信号检测与估计理论

合集下载

信号检测与估计知识点

信号检测与估计知识点

信号检测与估计知识点一、知识概述《信号检测与估计知识点》①基本定义:信号检测与估计呢,简单说就是从一堆有干扰的数据里找到真正的信号,还得把这个信号的一些特征估摸出来。

就好比在很嘈杂的菜市场找朋友的声音(信号),还得判断朋友声音的大小之类的特征(估计)。

②重要程度:在通信、雷达、图像处理这些学科里超级重要。

就拿雷达来说,如果不能准确检测和估计信号,那根本就不知道飞机在哪呢,整个防空系统都得乱套。

③前置知识:得先知道概率论、随机过程这些基础知识。

不然,信号检测与估计里那些关于概率、随机变量啥的根本理解不了。

④应用价值:在通信领域,可以提升信号传输准确性;在医学上,检测病人的生理信号,像心电图啥的,估计其参数有助于诊断病情;在工业自动化里,对检测到的信号进行估计,能更好控制生产流程。

二、知识体系①知识图谱:信号检测与估计在信号处理这个大的学科里面是很核心的部分,就像心脏在人体里的位置一样重要。

②关联知识:和信号处理里的滤波、调制解调关系密切。

比如说滤波后的信号可能才更有利于检测和估计,而检测估计的结果可以反馈给调制解调改变参数。

③重难点分析:- 掌握难度:这个知识点有点难,难点在于要同时考虑到噪声和信号的混合情况,还得建立合适的模型。

按我的经验,很多时候分不清哪些是噪声干扰带来的变化,哪些是信号本身的特征。

- 关键点:把握好概率统计的方法,准确地建立信号模型是关键。

④考点分析:- 在考试中很重要,如果是在电子通信等相关专业的考试里,经常考。

- 考查方式可能是给一些含噪声的信号数据,让你进行检测和估计参数,也可能是叫你设计一个简单的信号检测方案。

三、详细讲解【理论概念类】①概念辨析:- 信号检测就是判断信号是否存在。

咱们看谍战片里的电台接收情报,接收员得判断接收到的微弱声音(可能包含信号和噪声)里是不是有真正要接收的情报信号,这就是信号检测。

- 信号估计是对信号的各种参数,像幅度、相位等进行估计。

好比知道有信号了,还得估摸这个信号是多强、频率是多少之类的。

信号的统计检测与估计理论

信号的统计检测与估计理论

信号的统计检测与估计理论华侨大学信息科学与工程学院电子工程系电子程系E-mail:************.cnTel: 22692477T l22692477课程教学目的和方法目的通过本课程学习,使学生掌握信号的检测和估计的基本概念、基本理论和分析问题的基本方法,培养学生运用这些方法去解基本和分析问题的基本方法,培养学用这些方法去解决实际问题的能力。

方法本课程将通过重点讲授检测和估计的基本概念、基本原理和分析问题的基本方法入手,使同学们学会信号的检测与估计理论,析问题的基本方法入手使同学们学会信号的检测与估计理论将为进一步学习、研究随机信号统计处理打下坚实的理论基础,同时它的基本概念、理论和解决问题的方法也为解决实际应用,如信号处理系统设计等问题打下良好的基础。

2课程内容简介信号的统计检测与估计理论已成为现代信息理论的一个重要组成部分,它是现代通信、雷达、声纳以及自动控制技术的理论基础,它在许多领域或技术中有广泛的应用。

