠DOC.【答案】(1)△PCD的周长为12;(2)∠DOC=65°.【分析】(1) )连接OE,由切线长定理可得PA=PB=6,AC=CE,BD=DE.再由△PCD的周长=PC+PD+CD=PC+PD+CE+DE=PC+PD+AC+BD=PA+PB即可求得△PCD的周长;(2)根据已知条件易求∠AOB=130°;再证明Rt△AOC≌Rt△EOC,由全等三角形的性质可得∠AOC=∠COE.同理可求得∠DOE=∠BOD,由此可得∠DOC=12∠AOB=65°.(1)连接OE,∵PA,PB与⊙O相切,∴PA=PB=6.同理可得:AC=CE,BD=DE.∴△PCD的周长=PC+PD+CD=PC+PD+CE+DE=PC+PD+AC+BD=PA+PB=12.(2)∵PA,PB与⊙O相切,∴∠OAP=∠OBP=90°.又∵∠P=50°,∴∠AOB=360°-90°-90°-50°=130°.在Rt△AOC和Rt△EOC中,∴Rt△AOC≌Rt△EOC(HL).∴∠AOC=∠COE.同理:∠DOE=∠BOD,∴∠DOC=∠AOB=65°.20、(8分)如图ABC内接于O,60B∠=,CD是O的直径,点P是CD延长线上一点,且AP AC=.()1求证:PA是O的切线;()2若5PD=,求O的直径.【答案】(1)详见解析;(2)O 的直径为25.【分析】()1连接OA ,根据圆周角定理求出AOC ∠,再根据同圆的半径相等从而可得ACO OAC 30∠∠==,继而根据等腰三角形的性质可得出P 30∠=,继而由OAP AOC P ∠∠∠=-,可得出OA PA ⊥,从而得出结论;()2利用含30的直角三角形的性质求出OP 2OA =,可得出OP PD OD -=,再由PD 5=,可得出O 的直径. ()1连接OA ,如图,B 60∠=,AOC 2B 120∠∠∴==,又OA OC =,OAC OCA 30∠∠∴==, 又AP AC =,P ACP 30∠∠∴==, OAP AOC P 90∠∠∠∴=-=,OA PA ∴⊥,PA ∴是O 的切线.()2在RtOAP 中,P 30∠=,PO 2OA OD PD ∴==+, 又OA OD =,PD OA ∴=,PD 5=2OA 2PD 25∴==O ∴的直径为2521、(8分)如图,AB=AC ,CD ⊥AB 于点D ,点O 是∠BAC 的平分线上一点⊙O 与AB 相切于点M ,与CD相切于点N(1)求证:∠AOC=135°(2)若NC=3,BC=25,求DM的长【分析】(1)只要证明OC平分∠ACD,即可解决问题;(2)由切线长定理可知:AM=AE,DM=DN,CN=CE=3,设DM=DN=x,在Rt△BDC中,根据222=+,构建方程即可解决问题.BC BD CD【详解】(1)证明:连接OM,ON,过O点做OE⊥AC,交AC于E,如图所示,∵⊙O与AB相切于点M,与CD相切于点N, ∴OM⊥AB,ON⊥CD,∵OA平分∠BAC,OE⊥AC,OM⊥AB,∴OM=OE,即:E为⊙O的切点;∴OE=ON,又∵OE⊥AC,ON⊥CD∴OC平分∠ACD∵CD⊥AB∴∠ADC=90°∴∠DAC+∠ACD=90°∴∠OAC+∠OCA=45°∴∠AOC=180°-(∠OAC+∠OCA)=180°-45°=135°,即:∠AOC=135°(2)由(1)得,AM=AE,DM=DN,CN=CE=3,设DM=DN=x,∵AB=AC∴BD=AB-AD=AC-AE-DM=CE=DM=3-x∵CD=3+x在Rt∆BCD 中,由勾股定理得:222BC BD CD =+ 即:()()2222533x x =-++,解得:x=1或x=-1(舍去),即DM=1.22、(10分)如图,AB 、CD 是⊙O 中两条互相垂直的弦,垂足为点E ,且AE =CE ,点F 是BC 的中点,延长FE 交AD 于点G ,已知AE =1,BE =3,OE =2.(1)求证:△AED ≌△CEB ;(2)求证:FG ⊥AD ;(3)若一条直线l 到圆心O 的距离d =5,试判断直线l 是否是圆O 的切线,并说明理由.【分析】(1)由圆周角定理得∠A =∠C ,由ASA 得出△AED ≌△CEB ;(2)由直角三角形斜边上的中线性质得EF =12BC =BF ,由等腰三角形的性质得∠FEB =∠B ,由圆周角定理和对顶角相等证出∠A +∠AEG =90°,进而得出结论;(3)作OH ⊥AB 于H ,连接OB ,由垂径定理得出AH =BH =12AB =2,则EH =AH−AE =1,由勾股定理求出OH =1,OB 5l 到圆心O 的距离d 5⊙O 的半径,即可得出结论.【详解】(1)证明:由圆周角定理得:∠A =∠C ,在△AED 和△CEB 中,A C AE CE AED CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED ≌△CEB (ASA );(2)证明:∵AB ⊥CD ,∴∠AED =∠CEB =90°,∴∠C +∠B =90°,∵点F 是BC 的中点,∴EF =12BC =BF ,∴∠FEB =∠B , ∵∠A =∠C ,∠AEG =∠FEB =∠B ,∴∠A +∠AEG =∠C +∠B =90°,∴∠AGE =90°,∴FG ⊥AD ;(3)解:直线l 是圆O 的切线,理由如下:作OH ⊥AB 于H ,连接OB ,如图所示:∵AE =1,BE =3,∴AB =AE +BE =4,∵OH ⊥AB ,∴AH =BH =12AB =2,∴EH =AH ﹣AE =1, ∴OH =22OE EH -=22(2)1-=1,∴OB =22BH OH +=2221+=5,即⊙O 的半径为5,∵一条直线l 到圆心O 的距离d =5=⊙O 的半径,∴直线l 是圆O 的切线.23、(10分)如图,AB 为⊙O 的直径,C 是⊙O 上一点,过点C 的直线交AB 的延长线于点D ,AE ⊥DC ,垂足为E ,F 是AE 与⊙O 的交点,AC 平分∠BAE(1)求证:DE 是⊙O 的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【答案】(1)证明见解析;(2)阴影部分的面积为8833π. 【分析】(1)连接OC ,先证明∠OAC=∠OCA ,进而得到OC ∥AE ,于是得到OC ⊥CD ,进而证明DE 是⊙O 的切线;(2)分别求出△OCD 的面积和扇形OBC 的面积,利用S 阴影=S △COD ﹣S 扇形OBC 即可得到答案. 解:(1)连接OC , ∵OA=OC , ∴∠OAC=∠OCA ,∵AC 平分∠BAE , ∴∠OAC=∠CAE ,∴∠OCA=∠CAE , ∴OC ∥AE , ∴∠OCD=∠E ,∵AE ⊥DE , ∴∠E=90°, ∴∠OCD=90°, ∴OC ⊥CD ,∵点C 在圆O 上,OC 为圆O 的半径, ∴CD 是圆O 的切线;(2)在Rt △AED 中, ∵∠D=30°,AE=6, ∴AD=2AE=12,在Rt △OCD 中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC ,∴DB=OB=OC=AD=4,DO=8,∴CD=22228443-=-=DO OC∴S △OCD =43422⋅⨯=CD OC =83, ∵∠D=30°,∠OCD=90°,∴∠DOC=60°, ∴S 扇形OBC =16×π×OC 2=83π, ∵S 阴影=S △COD ﹣S 扇形OBC ∴S 阴影=83﹣83π, ∴阴影部分的面积为83﹣83π.24、(8分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,60EAC D ∠=∠=︒. (1)求证:AE 是⊙O 的切线;(2)当4BC =时,求阴影部分的面积.【答案】(1)见详解;(2)阴影部分的面积为1643 3π-.【分析】(1)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;(2)连接OC,作OF⊥AC,根据三角形中位线性质得出OF=2,根据圆周角定理得出∠AOC=120°,然后根据S阴影=S扇形-S△AOC即可求得.