智能算法之蚁群算法
蚁群算法

蚁群算法目录1 蚁群算法基本思想 (1)1.1蚁群算法简介 (1)1.2蚁群行为分析 (1)1.3蚁群算法解决优化问题的基本思想 (2)1.4蚁群算法的特点 (2)2 蚁群算法解决TSP问题 (3)2.1关于TSP (3)2.2蚁群算法解决TSP问题基本原理 (3)2.3蚁群算法解决TSP问题基本步骤 (5)3 案例 (6)3.1问题描述 (6)3.2解题思路及步骤 (6)3.3MATLB程序实现 (7)3.1.1 清空环境 (7)3.2.2 导入数据 (7)3.3.3 计算城市间相互距离 (7)3.3.4 初始化参数 (7)3.3.5 迭代寻找最佳路径 (7)3.3.6 结果显示 (7)3.3.7 绘图 (7)1 蚁群算法基本思想1.1 蚁群算法简介蚁群算法(ant colony algrothrim ,ACA )是由意大利学者多里戈(Dorigo M )、马聂佐( Maniezzo V )等人于20世纪90初从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来的一种新型的模拟进化算法。
该算法用蚁群在搜索食物源的过程中所体现出来的寻优能力来解决一些系统优化中的困难问题,其算法的基本思想是模仿蚂蚁依赖信息素,通过蚂蚁间正反馈的方法来引导每个蚂蚁的行动。
蚁群算法能够被用于解决大多数优化问题或者能够转化为优化求解的问题,现在其应用领域已扩展到多目标优化、数据分类、数据聚类、模式识别、电信QoS 管理、生物系统建模、流程规划、信号处理、机器人控制、决策支持以及仿真和系统辩识等方面。
蚁群算法是群智能理论研究领域的一种主要算法。
1.2 蚁群行为分析EABCDF d=3d=2 m=20 t=0AB C Dd=3d=2 m=10 m=10t=11.3 蚁群算法解决优化问题的基本思想用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。
路径较短的蚂蚁释放的信息量较多,随着时间的推进,较短路径上积累的信息浓度逐渐增高,选择该路径的蚂蚁个数愈来愈多。
蚁群算法原理及其应用

蚁群算法原理及其应用1.介绍蚁群算法蚁群算法是基于群体智能的一种优化算法,它是由蚂蚁觅食行为得到的灵感而设计的。
它通过模拟蚂蚁觅食时的信息素传递、挥发和追随机制,以寻找最优解,在优化搜索问题方面表现出了很高的效率和准确率。
蚁群算法的核心思想是通过模拟蚂蚁觅食时的联合行为,来寻找最优解。
在蚂蚁觅食的过程中,蚂蚁们会释放信息素,并且在寻找食物的过程中会不断地追随信息素浓度最高的路径。
最终,所有蚂蚁都会找到最短路径,这是通过信息素的积累实现的。
同样的,蚁群算法也是通过信息素的积累来找到最优解。
2.蚁群算法工作原理蚁群算法是基于蚂蚁觅食行为的优化算法,其主要的工作原理是通过模拟蚂蚁的联合行为寻找最优解。
其过程可以分为蚂蚁编号、路径选择、信息素更新三个阶段。
蚂蚁编号:首先,将每只蚂蚁进行编号,这个编号的目的是为了标识蚂蚁,以便于后面对信息素的更新和路径选择进行控制。
路径选择:在路径选择过程中,每只蚂蚁都会根据自己当前的位置,以及路径上已有的信息素浓度等因素,选择一条路径进行行走。
在这个过程中,蚂蚁们会保留走过的路径,并且释放信息素。
信息素更新:在信息素更新过程中,所有路径上的信息素浓度都会发生变化,其中信息素的浓度会受到蚂蚁在路径上的行走距离、信息素挥发率、以及其他因素的影响。
所有蚂蚁行走结束后,信息素更新过程便开始了。
3.蚁群算法的应用领域蚁群算法在解决优化问题方面具有很大的应用潜力,其能够用于很多领域。
以下是蚁群算法在各个领域的应用举例:(1)路径规划领域蚁群算法可以应用在路径规划领域中,用于求解最短路径和最优路径问题。
在实际应用中,蚁群算法在公共交通网络、航空路线规划、车辆路径优化等方面都表现出了很好的效果。
(2)组合优化领域蚁群算法在组合优化领域中得到了广泛的应用,可以用于解决如旅行商问题、装载问题、集合划分问题等复杂的组合优化问题。
(3)机器学习领域蚁群算法在机器学习领域的应用,包括聚类、分类、特征选择等方面。
蚁群算法理论、应用及其与其它算法的混合

基本内容
蚁群算法是一种基于自然界中蚂蚁觅食行为的启发式优化算法,被广泛应用 于解决各种优化问题。该算法具有鲁棒性、并行性和自适应性等优点,但同时也 存在一些局限性,如易陷入局部最优解等问题。本次演示将详细介绍蚁群算法的 基本理论、应用场景以及与其它算法的混合使用。
蚁群算法的实现包括两个关键步骤:构造解和更新信息素。在构造解的过程 中,每只蚂蚁根据自己的概率选择下一个节点,这个概率与当前节点和候选节点 的信息素以及距离有关。在更新信息素的过程中,蚂蚁会在构造解的过程中更新 路径上的信息素,以便后续的蚂蚁能够更好地找到最优解。