其主要内容有:信号的矢量与复数表示、噪声和干扰、假设检验、确知信号的检测、具有随机参量信号的检测、信号的参量估计、信号参量的最佳线性估计。

3教学基本内容及学时分配概论(0.5学时)第一章信号的矢量与复数表示(3.5学时)第二章噪声和干扰(2学时)第三章假设检验(4学时)第四章确知信号的检测(6学时)第五章具有随机参量信号的检测(6学时)第八章信号的参量估计(8学时)第九章信号参量的最佳线性估计(4学时)4教材教材¾《信号的统计检测与估计理论》(第二版),李道本著,科学出版社,2004年9月参考书《信号检测与估计理论》赵树杰赵建勋编著清华大¾《信号检测与估计理论》,赵树杰、赵建勋编著,清华大学出版社,2005年11月张明友吕明编著电子工业出版¾《信号检测与估计》张明友、吕明编著,电子工业出版社,2005年2月¾其他相关参考书籍5考试与要求选修课平时:60%-70%作业¾¾上课考勤期末考试40%30%期末考试:40%-30%6目录概论第一章信号的矢量与复数表示第二章噪声和干扰第三章假设检验第章第四章确知信号的检测第五章具有随机参量信号的检测第八章信号的参量估计第九章信号参量的最佳线性估计7信号的检测与估计理论的起源和发展检测与估计理论的基本概念检测与估计的分类8信号的统计检测与估计理论起源¾第二次世界大战( 20世纪40年代)¾战争对雷达和声纳技术的需求理论基础¾信息论(Information Theory)¾通信理论(Comm. Theory)数学工具¾概率论( Probability Theory)¾随机过程(Stochastic (random) Process)¾数理统计(Statistics)9信号的统计检测与估计理论发展¾现代信息理论的重要组成部分随机信号统计处论基¾随机信号统计处理的理论基础10检测与估计理论的应用现代通信雷达、声纳自动控制模式识别自动控制、模式识别射电天文学、航空航天工程遥感遥测资源探测天气预报精神物理学生物物理学精神物理学、生物物理学系统识别11无线通信系统无线通信系统原理框图12信息系统信息系统的主要工作¾信号的产生、发射、传输、接收、处理¾实现信息的传输最主要的要求¾高速率¾高准确性13信号的随机性 确知信号)(0s t t T ≤≤确信号 随机参量信号()()12(;)(0;[,,...,])T M s t t T θθθ≤≤=θθ 噪声加性噪声¾¾乘性噪声()n t 干扰¾一般干扰¾人为干扰 信号在信道传输中畸变14噪声和干扰噪声¾与有用信号无关的一些破坏性因素;如:通信中的各种工业噪声交流声脉冲噪声银河系¾如:通信中的各种工业噪声、交流声、脉冲噪声、银河系噪声、大气噪声、太阳系噪声、热噪声等;干扰与有用信号有关的些破坏性因素¾与有用信号有关的一些破坏性因素;¾如通信中的符号间干扰、共信道干扰、邻信道干扰、人为干扰等干扰等;15信号的随机性 处理的信号:()(0)v t t T ≤≤)0()()(),v t s t n t t T =+≤≤)()(;)(),0v t s t n t t T =+≤≤θ 接收信号或观测信号16信号的统计处理方法对信号的随机性进行统计描述概率密度函数、各阶矩、相关函数、协方差函数、功率谱密度等来描述随机信号的统计特性;基于随机信号统计特性所进行的各种处理和选择的相应准则均是在统计意义上进行的,并且是最佳的,如应准则均是在统计意义上进行的并且是最佳的如信号状态的统计判决、信号参量的最佳估计等;处理结果的评价即性能用相应的统计平均量来度量,如判决误差、平均代价、平均错误概率、均值、方差、均方误差等;17检测和估计理论检测估计¾参量估计¾波形估计(滤波理论)滤波理论:现代Wiener滤波理论和Kalman滤波理论18检测¾有限观测“最佳”区分一个物理系统不同状态的理论。

《信号检测与估计》课件

《信号检测与估计》课件
,
汇报人:
CONTENTS
PART ONE
PART TWO
信号检测:从含有噪声的信号中提 取有用信号的过程
信号检测与估计的目的:提高信号 传输的可靠性和准确性
添加标题
添加标题添加标题添来自标题信号估计:根据已知信号模型,估 计信号参数的过程
信号检测与估计的应用:通信、雷 达、声呐等领域
通信领域:检测和 估计信号,提高通 信质量
汇报人:
PART THREE
信号检测:通过测量信号的强度、 频率、相位等信息,判断信号是否 存在
信号检测方法:包括能量检测、匹 配滤波、相关检测等
添加标题
添加标题
添加标题
添加标题
信号分类:根据信号的性质,可以 分为连续信号和离散信号
信号检测性能:包括检测概率、虚 警概率、检测延迟等指标
基于统计的方法:如最大 似然估计、贝叶斯估计等
雷达领域:检测和 估计目标信号,提 高雷达性能
医疗领域:检测和 估计生理信号,辅 助疾病诊断和治疗
工业领域:检测和 估计设备信号,提 高生产效率和安全 性
信号检测与估计是通信、雷达、导航等系统的核心 信号检测与估计可以提高系统的性能和可靠性 信号检测与估计可以降低系统的成本和功耗 信号检测与估计可以增强系统的安全性和保密性
信号检测与估计的鲁棒性研 究
信号检测与估计的实时性研 究
5G通信:提高通信速度和质量,实现高速数据传输 自动驾驶:提高车辆感知能力,实现智能驾驶 医疗健康:提高疾病诊断和治疗水平,实现精准医疗 工业自动化:提高生产效率和质量,实现智能制造 航空航天:提高飞行器导航和定位精度,实现安全飞行 军事应用:提高战场感知和决策能力,实现精确打击
参数估计:通过建立信号模型,估计模 型参数