【解析】(1)∵∠ABC与∠D都是劣弧AC所对的圆周角,∠D=60°,∴∠ABC=∠D=60°;∵AB是⊙O的直径,∴∠ACB=90°.可得∠BAC=90°-∠ABC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,得OA⊥AE,又∵OA是⊙O的半径,∴AE是⊙O的切线;(2)连接OC,作OF⊥AC,∴OF垂直平分AC,∵OA=OB,4BC=,∴OF=12BC=2,∵∠D=60°,∴∠AOC=120°,∠ABC=60°,∴AC=3432AB =, ∴S 阴影=S 扇形-S △AOC =12041164324336023ππ⨯-⨯⨯=-. 25、(12分)如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A 、B 、C ,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格确定该圆弧所在圆的圆心D 点的位置,并写出D 点的坐标为 ;(2)连接AD 、CD ,⊙D 的半径为 ,∠ADC 的度数为 ;(3)若扇形DAC 是一个圆锥的侧面展开图,求该圆锥底面半径.【答案】(1)圆心D 点的位置见解析,(2,0);(2)25, 90°;(3)52. 【分析】(1)利用垂径定理可作AB 和BC 的垂直平分线,两线的交点即为D 点,可得出D 点坐标;(2)在△AOD 中AO 和OD 可由坐标得出,利用勾股定理可求得AD 和CD ,过C 作CE ⊥x 轴于点E ,则可证得△OAD ≌△EDC ,可得∠ADO =∠DCE ,可得∠ADO +∠CDE =90°,可得到∠ADC 的度数;(3)先求得扇形DAC 的面积,设圆锥底面半径为r ,利用圆锥侧面展开图的面积=πr •AD ,可求得r .【解析】(1)如图1,分别作AB 、BC 的垂直平分线,两线交于点D ,∴D 点的坐标为(2,0),故答案为:(2,0);(2)如图2,连接AD 、CD ,过点C 作CE ⊥x 轴于点E ,则OA =4,OD =2,在Rt △AOD 中,可求得AD =5即⊙D 的半径为5且CE =2,DE =4,∴AO =DE ,OD =CE ,在△AOD 和△DEC 中,AOD CED OD AO D CE E ∠∠=⎧⎪⎨⎪⎩== , ∴△AOD ≌△DEC (SAS ),∴∠OAD =∠CDE ,∴∠CDE +∠ADO =90°,∴∠ADC =90°, 故答案为590°;(3)弧AC 的长=90180π×55π, 设圆锥底面半径为r 则有2πr 5,解得:r 5, 5.26、(12分)如图,在△ABC 中,AB=AC ,点D 在BC 上,BD=DC ,过点D 作DE ⊥AC ,垂足为E ,⊙O 经过A ,B ,D 三点.(1)求证:AB 是⊙O 的直径;(2)判断DE 与⊙O 的位置关系,并加以证明;(3)若⊙O 的半径为3,∠BAC=60°,求DE 的长.【答案】(1)证明见解析;(2)DE 与⊙O 相切;(3)332 【分析】(1)连接AD ,根据等腰三角形三线合一性质得到AD ⊥BC ,再根据90°的圆周角所对的弦为直径即可证得AB 是⊙O 的直径;(2)DE 与圆O 相切,理由为:连接OD ,利用中位线定理得到OD ∥AC ,利用两直线平行内错角相等得到∠ODE 为直角,再由OD 为半径,即可得证;(3)由AB=AC ,且∠BAC=60°,得到DABC 为等边三角形,连接BF ,DE 为DCBF 中位线,求出BF 的长,即可确定出DE 的长.【解析】解:(1)证明:连接AD ,∵AB=AC ,BD=DC ,∴AD ⊥BC ,∴∠ADB=90°,∴AB 为⊙O 的直径; (2)DE 与⊙O 相切,理由为:连接OD ,∵O 、D 分别为AB 、BC 的中点,∴OD 为△ABC 的中位线,∴OD ∥BC , ∵DE ⊥BC ,∴DE ⊥OD ,∵OD 为⊙O 的半径,∴DE 与⊙O 相切;(3)解:连接BF ,∵AB=AC ,∠BAC=60°,∴△ABC 为等边三角形,∴AB=AC=BC=6,∵AB 为⊙O 的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE ∥BF ,∵D 为BC 中点,∴E 为CF 中点,DE=12BF ,在Rt △ABF 中,∠AFB=90°,AB=6,AF=3, ∴BF=22226333F AB A -=-=,则DE=12BF=332.27、(14分)Rt ABC 中,90ACB ∠=︒,2BC =,60B ∠=︒,点D 是AB 的中点,点P 是直线AC 上方平面内一点(不与A 、C 重合),且PD AD =,以P 为圆心,PA 为半径作P .(1)如图1,当P 经过点D 时,①PAD △为______ 三角形; ②求证:P 一定经过点C ; ③阴影部分的面积为______;(2)如图2,过点D 作直线l AB ⊥于点D ,且P 与直线l 相切,求AP 的长;(3)设P 与AB 的另一个交点为Q ,当1DQ =时,直接写出AP 的长.【答案】(1)①等边;②见解析;③2233S π=-阴影;(2)232AP =-;(3)2AP =或6 【分析】(1)①根据P 经过点D ,则有PA PD =,又PD AD =,即得出结论;②连接PC 、CD ,已得到CDB △为等边三角形,进而得出PCD 为等边三角形,即可得出结论;③由②可得阴影部分的面积扇形CPD 扇形CPD BCD PCD ABC S S S S S =+-=- ,即可得出答案;(2)设切点为N ,连接PN ,作PF AD ⊥于点F ,可得四边形 PFDN 是矩形,设PA r =,则2AF AD FD r =-=-,在Rt APF 和Rt PDN △中,利用勾股定理,列出方程,即可得出答案;(3)过点P 作PG AD ⊥,垂足为点G ,则AG =QG ,根据点Q 的位置可分为两种情况进行讨论即可.【详解】解:(1)①等边三角形 ∵P 经过点D ,∴PA ,PD 为P 的半径,即, ∵PD AD =,∴PA PD AD ==,∴PAD △是等边三角形;②如图,连接PC 、CDCD 为AB 边上中线,90ACB ∠=︒∴CD AD DB ==又60B ∠=︒∴CDB △为等边三角形∴60CDB ∠=︒又PAD △为等边三角形∴60PDA ∠=︒∴18060∠=︒-∠-∠=︒PDC CDB PDAPD AD =,CD AD =∴PD CD =∴PCD 为等边三角形∴PC PD =又PD 为P 半径∴PC 为P 半径即P 一定经过点C ; ③由②可知60,,CPD BCD PCD ∠=︒≌阴影部分的面积扇形CPD 扇形CPD BCD PCD ABC S S S S S =+-=- , 在Rt ABC 中,90ACB ∠=︒,2BC =,60B ∠=︒, ∴tan 602323AC BC ︒=⋅=⨯= ,∴2阴影160222232323603S ππ⋅⋅=⨯⨯-=- , (2)如图,设切点为N ,连接PN ,作PF AD ⊥于点F .P 与直线l 相切∴PN DN ⊥DN AD ⊥,PF AD ⊥∴四边形 PFDN 是矩形∴PN DF =,PF DN =设PA r =,则2AF AD FD r =-=- Rt APF 中,222PF PA AF =-()222r r =-- Rt PDN △中,222=-DN PD PN 222r =-∴()222222r r r --=- 解得232r =-或232r =--(舍去)即P 相切于l 时,232AP =- (3)如图,过点P 作PG AD ⊥,垂足为点G ,则AG =QG ,当点Q 在A ,D 之间时,∵1DQ =,AD =2,∴AG =QG =12 , 在Rt APG △ 和Rt PDG △ 中,222PG AP AG =- ,222PG DP DG =-,即222211()2(1)22AP -=-+,解得:2AP = 或2AP =-(舍去); 当点Q 在B ,D 之间时,有2PD AD ==,3AQ AD DQ =+= ,1322AG AQ == 12DG = , ∴222231()2()22AP -=-,解得:6AP =或6AP =-(舍去); 综上所述:AP 的长2AP 6AP =.。

