蚁群智能算法
蚁群算法

蚁群算法报告及代码一、狼群算法狼群算法是基于狼群群体智能,模拟狼群捕食行为及其猎物分配方式,抽象出游走、召唤、围攻3种智能行为以及“胜者为王”的头狼产生规则和“强者生存”的狼群更新机制,提出一种新的群体智能算法。
算法采用基于人工狼主体的自下而上的设计方法和基于职责分工的协作式搜索路径结构。
如图1所示,通过狼群个体对猎物气味、环境信息的探知、人工狼相互间信息的共享和交互以及人工狼基于自身职责的个体行为决策最终实现了狼群捕猎的全过程。
二、布谷鸟算法布谷鸟算法布谷鸟搜索算法,也叫杜鹃搜索,是一种新兴启发算法CS算法,通过模拟某些种属布谷鸟的寄生育雏来有效地求解最优化问题的算法.同时,CS也采用相关的Levy飞行搜索机制蚁群算法介绍及其源代码。
具有的优点:全局搜索能力强、选用参数少、搜索路径优、多目标问题求解能力强,以及很好的通用性、鲁棒性。
应用领域:项目调度、工程优化问题、求解置换流水车间调度和计算智能三、差分算法差分算法主要用于求解连续变量的全局优化问题,其主要工作步骤与其他进化算法基本一致,主要包括变异、交叉、选择三种操作。
算法的基本思想是从某一随机产生的初始群体开始,利用从种群中随机选取的两个个体的差向量作为第三个个体的随机变化源,将差向量加权后按照一定的规则与第三个个体求和而产生变异个体,该操作称为变异。
然后,变异个体与某个预先决定的目标个体进行参数混合,生成试验个体,这一过程称之为交叉。
如果试验个体的适应度值优于目标个体的适应度值,则在下一代中试验个体取代目标个体,否则目标个体仍保存下来,该操作称为选择。
在每一代的进化过程中,每一个体矢量作为目标个体一次,算法通过不断地迭代计算,保留优良个体,淘汰劣质个体,引导搜索过程向全局最优解逼近。
四、免疫算法免疫算法是一种具有生成+检测的迭代过程的搜索算法。
从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。
五、人工蜂群算法人工蜂群算法是模仿蜜蜂行为提出的一种优化方法,是集群智能思想的一个具体应用,它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。
蚁群算法java实现以及TSP问题蚁群算法求解

蚁群算法java实现以及TSP问题蚁群算法求解1. 蚁群算法简介蚁群算法(Ant Clony Optimization,ACO)是一种群智能算法,它是由一群无智能或有轻微智能的个体(Agent)通过相互协作而表现出智能行为,从而为求解复杂问题提供了一个新的可能性。
蚁群算法最早是由意大利学者Colorni A., Dorigo M. 等于1991年提出。
经过20多年的发展,蚁群算法在理论以及应用研究上已经得到巨大的进步。
蚁群算法是一种仿生学算法,是由自然界中蚂蚁觅食的行为而启发的。
在自然界中,蚂蚁觅食过程中,蚁群总能够按照寻找到一条从蚁巢和食物源的最优路径。
图(1)显示了这样一个觅食的过程。
图(1)蚂蚁觅食在图1(a)中,有一群蚂蚁,假如A是蚁巢,E是食物源(反之亦然)。
这群蚂蚁将沿着蚁巢和食物源之间的直线路径行驶。
假如在A和E之间突然出现了一个障碍物(图1(b)),那么,在B点(或D点)的蚂蚁将要做出决策,到底是向左行驶还是向右行驶?由于一开始路上没有前面蚂蚁留下的信息素(pheromone),蚂蚁朝着两个方向行进的概率是相等的。
但是当有蚂蚁走过时,它将会在它行进的路上释放出信息素,并且这种信息素会议一定的速率散发掉。
信息素是蚂蚁之间交流的工具之一。