信号检测与估计知识点总结

信号检测与估计知识点总结

第三章 估计理论1. 估计的分类矩估计:直接对观测样‎本的统计特征‎作出估计。

参数估计:对观测样本中‎的信号的未知‎参数作出估计‎。

待定参数可以‎是未知的确定‎量,也可以是随机‎量。

点估计:对待定参量只‎给出单个估计‎值。

区间估计:给出待定参数‎的可能取值范‎围及置信度。

(置信度、置信区间) 波形估计:根据观测样本‎对被噪声污染‎的信号波形进‎行估计。

预测、滤波、平滑三种基本‎方式。

✓ 已知分布的估‎计✓ 分布未知或不‎需要分布的估‎计。

✓ 估计方法取决‎于采用的估计‎准则。

2. 估计器的性能‎评价✧ 无偏性:估计的统计均‎值等于真值。

✧ 渐进无偏性:随着样本量的‎增大估计值收‎敛于真值。

✧ 有效性:最小方差与实‎际估计方差的‎比值。

✧ 有效估计:最小方差无偏‎估计。

达到方差下限‎。

✧ 渐进有效估计‎:样本量趋近于‎无穷大时方差‎趋近于最小方‎差的无偏估计‎。

✧ 一致性:随着样本量的‎增大依概率收‎敛于真值。

✧ Cramer ‎-Rao 界: 其中为Fishe ‎r 信息量。

3. 最小均方误差‎准则模型:假定: 是观测样本,它包含了有用‎信号 及干扰信号 ,其中 是待估计的信‎号随机参数。

根据观测样本‎对待测参数作‎出估计。

最小均方误差‎准则:估计的误差平‎方在统计平均‎的意义上是最‎小的。

即使达到最小值。

此时 从而得到的最‎小均方误差估‎计为: 即最小均方误‎差准则应是观‎测样本Y 一定‎前提下的条件‎均值。

需借助于条)()(1αα-≥F V ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡∂∂=⎭⎬⎫⎩⎨⎧∂∂-=2212122);,(ln );,(ln )(αααααm m y y y p E y y y p E F )(),()(t n t s t y +=θ)(t n T N ),,,(21θθθθ =),(θt s {}{})ˆ()ˆ()ˆ,(2θθθθθθ--=T E e E {}0)ˆ,(ˆ2=⎥⎦⎤⎢⎣⎡=M SE e E d d θθθθθθθθθd Y f Y MSE )|()(ˆ⎰=件‎概率密度求解‎,是无偏估计。

第三章信号检测与估计理论清华

第三章信号检测与估计理论清华
即可保证平均代价最小。
把使被积函数取负值的观察值x值划分给R0区域,而把其余的观察值x值划分给R1,
PH1 c01 c11 px H1 PH0 c10 c00 px H0 PH1 c01 c11 px H1 PH0 c10 c00 px H0
步骤3:利用上式,形成贝叶斯检测基本表达式
步骤4:化简
国家重点实验室
三、贝叶斯检测例题
Ex3.1 在二元数字通信系统中,假设为H1时,信源输出为常值 正电压m,假设为H0时,信源输出输出零电平,信号在传输过 程中迭加了噪声n(t),每种信号的持续时间为T, 请:
(1) 若接收端对接收信号x(t)在(0,T)时间内进行1次采样,给出
12
国家重点实验室
二元信号判决结果
假设
判决
H0
H1
H
H0 H0 H0
1
H0
H
H1 H0 H1
1
H1
二元信号判决概率
判决 假设
H0
H1
PH1 H0
H0 PH0 H0
PH1 H1
H1 PH0 H1
国家重点实验室
二、M元信号检测模型
信源
概率转移机构
信源的输出称为假设 将信源的输出(假设)以一定的 概率关系映射到整个观察空间中 接收端所有可能观测量的集合 将观察空间进行合理划分,使每个观测量 对应一个假设判断的方法
国家重点实验室
一、平均代价的概念和贝叶斯准则
3. 平均代价取到最小值的条件 C PH 0 c00 px H 0 dx c10 px H 0 dx R0 R1 PH1 c01 px H1 dx c11 px H1 dx R0 R1