部编版2020九年级数学上册 第二章 对称图形—圆章末单元测试题三 (新版)苏科版

部编版2020九年级数学上册 第二章 对称图形—圆章末单元测试题三 (新版)苏科版

第二章对称图形—圆1.如图,已知A、B、C三点在⊙O上,∠A=50°,则∠BOC的度数为B OCAA.50° B.25° C.75° D.100°2.如图,在∆ABC中, ∠C=90°,分别以A、B为圆心,2为半径画圆,则图中阴影部分的面积和为 ( )A BCA.3π B.2π C.π D.2π33.如图,已知⊙O是等腰Rt△ABC的外接圆,点D是上一点,BD交AC于点E,若BC=4,AD=,则AE的长是()A. 1 B. 1.2 C. 2 D. 34.如图,AB是⊙O的直径,AM和BN是它的两条切线,DC切⊙O 于E,交AM于D,交BN于C.若AD⋅BC=9,则直径AB的长为A.32 B. 6 C. 9 D.135.如图,在正方形纸板上剪下一个扇形和圆,刚好能围成一个圆锥模型,设围成的圆锥底面半径为r,母线长为R,则r与R之间的关系为()A.R=2r B.4R=9r C.R=3r D.R=4r6.如图,⊙O是△ABC的外接圆,连接OA、OC,⊙O的半径R=2,sinB=34,则弦AC的长为()A. 3 B.7 C.32D.347.图中,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD于点C,AB=2,半圆O的半径为2,则BC的长为()A. 2 B. 1 C. 1.5 D. 0.58.如图所示,从☉O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC,已知∠A=26°,则∠ACB的度数为()A . 32° B. 30° C. 26° D. 13°9.如图,在△ABC 中,AB=8 cm ,BC=4 cm ,∠ABC=30°,把△ABC 以点B 为中心按逆时针方向旋转,使点C 旋转到AB 边的延长线上的点C'处,那么AC 边扫过的图形(图中阴影部分)面积是( )A . 20π cm 2B . (20π+8) cm 2C . 16π cm 2D . (16π+8) cm 210.以下命题:①直径相等的圆是等圆; ②长度相等弧是等弧; ③相等的弦所对的弧也相等; ④圆的对称轴是直径;⑤相等的圆周角所对的弧相等;其中正确的个数是( )A . 4B . 3C . 2D . 111.一条弦AB 把圆的 直径分成3和11两 部分,弦 和 直径相交 成300角,则AB 的长为 . 12.如图,点A 、B 、C 在半径为1的⊙O 上,的长为π,则∠ACB 的大小是_____.13.如图,已知等腰△ABC ,AB =BC ,以AB 为直径的圆交AC 于点D ,过点D 的⊙O 的切线交BC 于点E ,若CD =5,CE =4,则⊙O 的半径是________.14.如图,四边形ABCD 内接于⊙O , E 为CD 的延长线上一点.若110B ∠=°,则ADE ∠的大小为____________.15.如图,AB为⊙O直径,BD切⊙O于B点,弦AC的延长线与BD交于D点,若AB=10,AC=8,则DC长为________.16.已知⊙O的周长为8 cm,若PO=2cm,则点P在_______;若PO=4cm,则点P在_____;若PO=6cm,则点P在_______.17.用一张半径为9cm、圆心角为的扇形纸片,做成一个圆锥形冰淇淋的侧面(不计接缝),那么这个圆锥形冰淇淋的底面半径是____cm.18.已知圆锥底面半径为5cm,高为12cm,则它的侧面展开图的面积是cm2.19.如图,⊙ O是△ ABC的外接圆,∠ AOB=70°,则∠ C为______度.20.如图是一个装有两个大小相同的球形礼品的包装盒,其中两个小球之间有个等腰三角形隔板,已知矩形长为45cm,宽为20cm,两圆与矩形的边以及等腰△ABC的腰都相切,则所需的三角形隔板的底边AB长为___________21.在平面直角坐标系中,将某点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这个点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”.(1)以O为圆心,半径为5的圆上有无数对“互换点”,请写出一对符合条件的“互换点”;(2)点M,N是一对“互换点”,点M的坐标为(m,n),且(m>n),⊙P经过点M,N.①点M的坐标为(4,0),求圆心P所在直线的表达式;②⊙P的半径为5,求m-n的取值范围.22.(1)如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.(2)如图,AB是的直径,PA与相切于点A,OP与相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.23.如图,已知△ABC,AC=3,BC=4,∠C=90°,以点C为圆心作⊙C,半径为r.(1) 当r取什么值时,点A、B在⊙C外.(2)当r在什么范围时,点A在⊙C内,点B在⊙C外.24.如何在操场上画一个半径为5m的圆,请说明你的理由?25.如图,在△ABC中,过点A作AD⊥BC,垂足为点D,以AD为半径的⊙A分别与边AC、AB交于点E和点F,DE∥AB,延长CA交⊙A于点G,连接BG.(1)求证:BG是⊙A的切线;(2)若∠ACB=30°,AD=3,求图中阴影部分的面积.26.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.27.如图,⊙O 是△ABC 的内切圆,切点分别为D 、E 、F , 60B ∠=︒, 70C ∠=︒.(1)求∠BOC 的度数;(2)求∠EDF 的度数.答案:1.D试题分析:根据圆周角定理求解即可.∵∠A=50°,∴∠BOC=2∠A=100°.故选D .考点:圆周角定理.2.C.试题分析:先根据直角三角形的性质求出直角三角形两锐角的和,再根据扇形的面积公式进行计算即可.∵△ABC 中,∠C=90°,∴∠A+∠B=90°,∵两圆的半径都为2cm,∴S阴影=2902=360ππ⨯⨯.故选C.3.A分析:利用圆周角性质和等腰三角形性质,确定AB为圆的直径,利用相似三角形的判定及性质,确定△ADE和△BCE边长之间的关系,利用相似比求出线段AE的长度即可.详解:∵等腰Rt△ABC,BC=4,∴AB为⊙O的直径,AC=4,AB=4,∴∠D=90°,在Rt△ABD中,AD=,AB=4,∴BD=,∵∠D=∠C,∠DAC=∠CBE,∴△ADE∽△BCE,∵AD:BC=:4=1:5,∴相似比为1:5,设AE=x,∴BE=5x,∴DE=-5x,∴CE=28-25x,∵AC=4,∴x+28-25x=4,解得:x=1.故选:A.点拨:题目考查了圆的基本性质、等腰直角三角形性质、相似三角形的判定及应用等知识点,题目考查知识点较多,是一道综合性试题,题目难易程度适中,适合课后训练.4.B试题解析:如图,连接OC .∵AM 和BN 是它的两条切线,∴AM ⊥AB ,BN ⊥AB ,∴AM ∥BN ,∴∠ADE+∠BCE=180°∵DC 切⊙O 于E ,∴∠ODE=12∠ADE ,∠OCE=12∠BCE , ∴∠ODE+∠OCE=90°,∴∠DOC=90°,∴∠AOD+∠COB=90°,∵∠AOD+∠ADO=90°,∴∠AOD=∠OCB ,∵∠OAD=∠OBC=90°,∴△AOD ∽△BCO ,∴=AD AO BO BC, ∴OA 2=AD•BC=9,∴OA=3,∴AB=2•OA=6.故选B .点拨:本题考查切线的性质、平行线的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,利用相似三角形性质解决问题,属于中考常考题型.5.D试题分析:求得侧面展开图的弧长,以及圆锥的底面周长,让它们相等即可求得r 与R 之间的关系. 解:由题意得:=2πr,解得:R=4r ,故选D .6.A 延长AO 交圆于点D ,连接CD ,由圆周角定理,得:∠ACD=90°,∠D=∠B∴sinD=sinB=34,Rt△ADC中,sinD=34,AD=2R=4,∴AC=AD•sinD=3.故选A.7.B试题分析:连接OD.AD是切线,点D是切点,∴BC⊥AD,∴∠ODA=∠ACB=90°,BC∥OD.∵AB=O B=2,则点B是AO的中点,∴BC=OD=1.故选B.8.A分析:连接OB,根据切线的性质和直角三角形的两锐角互余求得∠AOB=64°,再由等腰三角形的性质可得∠C=∠OBC,根据三角形外角的性质即可求得∠ACB的度数.详解:连接OB,∵AB与☉O相切于点B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故选A.9.A因为△ABC ≌△A′BC ,所以AC 边扫过的图形中阴影部分的面积是一个圆环的面积,即=20πcm²,故选A .10.D以下命题:①直径相等的圆是等圆,正确; ②长度相等弧是等弧,错误,只有在同圆或等圆中长度相等的弧是等弧;③相等的弦所对的弧也相等,错误;④圆的对称轴是直径,错误,应该是直径所在的直线;⑤相等的圆周角所对的弧相等,错误;所以正确的只有1个,故选D.11.56. 试题分析:如图,过点O 作OF ⊥AB 于点F ,设弦AB 与直径CD 相交于点E ,连接OB ,∵分直径成3和11两部分,∴CD=14,∴OC=12CD=7,∴OE=OC ﹣CE=4,∵∠OE F=30°,∴OF=12OE=2(cm ),∴BF=22OB OF =35,∴AB=2BF=56.故答案为:56.12.36°试题解析:连结OA 、OB .设∠AOB=n°.∵的长为2π,∴=2π,∴n=40,∴∠AOB=40°,∴∠ACB=∠AOB=20°..13.258如图所示:连接OD、BD,∵AB是⊙O的直径,∴∠ADB=90°,∴BD⊥AC,又∵AB=BC,∴AD=CD,又∵AO=OB,∴OD是△ABC的中位线,∴OD∥BC,∵DE是⊙O的切线,∴DE⊥OD,∴DE⊥BC,∵CD=5,CE=4,22543,∵S△BCD=BD•CD÷2=BC•DE÷2,∴5BD=3BC,∴BD=35 BC,∵BD2+CD2=BC2,∴(35BC )2+52=BC 2,解得BC=254,∵AB=BC,∴AB=254,∴⊙O 的半径是: 254÷2=258.故答案是: 258.14.110°解析:∵四边形ABCD 内接于圆O ,∠B=110°,∴∠ADC=180°−∠B=70°,∴∠ADE=180°−∠ADC=110°.故答案为:110°.15.412试题分析:解:连接BC ,∵AB 为⊙O 直径,∴∠ACB =90°,∴BC 22AB AC -22108-=6,∵BD 切⊙O 于点B ,∴∠DBA =90°,∴∠ABC +∠DBC =90°,∵∠A +∠ABC =90°,∴∠A =∠DBC ,又∠ACB =∠BCD =90°,∴△ACB ∽△BCD ,∴AC BC BC DC=, ∴DC =2BC AC =268=4.5. 故答案为4.5.点拨:此题主要考查了切线的性质、圆周角定理、相似三角形的判定与性质和勾股定理的综合应用,题目有一定的综合性,找出其中的相似三角形是解决此题的关键.16.⊙O 内,⊙O 上,⊙O 外试题分析:点到圆心的距离为d ,圆半径为r :当r d >时,点在圆外;当r d =时,点在圆上;当r d <时,点在圆内.由题意得⊙O 的半径cm r 428=÷=ππ若PO=2cm,则点P 在⊙O 内;若PO=4cm,则点P 在⊙O 上;若PO=6cm ,则点P 在⊙O 外.考点:点与圆的位置关系17.3分析:根据圆锥的底面周长等于侧面展开图的扇形弧长是6π,列出方程求解即可.详解:半径为9cm 、圆心角为120°的扇形弧长是:=6π,设圆锥的底面半径是r ,则2πr=6π,解得:r=3cm .这个圆锥形冰淇淋的底面半径是3cm .故答案为:3.点拨:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键. 18.65π试题分析:∵圆锥的底面半径、高和母线长组成直角三角形,且圆锥的高为12cm ,底面半径为5cm , ∴根据勾股定理,圆锥的母线长为:13cm 。