它后面的蚂蚁通过路上信息素的浓度,做出决策,往左还是往右。
很明显,沿着短边的的路径上信息素将会越来越浓(图1(c)),从而吸引了越来越多的蚂蚁沿着这条路径行驶。
2. TSP问题描述蚁群算法最早用来求解TSP问题,并且表现出了很大的优越性,因为它分布式特性,鲁棒性强并且容易与其它算法结合,但是同时也存在这收敛速度慢,容易陷入局部最优(local optimal)等缺点。
TSP问题(Travel Salesperson Problem,即旅行商问题或者称为中国邮递员问题),是一种,是一种NP-hard问题,此类问题用一般的算法是很大得到最优解的,所以一般需要借助一些启发式算法求解,例如遗传算法(GA),蚁群算法(ACO),微粒群算法(PSO)等等。
蚁群算法

基本蚁群算法程序流程图
开始 初始化
循环次数Nc← Nc+1
蚂蚁k=1 蚂蚁k=k+1
按式(1)选择下一元素 修改禁忌表 N Y K≥ m
按式(2)和式(3)进行信息量更新 满足结束条件 Y
Байду номын сангаас输出程序计算结果 结束 N
复杂度分析
对于TSP,所有可行的路径共有(n-1)!/2条,以 此路径比较为基本操作,则需要(n-1)!/2-1次基 本操作才能保证得到绝对最优解。 若1M FLOPS,当n=10, 需要0.19秒 n=20, 需要1929年 n=30, 需要1.4X10e17年
{ ij (t ) | ci , c j C}是t时刻集合C中元素
蚂蚁k(k=1,2,…,m)在运动过程中,根据各条路径上的信息 量决定其转移方向。这里用禁忌表tabuk来记录蚂蚁k当前 所走过的城市,集合随着tabuk进化过程做动态调整。在 搜索过程中,蚂蚁根据各条路径上的信息量及路径的启发 信息来计算状态转移概率。在t时刻蚂蚁k由元素(城市)i 转移到元素(城市)j的状态转移概率:
1) 标有距离的路径图 2) 在0时刻,路径上没有信息素累积,蚂蚁选择路径为任意 3) 在1时刻,路径上信息素堆积,短边信息素多与长边,所以蚂蚁更 倾向于选择ABCDE
特
点
(1)其原理是一种正反馈机制或称增强型学习系统;它通过 信息素的不断更新达到最终收敛于最优路径上; (2)它是一种通用型随机优化方法;但人工蚂蚁决不是对实 际蚂蚁的一种简单模拟,它融进了人类的智能; (3)它是一种分布式的优化方法;不仅适合目前的串行计算 机,而且适合未来的并行计算机; (4)它是一种全局优化的方法;不仅可用于求解单目标优化 问题,而且可用于求解多目标优化问题; 2 (5)它是一种启发式算法;计算复杂性为 O( NC m n ),其 中NC 是迭代次数,m 是蚂蚁数目,n 是目的节点数目。
蚁群优化算法

第9章 智能优化方法
Contents
1 2
遗传算法
蚁群优化算法 粒子群优化算法
3
蚁群优化算法
先看1个最优化例子
“旅行商问题”(Travel Salesman Problem, TSP 问题)常被称为“旅行推销员问题”,是指一名推销员要 拜访多个地点时,如何找到在拜访每个地点一次后再回到 起点的最短路径。
k 1 m
5.2 算法流程
路径构建 信息素更新
5.2 算法流程
例5.1 给出用蚁群算法求解一个四城市的TSP问题的执 行步骤,四个城市A、B、C、D之间的距离矩阵如下
3 1 2 3 5 4 W dij 1 5 2 2 4 2
假设蚂蚁种群的规模m=3,参数=1,=2,r=0.5。
5.2 算法流程
信息素更新