蚁群算法在许多领域都得到了广泛的应用。在机器学习领域,蚁群算法被用 来提高模型的性能和效果。例如,在推荐系统中,蚁群算法被用来优化用户和物 品之间的匹配,从而提高推荐准确率;在图像处理中,蚁群算法被用来进行特征 选择和图像分割,从而提高图像处理的效果。此外,蚁群算法在数据挖掘、运筹 学等领域也有着广泛的应用。
结论本次演示介绍了蚁群优化算法的理论研究及其应用。通过分析蚁群优化 算法的组成、行为和优化原理,以及其在不同领域的应用案例,本次演示展示了 蚁群优化算法在求解组合优化、路径规划、社会优化和生物信息学等领域问题的 优势和潜力。本次演示展望了蚁群优化算法未来的发展方向和可能挑战,强调了 其理论研究和应用价值。
总之,蚁群算法是一种具有广泛应用价值的优化算法,它通过模拟蚂蚁的觅 食行为来实现问题的优化。未来可以通过进一步研究蚁群算法的原理和应用,以 及克服其不足之处,来提高蚁群算法的性能和扩展其应用领域。
基本内容
理论基础蚁群优化算法由蚁群系统、行为和优化原理三个核心要素组成。蚁 群系统指的是一群相互协作的蚂蚁共同构成的社会组织;行为则是指蚂蚁在寻找 食物过程中表现出的行为模式;优化原理主要是指蚂蚁通过信息素引导和其他蚂 蚁的协同作用,以最短路径找到食物来源。
蚁群算法详细讲解

21
1.2 蚁群优化算法概念
1.2.1 蚁群算法原理 1.2.2 简化的蚂蚁寻食过程 1.2.3 自然蚁群与人工蚁群算法 1.2.4 蚁群算法与TSP问题 1.2.5 初始的蚁群优化算法—基于图的 蚁群系统(GBAS) 1.2.6 一般蚁群算法的框架
22
1.2.1 蚁群算法原理
蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿 生算法。蚂蚁在运动过程中,能够在它所经过的路径上留下一种称 之为外激素(pheromone)的物质进行信息传递,而且蚂蚁在运动过 程中能够感知这种物质,并以此指导自己的运动方向,因此由大量 蚂蚁组成的蚁群集体行为便表现出一种信息正反馈现象:某一路径 上走过的蚂蚁越多,则后来者选择该路径的概率就越大。 为了说明蚁群算法的原理,先简要介绍一下蚂蚁搜寻食物的具 体过程。在蚁群寻找食物时,它们总能找到一条从食物到巢穴之间 的最优路径。这是因为蚂蚁在寻找路径时会在路径上释放出一种特 殊的信息素。当它们碰到一个还没有走过的路口时.就随机地挑选 一条路径前行。与此同时释放出与路径长度有关的信息素。路径越 长,释放的激索浓度越低.当后来的蚂蚁再次碰到这个路口的时 候.选择激素浓度较高路径概率就会相对较大。这样形成一个正反 馈。最优路径上的激索浓度越来越大.而其它的路径上激素浓度却 会随着时间的流逝而消减。最终整个蚁群会找出最优路径。
23
1.2.2 简化的蚂蚁寻食过程 1/3
蚂蚁从A点出发,速度相同,食物在D点,可能随机选择路线ABD 或ACD。假设初始时每条分配路线一只蚂蚁,每个时间单位行走 一步,本图为经过9个时间单位时的情形:走ABD的蚂蚁到达终点, 而走ACD的蚂蚁刚好走到C点,为一半路程。
17
1.1.5 蚁群优化算法应用现状 2/5
蚁群算法简述

2.蚁群算法的特征
下面是对蚁群算法的进行过程中采用的规则进行的一些说明. 范围
蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径一般 是3,那么它能观察到的范围就是33个方格世界,并且能移动的距离也在这 个范围之内. 环境
蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有 信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找 到窝的蚂蚁洒下的窝的信息素.每个蚂蚁都仅仅能感知它范围内的环境信 息.环境以一定的速率让信息素消失. 觅食规则
2.蚁群算法的特征
基本蚁群算法流程图详细
1. 在初始状态下,一群蚂蚁外出,此时没有信息素,那么各 自会随机的选择一条路径. 2. 在下一个状态,每只蚂蚁到达了不同的点,从初始点到这 些点之间留下了信息素,蚂蚁继续走,已经到达目标的蚂蚁 开始返回,与此同时,下一批蚂蚁出动,它们都会按照各条路 径上信息素的多少选择路线selection,更倾向于选择信息 素多的路径走当然也有随机性. 3. 又到了再下一个状态,刚刚没有蚂蚁经过的路线上的信 息素不同程度的挥发掉了evaporation,而刚刚经过了蚂蚁 的路线信息素增强reinforcement.然后又出动一批蚂蚁,重 复第2个步骤. 每个状态到下一个状态的变化称为一次迭代,在迭代多次 过后,就会有某一条路径上的信息素明显多于其它路径,这 通常就是一条最优路径.