专题06 多边形与圆(原卷版)21-22年九年级数学上学期专题(苏科版)

专题06 多边形与圆(原卷版)21-22年九年级数学上学期专题(苏科版)
2021-2022学年苏科版数学九年级全册压轴题专题精选汇编
专题06多边形与圆
一.选择题
1.(2019秋•乐亭县期末)一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则∠AOB的度数是( )
A.83°B.84°C.85°D.94°
2.(2020•盈江县模拟)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1的值为( )(π≈3.14)
A.πB.2πC.3πD.4π
5.(2020•邯山区校级二模)如图,用n个全等的正五边形按如下方式拼接可以拼成一个环状,使相邻的两个正五边形有公共顶点,所夹的锐角为24°,图中所示的是前3个正五边形的拼接情况,拼接一圈后,中间会形成一个正多边形,则n的值为( )
A.5B.6C.8D.10
6.(2018•石家庄二模)老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是( )
(1)求∠AED的度数.
(2)如图2,过点B作BF∥DE交⊙O于点F,连接AF,AF=1,AE=4,求DE的长度.
23.(2012•南关区校级模拟)如图,已知正五边形ABCDE中,BF与CM相交于点P,CF=DM.
(1)求证:△BCF≌△CDM.
(2)求∠BPM的度数.
24.(2017•槐荫区一模)(1)如图1,在圆内接正六边形ABCDEF中,半径OC=4,求正六边形的边长.
18.(2020•宁波模拟)如图,正五边形ABCDE内接于半径为4的圆O,作OF⊥BC交⊙O于点F,连接FA,FB,则FA•FB的值为.