(1)在算法初始化时,问题空间中所有的边上的信息素都被初始 化为0。 (2)算法迭代每一轮,问题空间中的所有路径上的信息素都会发 生蒸发,我们为所有边上的信息素乘上一个小于1的常数。信息素 蒸发是自然界本身固有的特征,在算法中能够帮助避免信息素的 无限积累,使得算法可以快速丢弃之前构建过的较差的路径。 (3)蚂蚁根据自己构建的路径长度在它们本轮经过的边上释放信 息素。蚂蚁构建的路径越短、释放的信息素就越多。一条边被蚂 蚁爬过的次数越多、它所获得的信息素也越多。 (4)迭代(2),直至算法终止。
遗传算法与蚁群算法的效果比较

遗传算法与蚁群算法的效果比较随着计算机技术的发展,人工智能逐渐成为了一个热门话题。
其中,算法是实现人工智能的基础,而遗传算法和蚁群算法则是两种较为流行的算法。
那么,这两种算法的效果如何呢?今天,我们就来比较一下遗传算法与蚁群算法的效果。
一、遗传算法遗传算法,是一种基于自然选择和遗传进化的优化算法。
遗传算法是通过模仿自然界中的进化过程,不断地变异和选择,来获取优良解的算法。
遗传算法最开始是用来解决复杂的优化问题,如函数优化、组合优化等。
遗传算法实现的过程可以简单地分为三个部分:选择、交叉和变异。
选择是在种群中选择合适的个体,使其能够进入下一代;交叉是通过染色体的重组,产生新的个体;变异是在单个个体的染色体中引入一些随机变异。
遗传算法因其在搜索解空间上的出色表现而得到了广泛的应用。
但是,它也存在着一些问题。
如容易陷入局部最优解、算法计算时间长等。
二、蚁群算法蚁群算法是另一种流行的优化算法,它是一种模拟蚂蚁觅食的行为来处理最优解问题的方法。
蚁群算法的灵感来源于蚂蚁在寻找食物时的行为。
蚂蚁会留下信息素,使得其他蚂蚁找到食物的概率也会增大,从而实现了蚂蚁群体的集体智慧。
蚁群算法的优点在于它能够通过局部搜索来帮助找到全局最优解。
它的本质是通过不断调整问题的搜索关键字而找到最优解。
与遗传算法不同,蚁群算法能够通过一步步的迭代来逼近最优解,因此蚁群算法更适用于某些复杂问题的求解。
但是,蚁群算法存在的问题是需要调整参数才能达到最优解。
同时,蚁群算法对问题的输入比较敏感,也容易陷入局部最优。
三、效果比较上述两种算法都能用来解决优化问题,但具体哪一种优化效果更好呢?不同的优化问题需要不同的算法才能得到更加合适的解决方案。
下面,我们以某个实际问题作为例子,来比较一下这两种算法的效果。
假设有一个工厂需要完成一人任务,可以用五台机器加工。
不同的机器之间的加工时间不同,但是任务需要按照固定的顺序加工才能完成。
我们需要确定哪个工序分配给哪个机器,才能使得任务的加工时间最短。
蚁群算法ppt课件

4 蚁群算法与TSP问题
蚂蚁向下一个目标的运动是通过一 个随机原则来实现的,也就是运用当前 所在节点存储的信息,计算出下一步可 达节点的概率,并按此概率实现一步移 动,逐此往复,越来越接近最优解。
蚂蚁在寻找过程中,或者找到一个解 后,会评估该解或解的一部分的优化程 度,并把评价信息保存在相关连接的信 息素中。
在STEP 3中,蚁群永远记忆到目前为止的最优解。
20
图的蚁群系统(GBAS)
四个城市的非对称TSP问题,距离矩阵和城市图示如下:
0 1 0.5 1
D
(dij
)
1
1ቤተ መጻሕፍቲ ባይዱ5
0 5
1 0
1
1
1 1 1 0
21
5 初始的蚁群优化算法—基于图的蚁群 系统(GBAS)
假设共4只蚂蚁,所有蚂蚁都从城市A出发,挥发因子
19
5初始的蚁群优化算法—基于图的蚁群 系统(GBAS)
以上算法中,在蚂蚁的搜寻过程中,以信息素的概率分布来决定从城市 i到城市j的转移。