人工蚁群算法
基于以上蚁群寻找食物时的最优路径选择问题,可 以构造人工蚁群,来解决最优化问题,如TSP问题.
人工蚁群中把具有简单功能的工作单元看作蚂蚁. 二者的相似之处在于都是优先选择信息素浓度大的路 径.较短路径的信息素浓度高,所以能够最终被所有蚂 蚁选择,也就是最终的优化结果.
两者的区别在于人工蚁群有一定的记忆能力,能够 记忆已经访问过的节点.同时,人工蚁群再选择下一条 路径的时候是按一定算法规律有意识地寻找最短路径, 而不是盲目的.例如在TSP问题中,可以预先知道当前 城市到下一个目的地的距离.
蚁群算法的基本原理

2.1 蚁群算法的基本原理蚁群优化算法是摹拟蚂蚁觅食的原理,设计出的一种群集智能算法。
蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向挪移,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。
某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。
蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成为了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。
蚁穴食物源AB 15cm(a) 蚁穴 1 2 食物源A B (b)人工蚂蚁的搜索主要包括三种智能行为:(1)蚂蚁的记忆行为。
一只蚂蚁搜索过的路径在下次搜索时就再也不被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行摹拟。
(2)蚂蚁利用信息素进行相互通信。
蚂蚁在所选择的路径上会释放一种信息素的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。
(3)蚂蚁的集群活动。
通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就彻底不同。
当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。
3.3.1蚂蚁系统蚂蚁系统是最早的蚁群算法。
其搜索过程大致如下:在初始时刻,m 只蚂蚁随机放置于城市中,各条路径上的信息素初始值相等,设为:0(0)ij ττ=为信息素初始值,可设0m m L τ=,mL 是由最近邻启示式方法构造的路径长度。
蚁群算法ppt课件

2 简化旳蚂蚁寻食过程
假设蚂蚁每经过一处所留下旳信息素为一种单位,则经过36个时间单位 后,全部开始一起出发旳蚂蚁都经过不同途径从D点取得了食物,此时ABD 旳路线来回了2趟,每一处旳信息素为4个单位,而 ACD旳路线来回了一趟, 每一处旳信息素为2个单位,其比值为2:1。
寻找食物旳过程继续进行,则按信息素旳指导,蚁群在ABD路线上增派一 只蚂蚁(共2只),而ACD路线上依然为一只蚂蚁。再经过36个时间单位后, 两条线路上旳信息素单位积累为12和4,比值为3:1。
8
2 简化旳蚂蚁寻食过程
蚂蚁从A点出发,速度相同,食物在D点,可能随机选择路线 ABD或ACD。假设初始时每条分配路线一只蚂蚁,每个时间单位 行走一步,本图为经过9个时间单位时旳情形:走ABD旳蚂蚁到 达终点,而走ACD旳蚂蚁刚好走到C点,为二分之一旅程。
9
2 简化旳蚂蚁寻食过程
本图为从开始算起,经过18个时间单位时旳情形:走ABD旳蚂 蚁到达终点后得到食物又返回了起点A,而走ACD旳蚂蚁刚好走 到D点。
若按以上规则继续,蚁群在ABD路线上再增派一只蚂蚁(共3只),而 ACD路线上依然为一只蚂蚁。再经过36个时间单位后,两条线路上旳信息素 单位积累为24和6,比值为4:1。
若继续进行,则按信息素旳指导,最终全部旳蚂蚁会放弃ACD路线,而都 选择ABD路线。这也就是前面所提到旳正反馈效应。
11
3 自然蚁群与人工蚁群算法
15
5 初始旳蚁群优化算法—基于图旳蚁群 系统(GBAS)
初始旳蚁群算法是基于图旳蚁群算法,graph-based
ant system,简称为GBAS,是由Gutjahr W J在2023年
旳Future Generation Computing Systems提出旳.