苏科版九年级数学上册第2章《对称图形—圆》 培优提升测评 【含答案】

苏科版九年级数学上册第2章《对称图形—圆》 培优提升测评 【含答案】

苏科版九年级数学上册第2章《对称图形—圆》培优提升测评一.选择题(共10小题,每小题3分,共计30分)1.如图,⊙O的半径为5,弦AB=8,点C是AB的中点,连接OC,则OC的长为()A.1B.2C.3D.42.如图,△ABC内接于⊙O,D是BC的中点,连接OD并延长交⊙O于点E,连接EC,若∠OEC=65°,则∠A的大小是()A.50°B.55°C.60°D.65°3.如图,点A的坐标为(﹣3,2),⊙A的半径为1,P为坐标轴上一动点,PQ切⊙A于点Q,在所有P点中,使得PQ长最小时,点P的坐标为()A.(0,2)B.(0,3)C.(﹣2,0)D.(﹣3,0)4.如图,点A,B,C,D均在⊙O上,直径AB=4,点C是的中点,点D关于AB对称的点为E,若∠DCE=100°,则弦CE的长是()A.2B.2C.D.15.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠ACE=20°,则∠BDE的度数为()A.90°B.100°C.110°D.120°6.如图,正方形ABCD的边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分的面积()A.4﹣πB.4πC.16﹣πD.8﹣π7.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD是⊙O的直径,若AD=3,则BC=()A.2B.3C.3D.48.如图,P A,PB是⊙O的切线,A,B是切点,若∠P=70°,则∠ABO=()A.30°B.35°C.45°D.55°9.如图,从一块直径是2的圆形铁片上剪出一个圆心角为90°的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是()A.B.C.D.110.如图,在⊙O中,点C在优弧上,将沿BC折叠后刚好经过AB的中点D,连接AC,CD.则下列结论中错误的是()①AC=CD;②AD=BD;③+=;④CD平分∠ACBA.1B.2C.3D.4二.填空题(共10小题,每小题3分,共计30分)11.如图,⊙O的直径AB和弦CD垂直相交于点E,CD=4,CF⊥AD于点F,交AB 于点G,且OG=1,则⊙O的半径长为.12.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为8cm,扇形的圆心角θ=90°,则圆锥的底面圆半径r为cm.13.如图,在拧开一个边长为a的正六角形螺帽时,扳手张开的开口b=20mm,则边长a =mm.14.如图,在平面直角坐标系中,⊙M与x轴相切于点A,与y轴分别交点为B,C,圆心M的坐标是(4,5),则弦BC的长度为.15.点O是△ABC的外心,若∠BOC=110°,则∠BAC为°.16.点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9cm,则⊙O 的半径是.17.如图,将△ABC绕点C顺时针旋转120°得到△A'B'C,已知AC=3,BC=2,则线段AB扫过的图形(阴影部分)的面积为.18.如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=1,∠A=45°,则的长度为.19.如图,AB是⊙O的直径,弦CD⊥AB于点E,且AE=CD=6,则⊙O的半径为.20.如图,在平面直角坐标系中,点A的坐标为(4,0),点B是第一象限内的一个动点并且使∠OBA=90°,点C(0,3),则BC的最小值为.三.解答题(共6小题,每小题10分,共计60分)21.已知,如图,点A,C,D在⊙O上,且满足∠C=45°.连接OD,AD,过点A作直线AB∥OD,交CD的延长线于点B.(1)求证:AB是⊙O的切线;(2)如果OD=CD=2,求AC边的长.22.如图,AC是⊙O的直径,OD与⊙O相交于点B,∠DAB=∠ACB.(1)求证:AD是⊙O的切线.(2)若∠ADB=30°,DB=2,求直径AC的长度.23.如图,已知AB是⊙O的直径,CD与⊙O相切于C,过点B作BE⊥DC,交DC延长线于点E.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.24.如图,△ABC内接于⊙O,∠ACB=60°,BD是⊙O的直径,点P是BD延长线上一点,且P A是⊙O的切线,A是切点.(1)求证:AP=AB;(2)若PD=,求阴影部分的面积.25.已知AB是⊙O的直径,CD为⊙O的弦,∠CAB=26°,连接BC.(1)如图1,若BD平分∠ABC,求∠ABC和∠ACD的大小;(2)如图2,若点D为弧AC的中点,过点D作⊙O的切线交BA的延长线于点P,求∠P的大小.26.已知,ABCD为菱形,点A,B,D在⊙O上.(Ⅰ)如图①,若CB,CD为⊙O的切线,求∠C的大小;(Ⅱ)如图②,BC,CD与⊙O分别交于点E,点F,连接BF,若∠BDC=50°,求∠CBF的度数.答案一.选择题(共10小题,每小题3分,共计30分)1.解:∵⊙O的半径为5,弦AB=8,点C是AB的中点,∴OC⊥AB,AC=BC=4,OA=5,∴OC===3,故选:C.2.解:∵∠OEC=65°,OE=OC,∴∠EOC=180°﹣2×65°=50°,∵D是BC的中点,∴OE⊥BC,∴,∴∠EOB=50°,∴∠BOC=100°,∴∠A=50°,故选:A.3.解:连接AQ、P A,如图,∵PQ切⊙A于点Q,∴AQ⊥PQ,∴∠AQP=90°,∴PQ==,当AP的长度最小时,PQ的长度最小,∵AP⊥x轴时,AP的长度最小,∴AP⊥x轴时,PQ的长度最小,∵A(﹣3,2),∴此时P点坐标为(﹣3,0).故选:D.4.解:连接AD、AE、OD、OC、OE,过点O作OH⊥CE于点H,∵∠DCE=100°,∴∠DAE=180°﹣∠DCE=80°,∵点D关于AB对称的点为E,∴∠BAD=∠BAE=40°,∴∠BOD=∠BOE=80°,∵点C是的中点,∴∠BOC=∠COD=40°,∴∠COE=∠BOC+∠BOE=120°,∵OE=OC,OH⊥CE,∴EH=CH,∠OEC=∠OCE=30°,∵直径AB=4,∴OE=OC=2,∴EH=CH=,∴CE=2.故选:A.5.解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠ACE=20°,∴∠ADE=∠ACE=20°,∴∠BDE=∠ADB+∠ADE=110°,故选:C.6.解:∵四边形ABCD为正方形,∴AB=BC=4,∴OB=2,∴S阴影=S△ABC﹣S扇形OBE=×4×4﹣=8﹣π.故选:D.7.解:过点O作OE⊥BC于点E,如图所示:∵∠BAC=120°,AB=AC,∴∠ABC=∠ACB=30°,又∵对应圆周角为∠ACB和∠ADB,∴∠ACB=∠ADB=30°,而BD为直径,∴∠BAD=90°,在Rt△BAD中,∠ADB=30°,AD=3,∴BD=2,∴OB=,又∵∠ABD=90°﹣∠ADB=90°﹣30°=60°,∠ABC=30°,∴∠OBE=30°,又∵OE⊥BC,∴△OBE为直角三角形,∴BE=,由垂径定理可得:BC=2BE=2×=3,故C正确,故选:C.8.解:连接OA,∵P A,PB是⊙O的切线,A,B是切点,∴∠PBO=∠P AO=90°,∵∠P=70°,∴∠BOA=360°﹣∠PBO﹣∠P AO﹣∠P=110°,∵OA=OB,∴∠ABO=∠BAO=(180°﹣∠BOA)=(180°﹣110°)=35°,故选:B.9.解:∵⊙O的直径为2,则半径是:1,∴S⊙O=π×12=π,连接BC、AO,根据题意知BC⊥AO,AO=BO=1,在Rt△ABO中,AB==,即扇形的对应半径R=,弧长l==,设圆锥底面圆半径为r,则有2πr=,解得:r=.故选:B.10.解:过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;∵点D是AB的中点,∴AD=BD,∵AC=CD',故②正确;∴=,由折叠得:=,∴+=;故③正确;延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:A.二.填空题(共10小题,每小题3分,共计30分)11.解:连接AC,BC,OC,∵⊙O的直径AB和弦CD垂直相交于点E,CD=4,∴CE=DE=2,=,∠ACB=90°,∴∠B+∠CAB=90°,∠CAB=∠DAB,∵CF⊥AD,∴∠GF A=90°,∴∠DAB+∠AGF=90°,∴∠B=∠AGF,∵∠CGB=∠AGF,∴∠B=∠CGB,∴BC=CG,∵AB⊥CD,∴GE=EB,设OE=x,∵OG=1,∴GE=BE=x+1,∴OC=OB=x+x+1=2x+1,在Rt△OCE中,由勾股定理得:OC2=CE2+OE2,即(2x+1)2=(2)2+x2,解得:x=1(x=﹣舍去),∴OC=2×1+1=3,即⊙O的半径长为3,故3.12.解:∵扇形的圆心角为90°,母线长为8cm,∴扇形的弧长为=4π,设圆锥的底面半径为rcm,则2πr=4π,解得:r=2,故答案为2.13.解:如图,连接OC、OD,过O作OH⊥CD于H.∵∠COD==60°,OC=OD,∴△COD是等边三角形,∴∠COH=90°﹣60°=30°,∵OH⊥CD,∴CH=DH=CD,OH=b=10(mm),∴CH=(mm),∴a=2CH=(mm),故.14.解:如图,连接BM、AM,作MH⊥BC于H,则BH=CH,∴BC=2BH,∵⊙M与x轴相切于点A,∴MA⊥OA,∵圆心M的坐标是(4,5),∴MA=5,MH=4,∴MB=MA=5,在Rt△MBH中,由勾股定理得:BH===3,∴BC=2×3=6,故6.15.解:①△ABC是锐角三角形,如图,∵∠BOC=110°,∴∠BAC=55°;②△A′BC是钝角三角形,如图,∵∠BAC+∠BA′C=180°,∴∠BA′C=125°.故55°或125.16.解:分为两种情况:①当点在圆内时,如图1,∵点到圆上的最小距离PB=4cm,最大距离P A=9cm,∴直径AB=4cm+9cm=13cm,∴半径r=6.5cm;②当点在圆外时,如图2,∵点到圆上的最小距离PB=4cm,最大距离P A=9cm,∴直径AB=9cm﹣4cm=5cm,∴半径r=2.5cm;故6.5cm或2.5cm.17.解:∵△ABC绕点C旋转120°得到△A′B′C,∴△ABC≌△A′B′C,∴S△ABC=S△A′B′C,∠BCB′=∠ACA′=120°.∵AB扫过的图形的面积=S扇形ACA′+S△ABC﹣S扇形BCB′﹣S△A′B′C,∴AB扫过的图形的面积=S扇形ACA′﹣S扇形BCB′,∴AB扫过的图形的面积=﹣=.故.18.解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=1,∵AC=BD=1,OC=OD=1,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=π,故.19.解:∵CD⊥AB,∴CE=DE=CD,∵AE=CD=6,∴CE=DE=3,∵OD=OB=OA,OE=AE﹣OA,在Rt△ODE中,由勾股定理可得:OD2=DE2+(AE﹣OA)2,即:OD2=32+(6﹣OD)2,解得:OD=,∴⊙O的半径为:,故.20.解:如图,以OA为直径作⊙D,连接CD,交⊙D于B,此时BC长最小,∵A(4,0),C(0,3),∴OC=3,OA=4,∴OD=DB=2,∴CD===,∴BC=CD﹣BD=﹣2,故﹣2.三.解答题(共6小题,每小题10分,共计60分)21.(1)证明:如图,连接OA,∵∠C=45°,∴∠DOA=90°,∴AO⊥OD,∵AB∥OD,∴OA⊥AB,OA是半径,∴AB是⊙O的切线;(2)如图,过点D作DE⊥AC于点E,∵∠C=45°,CD=2,∴CE=DE=CD=,∵∠AOD=90°,OA=OD=2,∴AD==2,∴AE===,∴AC=AE+EC=+.答:AC边的长为+.22.(1)证明:∵AC是⊙O的直径,∴∠ABC=90°,∴∠ACB+∠CAB=90°,又∵∠ACB=∠DAB,∴∠DAB+∠CAB=90°,即∠OAD=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)解:由(1)可知∠OAD=90°,∵∠ADB=30°,∴OA=OD=(OB+BD),∵OA=OB,BD=2,∴OA=2,∴AC=2OA=4.23.(1)证明:∵CD与⊙O相切于C,∴OC⊥DC,∵BE⊥DC,∴BE∥OC,∴∠EBC=∠OCB,∵OC=OB,∴∠OCB=∠OBC,∴∠EBC=∠OBC,即BC是∠ABE的平分线;(2)解:过C作CM⊥BD于M,∵BC是∠ABE的平分线,BE⊥CE,∴CE=CM,∵OC⊥DC,∴∠OCD=90°,∵DC=8,OC=OA=6,∴OD===10,∵S△DCO==,∴8×6=10×CM,解得:CM=4.8,即CE=CM=4.8.24.(1)证明:连接OA,AD,∵∠ACB=60°,∴∠ADB=∠ACB=60°,∵BD为⊙O的直径,∴∠BAD=90°,∴∠ABD=90°﹣∠ADB=30°,∵OB=OA,∴∠OAB=∠ABD=30°,∴∠AOP=∠ABD+∠OAB=60°,∵P A切⊙O于A,∴∠P AO=90°,∴∠P=90°﹣∠AOP=30°,即∠P=∠ABD,∴AB=AP;(2)解:过O作OQ⊥AB于Q,∵∠P AO=90°,∠P=30°,∴OP=2AO,∵PD=,OA=OD,∴OD+=2OA,解得:OA=OD==OB,在Rt△BQO中,∠OQB=90°,∠ABO=30°,∴OQ=OB=,由勾股定理得:BQ===,∵OA=OB,OQ⊥AB,∴AB=2BQ=2×=,∵∠ABO=∠OAB=30°,∴∠AOB=180°﹣30°﹣30°=120°,∴阴影部分的面积S=S扇形AOB﹣S△AOB=﹣×=﹣.25.解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=26°,∴∠ABC=90°﹣∠CAB=64°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=32°,∴∠ACD=∠ABD=32°,即∠ABC=64°,∠ACD=32°;(2)连接BD,DO,由(1)知:∠ABC=64°,∵D为的中点,∴∠ABD=∠CBD=64°=32°,∵OB=OD,∴∠ODB=∠ABD=32°,∴∠POD=∠ABD+∠ODB=32°+32°=64°,∵PD切⊙O于D,∴∠ODP=90°,∴∠P=90°﹣∠POD=90°﹣64°=26°.26.解:(Ⅰ)如图①,连接OB、OD,∵四边形ABCD为菱形,∴∠A=∠C,由圆周角定理得,∠BOD=2∠A,∴∠BOD=2∠C,∵CB,CD为⊙O的切线,∴OB⊥BC,OD⊥CD,∴∠BOD+∠C=180°,∴2∠C+∠C=180°,∴∠C=60°;(Ⅱ)如图②,∵四边形ABCD为菱形,∠BDC=50°,∴∠BDA=∠BDC=50°,AB=AD,∴∠DBA=∠BDA=50°,∴∠A=180°﹣50°﹣50°=80°,同理,∠C=80°,∵四边形ABFD是⊙O内接四边形,∴∠BFC=∠A=80°∴∠CBF=180°﹣∠C﹣∠BFC=20°.。