算法中包括信息素更新的过程 1 信息素挥发(evaporation) 信息素痕迹的挥发过程是每个连接上
的信息素痕迹的浓度自动逐渐减弱的过程,由 (1k)ij (k) 表示,这
个挥发过程主要用于避免算法过快地向局部最优区域集中,有助于搜索区 域的扩展。
2 信息素增强(reinforcement)增强过程是蚁群优化算法中可选的部 分,称为离线更新方式(还有在线更新方式)。这种方式可以实现由单个 蚂蚁无法实现的集中行动。也就是说,增强过程体现在观察蚁群(m只蚂 蚁)中每只蚂蚁所找到的路径,并选择其中最优路径上的弧进行信息素的 增强,挥发过程是所有弧都进行的,不与蚂蚁数量相关。这种增强过程中 进行的信息素更新称为离线的信息素更新。
基于智能蚁群算法的路径规划与优化研究

基于智能蚁群算法的路径规划与优化研究智能蚁群算法是一种基于自然界中蚂蚁寻路行为的优化算法。
它模拟了蚂蚁在寻找食物时的规律和策略,通过大量的蚁群个体之间的交流和协作,不断寻找最优路径。
在路径规划和优化领域,智能蚁群算法已经被广泛应用,并且在很多问题中获得了非常良好的效果。
优化问题是人类在计算机科学、工程学、生物学等众多领域中面临的问题之一。
在这些领域中,优化的问题通常都可以被看做是寻找最优解的问题。
不过,由于优化问题的复杂度非常高,特别是在实际应用中,通常会面临着大量的约束条件、未知的参数和非线性问题等复杂情况。
这时候,智能蚁群算法优化算法就起到了重要作用。
通过模拟蚂蚁在寻找食物时的行为和策略,智能蚁群算法能够有效的解决一些复杂的优化问题。
相比于传统的优化算法,智能蚁群算法具有以下的优点。
首先,智能蚁群算法具有较好的鲁棒性。
由于该算法模拟自然界中的动物寻路行为,蚁群个体之间输入输出非常简单,因此算法具有很高的兼容性和鲁棒性。
即使在某个蚁群个体出现失效的情况下,整个算法系统也不会因此而崩溃。
其次,智能蚁群算法能够自适应。
蚂蚁在寻找食物时,会根据周围环境的变化来自适应调整自己的行为和策略。
在智能蚁群算法中,每个蚂蚁节点也会根据自身的数据来调整自己的路径搜索策略,达到更优的效果。
最后,智能蚁群算法聚类效果良好。
在寻找食物时,蚂蚁节点会通过一个简单的信息传递机制来寻找最优食物位置。
在计算机算法中,智能蚁群算法也会通过这种信息传播方式来避免重复搜索,并且提高搜索效率。
在路径规划和优化问题中,智能蚁群算法也被广泛应用。
对于一个定位的问题场景来说,智能蚁群算法可以有效的寻找到最短路径。
在蚁群行动过程中,逐渐建立了路径信息素分布模型,已经过的路径留下的信息仍会影响后续的选择,从而获得更加优秀的解。
在实际应用中,智能蚁群算法可以用于非常多的应用场景。
例如,在交通出行中,可以利用智能蚁群算法来进行路径规划和优化;在机器人路径规划中,也可以利用智能蚁群算法来确定最优路径;在电力系统中,可以利用智能蚁群算法来优化发电和输电效率。
蚁群算法应用场景

蚁群算法应用场景
蚁群算法是一种模拟蚂蚁寻找食物的算法,它可以应用于许多实际问题中,例如:
1. 路径规划:蚁群算法可以用于寻找最短路径,例如在交通网络中找到最短路径。
2. 旅行商问题:蚁群算法可以用于解决旅行商问题,即找到一条最短路径,使得旅行商能够访问所有城市。
3. 任务分配:蚁群算法可以用于任务分配,例如在生产线上分配任务给不同的机器人或工人。
4. 网络优化:蚁群算法可以用于优化网络拓扑结构,例如在无线传感器网络中优化传感器节点的位置。
5. 组合优化:蚁群算法可以用于求解组合优化问题,例如在装载物品时找到最优的组合方式。