信号检测与估计知识点总结

信号检测与估计知识点总结

第二章 检测理论1.二元检测:① 感兴趣的信号‎在观测样本中‎受噪声干扰,根据接收到的‎测量值样本判‎决信号的有无‎。

② 感兴趣的信号‎只有两种可能‎的取值,根据观测样本‎判决是哪一个‎。

2.二元检测的数‎学模型:感兴趣的信号‎s ,有两种可能状‎态:s0、s1。

在接收信号的‎观测样本y 中‎受到噪声n 的‎污染,根据测量值y ‎作出判决:是否存在信号‎s ,或者处于哪个‎状态。

即:y(t)=si(t)+n(t) i=0,1假设:H 0:对应s0状态‎或无信号,H 1:对应s1状态‎或有信号。

检测:根据y 及某些‎先验知识,判断哪个假设‎成立。

3. 基本概念与术‎语✧ 先验概率:不依赖于测量‎值或观测样本‎的条件下,某事件(假设)发生或 成立的概率。

p(H 0),p(H 1)。

✧ 后验概率:在已掌握观测‎样本或测量值‎y 的前提下,某事件(假设)发生或成立的‎概率。

p(H 0/y),p(H 1/y) 。

✧ 似然函数:在某假设H0‎或H1成立的‎条件下,观测样本y 出‎现的概率。

✧ 似然比:✧ 虚警概率 :无判定为有;✧ 漏报概率 :有判定为无;✧ (正确)检测概率 :有判定为有。

✧ 平均风险: 4.1 最大后验概率‎准则(MAP )在二元检测的‎情况下,有两种可能状‎态:s0、s1,根据测量值y ‎作出判决:是否存在信号‎s ,或者处于哪个‎状态。

即: y(t)=si(t)+n(t) i=0,1假设:H 0:对应s0状态‎或无信号,H 1:对应s1状态‎或有信号。

)|()|()(01H y p H y p y L =f P m P d P )(][)(][111110101010100000H P C P C P H P C P C P r ∙++∙+=如果 成立,判定为H0成‎立;否则 成立,判定为H1成‎立。

利用贝叶斯定‎理: 可以得到: 如果 成立,判定为H0成‎立; 如果 成立,判定为H1成‎立;定义似然比为‎:得到判决准则‎: 如果 成立,判定为H0成‎立; 如果 成立,判定为H1成‎立;这就是最大后‎验准则。

信号检测与估计理论(3)第三章 克拉美-罗下限

信号检测与估计理论(3)第三章 克拉美-罗下限

假设信号是正弦信号,s[n; f0 ] = Acos(2π f0n + φ)
0<
f0
<
1 2
其幅值和相位已知,估计 f 0 的CRLB。根据式(3-14)有
var( fˆ0 ) ≥ N −1
σ2
∑ A2 [2π n sin(2π f0 + φ )]2
n=0
(3-15)
图3-3给出了CRLB与频率的关系,这里信噪比SN为 A2 σ 2 = 1,
Aˆ = x[0] 是一个无偏估计,且方差为 σ 2,因此,随 着 σ 2的减少,估计的准确性得到提高。
3.1 估计的准确性
对于2个不同方差的PDF,它们是给定x[0]下的关 于A的函数。
pi ( x[0]; A) =
1
2πσ
2 i
exp ⎡⎢− ⎣
1