第2章 对称图形——圆数学九年级上册-单元测试卷-苏科版(含答案)

第2章 对称图形——圆数学九年级上册-单元测试卷-苏科版(含答案)

第2章对称图形——圆数学九年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,E是△ABC的内心,若∠BEC=130°,则∠A的度数是()A.60°B.80°C.50°D.75°2、有下列四个命题,其中正确的有()①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A.4个B.3个C.2个D.1个3、如图所示,已知为的直径,直线为圆的一条切线,在圆周上有一点,且使得,连接,则的大小为()A. B. C. D.4、如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为( )A. B. C. D.5、如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB.C.2πD.3π6、如图,⊙O的半径为,BD是⊙O的切线,D为切点,过圆上一点C作BD的垂线,垂足为B,BC=3,点A是优弧CD的中点,则sin∠A的值是()A. B. C. D.7、如图,AB是⊙O的直径,弦CD与AB相交,连接CO,过点D作⊙O的切线,与AB的延长线交于点E,若DE∥AC,∠BAC=40°,则∠OCD的度数为()A.65°B.30°C.25°D.20°8、如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中FK1, K1K2, K2K3, K3K4, K5K6…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为l1, l2, l3, l4, l5, l6,….当AB=1时,l2014等于()A. B. C. D.9、如图,△ABC内接于⊙O,∠A=.若BC=,则的长为()A.πB.C.2πD.10、如图,PA、PB、AB都与⊙O相切,∠P=60°,则∠AOB等于()A.50°B.60°C.70°&nbsp;D.80°11、如图,用两根等长的金属丝,各自首尾相接,分别围成正方形ABCD和扇形A1D1C1,使A1D1=AD,D1C1=DC,正方形面积为P,扇形面积为Q,那么P和Q的关系是()A.P<QB.P=QC. P>QD. 无法确定12、如图,矩形ABCD中,AB=4,以顶点A为圆心,AD的长为半径作弧交AB于点E,以AB为直径作半圆恰好与DC相切,则图中阴影部分的面积为()A. B. C. D.13、如图,点C是⊙O的劣弧AB上一点,∠AOB=96°,则∠ACB的度数为()A.192°B.120°C.132°D.l5014、对于以下图形有下列结论,其中正确的是()A.如图①,是弦B.如图①,直径与组成半圆C.如图②,线段是边上的高 D.如图②,线段是边上的高15、已知的半径为5,若,则点与的位置关系是()A.点在内B.点在外C.点在上D.无法判断二、填空题(共10题,共计30分)16、如图,是锐角三角形的外接圆,,且,点是高线的交点,连接,则的度数为________,的长为________.17、如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为________.18、如图,己知等边的边长为8,以为直径的与边、分别交于、两点,则劣弧的长为________.19、如图,从一块直径为的圆形铁皮上剪出一个圆心角为的扇形,则此扇形的面积为________ .20、已知扇形的弧长为,圆心角为120°,则它的半径为________ 。

数学:5.7正多边形与圆同步练习(苏科版九年级上)

5.7 正多边形与圆同步练习1.正方形的内切圆半径为r ,这个正方形将它的外接圆分割出四个弓形,其中一个弓形的面积为_________。

2.如果正三角形的边长为a ,那么它的外接圆的周长是内切圆周长的_______倍。

3.如图2,正方形边长为2a ,那么图中阴影部分的面积是__________。

4.正多边形的一个内角等于它的一个外角的8倍,那么这个正多边形的边数是________。

5.半径为R 的圆的内接正n 边形的面积等于__________。

6.如果圆的半径为a ,它的内接正方形边长为b ,该正方形的内切圆的内接正方形的边长为c ,则a,b,c 间满足的关系式为___________。

7.如图3,正△ABC 内接于半径为1cm 的圆,则阴影部分的面积为___________。

8.如果圆内接正六边形的边长为10cm ,则它的边心距为_______cm ,正六边形的一边在圆上截得的弓形面积是____________。

9.已知正方形的边长为a ,以各边为直径在正方形内画半圆,则所围成的阴影部分(如图)的面积为__________。

10.周长相等的正方形和正六边形的面积分别为4S 和6S ,则4S 和6S 的大小关系为__________。

参考答案1.由已知得正方形的边长为2r , 从而正方形的外接圆半径为2r ,所求弓形的面积为2)221(r -π。

2.边长为a 的正三角形的外接圆半径和内切圆半径分别为a 33、a 63,其周长分别为332的πa 和a π33,故它的外接圆周长是内切圆周长的2倍。

3.阴影部分面积为22241)22(21)2(41a a a πππ=- 4.设所求正多边形的边数为n ,则它的一个内角等于︒⋅-180)2(n n , 相应的外角等于180°- ︒⋅-180)2(nn , 则由已知,得︒⋅-180)2(n n =8×(180°-︒⋅-180)2(nn ),解之,得n = 18。

正多边形与圆(八大题型)( 原卷版)

为( )
A.1B.2C. D.
解题技巧提炼
主要考查了正多边形和圆,正六边形的性质、正方形的性质,等边三角形的性质,勾股定理,正确掌握它们的性质是解决问题的关键.
【变式3-1】(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为( )
A. B. C.3D.2
正多边形.
◆2等于 的圆心角,它对着一段弧,然后在圆上依次截取与这条弧相等的弧,得到圆的n个等分点;
(2)顺次连接各等分点.
【例题1】下列命题正确的是( )
A.各边相等的多边形是正多边形
B.正多边形一定是中心对称图形
C.各角相等的圆内接多边形是正多边形
D.正多边形外接圆的半径是正多边形的半径
半径
外接圆的半径叫做正多边形的半径.
边心距
内切圆的半径叫做正多边形的边心距.
中心角
正多边形每一条边对应所对的外接圆的圆心角都相等,叫做正多边形的中心角.
任何正多边形都有一个外接圆和一个内切圆.
◆2、正多边形的判定:
一个多边形必须同时满足各边相等,各角也相等才能判定其是正多边形,两个条件缺一不可,如菱形的各边相等,但各角不一定相等,矩形的各角相等,但各边不一定相等,因此它们不是正多边形.
解题技巧提炼
根据正多边形的相关概念进行判断即可,正n边形(n≥3,n为整数)都是轴对称图形,都有n条对称轴,且这些对称轴都交于一点,当n为偶数时,正n边形为中心对称图形.
【变式1-1】下列说法中,错误的是( )
A.正多边形的外接圆的圆心,就是它的中心
B.正多边形的外接圆的半径,就是它的半径
C.正多边形的内切圆的半径,就是它的边心距
(苏科版)九年级上册数学《第2章对称图形---圆》

九年级数学上册 第二章 对称图形-圆 第20讲 圆周角的应用课后练习 (新版)苏科版

第20讲圆周角的应用题一:如图,AB是半圆的直径,AC、BC分别和半圆相交于点E、D,请仅用无刻度的直尺画出△ABC的AB边上的高.题二:已知斜边c和斜边上的高h,利用直尺和圆规作直角三角形(写出作图步骤).题三:如图,圆心角∠AOB=100°,则圆周角∠ACB= 度.题四:如图,在⊙O中,圆心角∠AOB=48°,则圆周角∠ACB的度数是______ .题五:如图,CD为⊙O的直径,且CD⊥弦AB,∠CDB=60°,则∠AOD= .题六:如图,AB是⊙O的直径,弦CD∥AB,∠AOD=132°,则∠B= .第20讲圆周角的应用题一:见详解.详解:如图所示:①连接AD、BE,因为AB是半圆的直径,所以∠AEB=∠ADB=90°,所以AD、BE分别是边BC和AC上的高,②设AD、BE相交于点M,连接CM并延长交AB于点H,③CH即为所求的△ABC的AB边上的高 (根据三角形的三条高线交于一点).题二:见详解.详解:如图所示:①作射线AD,在射线上截取AB=c,②以AB为直径作半圆,③作AB的平行线l,使两平行线相距h,④直线l与半圆的交点即为直角三角形的顶点C,⑤连接BC、AC,△ABC即为所求的直角三角形.题三:130.详解:在优弧AB上取点D(不与A、B重合),连接AD、BD;则∠ADB=∠AOB=×100°=50°;∵四边形ADBC内接于⊙O,∴∠ACB=180°∠ADB=180°50°=130°题四:24°.详解:根据一条弧所对的圆周角等于它所对的圆心角的一半,得∠ACB=∠AOB=24°.题五:60°.详解:∵ CD⊥弦AB,且∠CDB=60°,∴∠B=180°90°60°=30°,∵CD为⊙O的直径,∠AOD为圆心角,题六:∵∠AOD=132°,∴∠BOD=48°,∴∠BCD=∠BOD=24°,∵CD∥AB,∴∠B=∠BCD=24°.(本资料素材和资料部分来自网络,供参考。