蚁群算法及案例分析

群在选择下一条路径的时
候并不是完全盲目的,而是
按一定的算法规律有意识
地寻找最短路径
自然界蚁群不具有记忆的
能力,它们的选路凭借外
激素,或者道路的残留信
息来选择,更多地体现正
反馈的过程
人工蚁群和自然界蚁群的相似之处在于,两者优先选择的都
是含“外激素”浓度较大的路径; 两者的工作单元(蚂蚁)都
for ii=2:N
R_best(NC,:)=Tabu(pos(1),:);
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)])
L_ave(NC)=mean(L);
hold on
NC=NC+1;
end
%第五步:更新信息素
Delta_Tau=zeros(n,n);
是通过在其所经过的路径上留下一定信息的方法进行间接的
信息传递。
蚁群算法计算步骤
开始
初始化
迭代次数
Nc=Nc+1
蚂蚁k=1
蚂蚁k=k+1
按照状态转移概率公式选择
下一个元素
修改禁忌表
N
K>=蚂蚁总数m?
Y
按照公式进行
信息量更新
结束
输出程序计
算结果
Y
满足结束条件?
N
TSP算例分析
旅行商问题(TSP)
4、最优路径上的信息素浓度越来越
大.
5、最终蚁群找到最优寻食路径。
蚁群算法原理
自然界中,蚁群的这种寻找路径的过程表现为一种正反馈的过程,与人工蚁群的寻
优算法极为一致。如我们把只具备了简单功能的工作单元视为”蚂蚁”,那么上述寻找
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简化的蚂蚁寻食过程
蚂蚁从A点出发,速度相同,食物在D点,可能随机选
择路线ABD或ACD。假设初始时每条分配路线一只蚂蚁,
每个时间单位行走一步,本图为经过9个时间单位时
的情形:走ABD的蚂蚁到达终点,而走ACD的蚂蚁刚好
走到C点,为一半路程。
8
简化的蚂蚁寻食过程
本图为从开始算起,经过18个时间单位时的情形: 走ABD的蚂蚁到达终点后得到食物又返回了起点A, 而走ACD的蚂蚁刚好走到D点。
14
蚁群算法的计算流程
开始
[ ij (t )] [ij ]
k p (t) ij
ja
l l owe
[
d
ij
(t
)
]
[i
j
]
0
if j allowed otherw is e
初始化
Nc Nc +1
轨迹更新: ij (t n) ij (t) ij (t,t n) Visibility: ij = 1/dij 表示轨迹的相对重要性
9
简化的蚂蚁寻食过程
假设蚂蚁每经过一处所留下的信息素为一个单位,则经过36 个时间单位后,所有开始一起出发的蚂蚁都经过不同路径从D点 取得了食物,此时ABD的路线往返了2趟,每一处的信息素为4个 单位,而 ACD的路线往返了一趟,每一处的信息素为2个单位, 其比值为2:1。
寻找食物的过程继续进行,则按信息素的指导,蚁群在ABD 路线上增派一只蚂蚁(共2只),而ACD路线上仍然为一只蚂蚁。 再经过36个时间单位后,两条线路上的信息素单位积累为12和4, 比值为3:1。
A C
3
A C
4
C
A
5
蚁群算法原理
蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的 一种仿生算法。蚂蚁在运动过程中,能够在它所经过的路 径上留下一种称之为外激素(pheromone)的物质进行信息 传递,而且蚂蚁在运动过程中能够感知这种物质,并以此 指导自己的运动方向,因此由大量蚂蚁组成的蚁群集体行 为便表现出一种信息正反馈现象:某一路径上走过的蚂蚁 越多,则后来者选择该路径的概率就越大。
蚁群算法陈华 20Fra bibliotek0-9算法背景
1992年,意大利学者M.Dorigo在他的博士论文中引 入蚁群算法,其灵感来源于蚂蚁在寻找食物过程中发现路 径的行为。通过对这种行为的模拟,提出来一种新型的模 拟进化算法—— 蚁群算法。目前,蚁群算法已经是群智 能理论研究领域的一种主要算法。