2 i
(x[0] −
A)
2
⎤ ⎥

i=(1 2) (3-1)
3-1(a)范围宽。
3.1 估计的准确性
对于给定的x,PDF看作未知参量的函数时,PDF称为似然函 数。图3-1中可以看出似然函数的锐度(sharpness)决定着估 计的精度。
为了证明这一点,用峰值处的2阶导数的负数来有效地测量这 个锐度。这就是似然函数的曲率。我们考虑图3-1中的PDF的自 然对数
var(θˆ) ≥
1

E
⎡ ⎢⎣

2
ln p(x;θ ∂θ 2
)
⎤ ⎥⎦
(3-6)
3.2 克拉美-罗下界(CRLB)
这里导数值是真值 θ 下的值。对所有可能
的 θ ,对于某个函数g和I,当且仅当

通信系统中的信号检测与估计技术

通信系统中的信号检测与估计技术

通信系统中的信号检测与估计技术通信系统中的信号检测与估计技术在现代通信领域中起着至关重要的作用。

随着通信技术的不断发展和进步,人们对信号检测与估计技术的需求也变得越来越迫切。

本文将着重介绍通信系统中的信号检测与估计技术的相关知识,包括其基本概念、原理、算法以及应用等方面。

一、信号检测技术信号检测技术是指在接收端对信道传输而来的信号进行检测和判决的过程。

其主要任务是根据接收到的信号样本,判断出信号的存在与否。

在通信系统中,信号通常会受到多种干扰和噪声的影响,因此准确的信号检测技术对于提高通信系统的性能至关重要。

在信号检测技术中,常用的算法包括最大似然检测、贝叶斯检测、信号能量检测等。

这些算法根据不同的假设条件和约束条件,对接收到的信号进行处理和判决,以实现准确的信号检测。

二、信号估计技术信号估计技术是指在接收端根据接收到的信号样本,对信号的参数进行估计和推断的过程。

其主要任务是通过对信号样本的处理和分析,恢复出信号的原始信息。

在通信系统中,信号估计技术可以用于信号的解调、解调和信号分析等应用。

常用的信号估计算法包括最小均方误差估计、最大后验概率估计、最大似然估计等。

这些算法通过对接收到的信号样本进行处理和优化,得到对信号参数的最优估计结果。

三、应用领域信号检测与估计技术在通信系统中应用广泛,涉及到数字通信、无线通信、雷达、生物医学工程等多个领域。

在数字通信系统中,信号检测与估计技术可以用于解调和信道估计;在无线通信系统中,可以用于信号检测和信道估计;在雷达系统中,可以用于目标检测和跟踪;在生物医学工程中,可以用于生物信号的检测和分析。

总之,信号检测与估计技术是通信系统中的重要组成部分,对于提高通信系统的性能和可靠性具有重要意义。

随着通信技术的不断发展,我们相信信号检测与估计技术将会在未来得到进一步的完善和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号检测与估计理论
现代信号处理是一门涉及到研究信号及其处理的众多领域的复杂学科,它将信号检测
理论应用于数据的采集、分析和编码,以实现更高的信号保真和传输效率。

信号检测理论
是指以信号检测及其具体实现方法为内容的理论,是一门研究信号以及信号检测算法应用
于实践中新信号几率和信号模型、信号处理系统设计、系统评价指标和系统优化等问题的
理论。

信号检测理论包括信号检测和信号估计两个主要研究领域。

信号检测即在信号实际存
在且满足特定条件的情况下,将其从噪声中识别出来的技术。

信号检测的理论基础是概率
理论,研究的内容一般包括判决准则的设计、概率传输理论、灵敏度指标的计算、检测误
差最优化等。

信号估计是从检测信号中恢复信号参数值和状态信息的技术,它是根据信号
的内容和自身特性进行分析,重构信号形式,从而恢复和克服噪声干扰,最终使信号达到
某种需求尺度以达到预先设定的信号识别、显示、记录等目标。

信号检测和估计是现代信号处理理论的重要基础,应用于实际工程中,检测的精确性
和准确性,或估计的准确性,对信号处理结果的质量也是至关重要的。

因此,信号检测估
计理论的研究,涉及到信号检测的实现方法、检测决策的准则,以实现信号的恢复、显示、记录等操作,及信号估计指标计算、估计误差最优化等内容,是提高实际工程研究质量和
信号处理效率、增强应用竞争力的重要实现方式。

相关文档
最新文档