九年级数学苏科版上册课时练第2单元《 2.2 圆的对称性》(1) 练习试题试卷 含答案

课时练2.2圆的对称性一、选择题1.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD长是()A.2B.3C.4D.52.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.83.如图,弦CD垂直于⊙O直径AB,垂足为H,且CD=,BD=,则AB长为()A.2B.3C.4D.54.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm5.如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A.OC∥BDB.AD⊥OCC.△CEF≌△BEDD.AF=FD6.如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB=10,AC=8,则BD的长为()A.2B.4C.2D.4.87.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸8.如图所示,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度为().A.1cmB.2cmC.3cmD.4cm9.如图,在半径为13cm圆形铁片上切下一块高为8cm弓形铁片,则弓形弦AB长为().A.10cmB.16cmC.24cmD.26cm10.杭州市钱江新城,最有名的标志性建筑就是“日月同辉”,其中“日”指的是“杭州国际会议中心”,如图所示为它的主视图.已知这个球体的高度是85m,球的半径是50m,则杭州国际会议中心的占地面积是().A.1275πm2B.2550πm2C.3825πm2D.5100πm2二、填空题11.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为.12.如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是.13.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为cm.14.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧ABC上,AB=8,BC=3,则DP=.15.如图所示为由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.16.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高CD为米.三、解答题17.如图,已知⊙O的直径AB垂直弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)求证:点E是OB的中点;(2)若AB=8,求CD的长.18.如图,在等腰直角三角形ABC中,∠BAC=90°,圆心O在△ABC内部,且⊙O经过B,C 两点,若BC=8,AO=1,求⊙O的半径.19.如图所示,残缺的圆形轮片上,弦AB的垂直平分线CD交圆形轮片于点C,垂足为点D,解答下列问题:(1)用尺规作图找出圆形轮片的圆心O的位置并将圆形轮片所在的圆补全;(要求:保留作图痕迹,不写作法)(2)若弦AB=8,CD=3,求圆形轮片所在圆的半径R.20.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.参考答案1.A.2.D.3.B4.B5.C.6. C.7.C.8.C.9.C.10.A.11.23.12.(2,0).13.40.14.5.5;15.50.16.8.17.解:(1)证明:连接AC.∵OB⊥CD,∴CE=ED,即OB是CD的垂直平分线.∴AC=AD.同理AC=CD.∴△ACD是等边三角形.∴∠ACD=60°,∠DCF=30°.在Rt△COE中,OE=12OC=12OB.∴点E是OB的中点.(2)∵AB=8,∴OC=12AB=4.又∵BE=OE,∴OE=2.∴CE=OC 2-OE 2=16-4=2 3.∴CD=2CE=4 3.18.解如答图所示,连结BO,CO,延长AO 交BC 于点D.∵△ABC 是等腰直角三角形,∠BAC=90°,∴AB=AC.∵点O 是圆心,∴OB=OC.∴直线OA 是线段BC 的垂直平分线.∴AD⊥BC,且D 是BC 的中点.在Rt△ABC 中,AD=BD=21BC,∵BC=8,∴BD=AD=4.∵AO=1,∴OD=AD-AO=3.∵AD⊥BC,∴∠BDO=90°.∴OB=22BD OD +=2243+=5.19.解:(1)图略.(2)连结OA.∵CD 是弦AB 的垂直平分线,AB=8,∴AD=12AB=4.在Rt△ADO 中,AO=R,AD=4,DO=R-3,根据勾股定理,得R 2=16+(R-3)2,解得R=256.20.(1)证明:∵AB 为⊙O 的直径,∴∠ACB=90°,∴AC⊥BC,又∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC 中,AC 2+BC 2=AB 2,∴(x﹣2)2+x 2=42,解得:x 1=1+,x 2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习10 圆的综合练习
1.已知Rt△ABC和⊙O如图放置,已知AB=√3,BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直
线AB的距离为5.现△ABC以每秒2个单位的速度向右移动,设△ABC移动的时间为t(s).
(1)当△ABC的边AC与圆第一次相切时,求t的值;
(2)若在△ABC移动的同时,圆O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的
边与圆最后一次相切时,求t的值;
(3)在(2)的条件下的移动过程中,圆心O到AC所在直线的距离在不断变化,设该距离为d,当d<
1时,求t的取值范围.

2.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)如果AB=4,AE=2,求⊙O的半径.
3.如图1,AB为半圆O的直径,半径OP⊥AB,过劣弧AP上一点D作DC⊥AB于点C.连接DB,交OP
于点E,∠DBA=22.5°.
(1)若OC=2,则AC的长为 ;
(2)试写出AC与PE之间的数量关系,并说明理由;
(3)连接AD并延长,交OP的延长线于点G,设DC=x,GP=y,请求出x与y之间的等量关系式.(请
先补全图形,再解答).

4.如图,以矩形OCPD的顶点O为原点,它的两条边所在的直线分别为x轴和y轴建立直角坐标系.以点
P为圆心,PC为半径的⊙P与x轴的正半轴交于A、B两点,函数y=ax2+bx+3过A,B,C三点且AB=
6.
(1)求⊙P的半径R的长;
(2)若点M(m,n)为抛物线y=ax
2
+bx+3上的动点(只在x轴上方运动),若∠AMB<45°,求m,

n的取值范围.
5.如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,BE⊥DC交DC的延长线于点E.
(1)求证:BC平分∠ECA;
(2)求证:BE是⊙O的切线;
(3)若CE=1,BE=3,求DE的长.

6.如图,△ABC中,AB=AC,以AB为直径作⊙O,分别交BC、AC于点D、E.
(1)求证:BD=CD;
(2)若∠ABC=63°,求∠BDE的度数;
(3)过点D作⊙O的切线,交AB的延长线于点F,当AO=DF=4时,求图中阴影部分的面积.
7.如图,已知△ABC中,∠ACB=90°,AC=BC=3,D是射线AB上一点,作△BCD的外接圆⊙O,CE
是⊙O的直径,连接DE、BE.
(1)若点D在AB边上,求∠DCE的度数;
(2)若△ACD与△BDE全等,求AD的长;
(3)若AD=√2,求⊙O的半径r的值.

8.如图,Rt△ABC中,∠ACB=90°,AC=6,AB=10,⊙C与AB相切于点D,延长AC到点E,使CE
=AC,连接EB.过点E作BE的垂线,交⊙C于点P、Q,交BA的延长线于点F.
(1)求AD的长;
(2)求证:EB与⊙C相切;
(3)求线段PQ的长.
9.如图,在平面直角坐标系中,点A(﹣5,0),以OA为半径作半圆,点C是第一象限内圆周上一动点,
连结AC、BC,并延长BC至点D,使CD=BC,过点D作x轴垂线,分别交x轴、直线AC于点E、F,
点E为垂足,连结OF.
(1)当∠BAC=30°时,求△ABC的面积;
(2)当DE=8时,求线段EF的长;
(3)在点C运动过程中,是否存在以点E、O、F为顶点的三角形与△ABC相似?若存在,请求出点E
的坐标;若不存在,请说明理由.

10.如图,AB为⊙O的直径,点C、D都在⊙O上,且CD平分∠ACB,交AB于点E.
(1)求证:∠ABD=∠BCD;
(2)若DE=13,AE=17,求⊙O的半径;
(3)DF⊥AC于点F,试探究线段AF、DF、BC之间的数量关系,并说明理由.
11.如图,四边形ABCD是平行四边形,以AB为直径的⊙O与CD边相切于点E,BC交⊙O于点F(AF
>BF),连接AE,EF.
(1)求证:∠AFE=45°;
(2)求证:EF2=AF•CF;

(3)若⊙O的半径是3√102,且𝐶𝐹𝐴𝐹=29,求AD的长.

12.(1)如图①,AB是⊙O的直径,C、D在⊙O上,且BC=BD,AD=CD.求证:∠ADC=2∠BDC.
(2)如图②,AB是⊙O的直径,点C在⊙O上.若平面内的点D满足AD=CD,且∠ADC=2∠BDC.
①利用直尺和圆规在图②中作出所有满足条件的点D(保留作图痕迹,不写作法);
②若AB=4,BC长度为m(0<m<4),则平面内满足条件的点D的个数随着m的值变化而变化.请直
接写出满足条件点D的个数及对应m的取值范围.
13.如图①,在矩形ABCD中,AB=4,BC=6,点E是BC边上一动点,连接AE、DE,作△ABE的外接
⊙O,交AD于点F,交DE于点G,连接FG.
(1)若∠DFG=60°,则∠AED= °;
(2)当CE的长为 时,△DFG为等腰三角形;
(3)如图②,当⊙O与CD相切时,求CE的长.

14.如图,直线l1⊥l2,O为垂足,以O圆心,√3的半径作圆,交l1于点M,N,交l2于点P,Q.在⊙O
上任取一点A,作△ABC,使∠A=90°,∠ACB=30°,顶点A,B,C按顺时针方向分布,点C落在
射线ON上,且不在⊙O内.若△ABC的某一边所在直线与⊙O相切,我们称该边为⊙O的“相伴切边”.
(1)如图1,CA为⊙O的“相伴切边”,CA平分∠OCB,求OC的长;
(2)是否存在△ABC三边中两边都是⊙O的“相伴切边”的情形?若存在,请求出AC的长;若不存在,
请说明理由.

相关文档
最新文档