综上所述,蚁群算法具有广泛的应用场景,能够解决许多实际问题,特别是在路径规划、旅行商问题、任务分配、网络优化和组合优化方面表现出色。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• (2)建立可行节点空间 选取障碍圆心之间的连线的中点和障碍圆 心到地图边界连线的中点为可行节点。 检验可行节点的合法性:
得到:
• 代价函数
e ij min( d rk )
k ij
2 、初始航迹规划
• 当障碍空问建模完成之后 , 就可以利用寻 优算法,搜索累计代价函数值最小的最优 航迹。针 对地 形 回避 问题 的特 殊 情 况 , 对狄 克斯 特 拉算 法进 行 改进 , 加 入 航 路 最 短 距 离 s 和最大转 弯角 两个约 束条件 , 保证规划 出的航路能够满足飞机 飞行 条件 。
究对地形障碍进行分类和建模,然后依据 飞机地形回避的实际约束要求,对飞机地 形回避系统进行初始航路规划,然后在保 证飞行安全的基础上,运用蚁群智能算法 对航路进行优化,寻找到整体航程最短的 航路。
1、障碍空间建模
• (1)地形障碍建模 • 采用k均值聚类分析算法,对采样点集进行 分类 • k均值聚类分析算法的基本思想 • 建模
狄克斯特拉算法
• 1、算法依据:若从S点到T点有一条最短的 路径,则该路径上的任何点到S的距离都是 最短的。
• 2、算法步骤 • 把顶点集合V分成两组: (1)S:已求出的顶点的集合(初始时只含 有源点V0) (2)V-S=T:尚未确定的顶点集合 • 将T中顶点按递增的次序加入到S中,保证 (1)从源点V0到S中其他各顶点的长度都不 大于从V0到T中任何顶点的最短路径长度 (2)每个顶点对应一个距离值
其中:
其中:
4、实例仿真
3 基于蚁群智能算法的航迹优化
蚂蚁的个体行为非常简单 ,但是整个群 体却呈现出高度结构化 的群 体组织。受此 启发而产生的蚁群智能算法是 当今分布式 人工智能 的一个热点研究领域 。因此对运 用蚁群算法对飞行航迹 的优化进行研究 。
(1)
(1)解的表示
(2)节点的选择
(3)信息素更新 当蚂蚁完成一次搜索后 , 应对所经过 的路径节点的信息素进行更新,为后面的 蚁群提供路径信息指导。信息素的更新主 要分为实 时信息素更新和路径信息素更新 两方面 。 实时信息素更新是指蚂蚁 在经 过某节 点后应对节点的信息素进行相应 的更新, 更新的方法为
• 用公式表示: 令d(x,y)表示点x到y的距离,D(x) 表示x到起始点的距离。 对起始点S做标记,且对所有起始点D(x) 为无穷大。对所有为做标记的点按以下公 式计算距离 D(x)=min(D(X), d(x,y)+D(y))
航迹优化
• 飞机地形跟随飞行过程中由于飞行航路 方向固定、飞越山顶时存在暴露时间,易 被敌方发现和跟踪。地形回避 是在保持飞 机飞行高度不变的基础上,通过飞机横向 机动来绕过地形障碍的一种超低空飞行技 术。它可以在保证飞行安全的前提下,进 一步改善飞机的飞行隐蔽性,提高飞机执 行低空突防任务的成功率。 • 现主要对飞机地形回避的航迹规划进行研
一种基于蚁群智能算法的 航迹优化算法
主要是两种算法Leabharlann • 1、蚁群算法 • 2、狄克斯特拉算法
蚁群算法
• 又称蚂蚁算法,是一种用来在图中寻找优 化路径的机率型算法。它由Marco Dorigo 于1992年提出的,其灵感来源于蚂蚁在寻 找食物过程中发现路径的行为。蚁群算法 是一种模拟进化算法,初步的研究表明该 算法具有许多优良的性质。