Macro Dorigo
13
蚁群算法与TSP问题
蚂蚁向下一个目标的运动是通过一个随 机原则来实现的,也就是运用当前所在节点 存储的信息,计算出下一步可达节点的概率, 并按此概率实现一步移动,逐此往复,越来 越接近最优解。
蚂蚁在寻找过程中,或者找到一个解后, 会评估该解或解的一部分的优化程度,并把 评价信息保存在相关连接的信息素中。
6
蚁群算法原理
为了说明蚁群算法的原理,先简要介绍一下蚂蚁 搜寻食物的具体过程。在蚁群寻找食物时,它们总能 找到一条从食物到巢穴之间的最优路径。这是因为蚂 蚁在寻找路径时会在路径上释放出一种特殊的信息素。 当它们碰到一个还没有走过的路口时,就随机地挑选 一条路径前行,与此同时释放出与路径长度有关的信 息素。路径越长,释放的激索浓度越低,当后来的蚂 蚁再次碰到这个路口的时候,选择激素浓度较高路径 概率就会相对较大,这样形成一个正反馈。最优路径 上的激索浓度越来越大,而其它的路径上激素浓度却 会随着时间的流逝而消减,最终整个蚁群会找出最优 路径。
11
蚁群算法与TSP问题
TSP问题表示为一个N个城市的有向图G=(N,A),
其中 N {1,2,...,n} A {(i, j) | i, j N}
城市之间距离 目标函数为
(d ij ) nn
n
f (w)
d , il 1il
l 1
其中 w (i1 , i2 , , in 为) 城市1,2,…n的一个排列, in1 。i1
若按以上规则继续,蚁群在ABD路线上再增派一只蚂蚁(共 3只),而ACD路线上仍然为一只蚂蚁。再经过36个时间单位后, 两条线路上的信息素单位积累为24和6,比值为4:1。
若继续进行,则按信息素的指导,最终所有的蚂蚁会放弃 ACD路线,而都选择ABD路线。这也就是前面所提到的正反馈效 应。
10
自然蚁群与人工蚁群算法
基于以上蚁群寻找食物时的最优路径选择问题,可以构造 人工蚁群,来解决最优化问题,如TSP问题。
人工蚁群中把具有简单功能的工作单元看作蚂蚁。二者的 相似之处在于都是优先选择信息素浓度大的路径。较短路径的 信息素浓度高,所以能够最终被所有蚂蚁选择,也就是最终的 优化结果。
两者的区别在于人工蚁群有一定的记忆能力,能够记忆已 经访问过的节点。同时,人工蚁群再选择下一条路径的时候是 按一定算法规律有意识地寻找最短路径,而不是盲目的。例如 在TSP问题中,可以预先知道当前城市到下一个目的地的距离。
1.将解空间的每一个分量分成许多小区间,这样整个解 空间被分成许多小多面体,将每个多面体看为一个节点, 然后用人工蚂蚁在这些节点之间行走最后找到最优解。
对每只蚂蚁按概率移到下一顶点 更新每个蚂蚁的个体禁忌表 信息量更新
表示能见度的相对重要性
达到最大循环次数
轨迹的持久性
ij 表示第K只蚂蚁在本次循环中留在路径ij上的输信出最息短路量径及其长度
结束
计算结果
10城市TSP问题
20城市TSP问题
计算结果
30城市TSP问题
48城市TSP问题
连续蚁群算法
12
蚁群算法与TSP问题
TSP问题的人工蚁群算法中,假设m只蚂蚁 在图的相邻节点间移动,从而协作异步地得到 问题的解。每只蚂蚁的一步转移概率由图中的 每条边上的两类参数决定:1.信息素值,也称 信息素痕迹。2.可见度,即先验值。
信息素的更新方式有2种,一是挥发,也 就是所有路径上的信息素以一定的比率进行减 少,模拟自然蚁群的信息素随时间挥发的过程; 二是增强,给评价值“好”(有蚂蚁走过)的边 增加信息素。
从上面可以看出,蚁群算法比较显著的特点是: 整个算法过程更适用于离散对象问题。在算法求解 组合优化问题过程中,路径是离散和有限的路径, 蚂蚁的每一步选择都是在离散值中进行的。这一特 点使得将蚁群算法直接应用于一般常规的连续对象 优化问题存在一定的困难。
应用蚁群算法求解连续对象优化问题,目前的处理方 法大致为: