ansysfluent中文版流体计算工程案例详解

合集下载

介绍计算流体力学通用软件——Fluent

介绍计算流体力学通用软件——Fluent

介绍计算流体力学通用软件——Fluent专业品质权威编制人:______________审核人:______________审批人:______________编制单位:____________编制时间:____________序言下载提示:该文档是本团队精心编制而成,期望大家下载或复制使用后,能够解决实际问题。

文档全文可编辑,以便您下载后可定制修改,请依据实际需要进行调整和使用,感谢!同时,本团队为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、进修资料、教室资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想进修、参考、使用不同格式和写法的资料,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestyle materials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!介绍计算流体力学通用软件——Fluent介绍计算流体力学通用软件——Fluent一、引言计算流体力学(Computational Fluid Dynamics,简称CFD)是探究流体运动规律的一种数值计算方法,并通过计算机模拟流体在各种工况下的运动与交互作用。

FLUENT算例 (8)

FLUENT算例 (8)

冷、热水混合器内的三维流动与换热FLUENT分析冷水和热水分别自混合器的两侧沿水平切向方向流入,在容器混合后经过下部渐缩通道流入等径的出流管最后流入大气。

混合器的简图如下所示。

一、利用GANBIT建立混合器计算模型第1步:启动GAMBIT并选定求解器(fluent5/6)第2步:创建混合器主体第3步:设置混合器切向入流管第4步:去掉小圆柱体相交的多余部分,并将三个圆柱体连接成一个整体第5步:创建主体下部圆锥第6步:创建出流小管第7步:将混合器上部、渐缩部分和下部出流小管合为一个整体第8步:对混合区内进行网格划分操作:MESH→VOLUME→MESH VOLUMES打开“Mesh Volumes”设置对话框(1)点击Volume右侧黄色区域;(2)用shift+鼠标左键点击混合器边缘线;(3)在Spacing项,选择Interval size,并填入0.5;(4)Type项选择TGrid;(5)点击Apply。

如图所示。

第9步:检查网格划分情况第10步:设置边界类型操作:ZONES→SPECIFY BOUNDARY TYPES(1)设置入流口(inlet-1)边界类型为VELOCITY_INLET;a)确定action项为add;b)在name项输入inlet-1c)在type列表中选择VELOCITY_INLET;d)点击faces项右侧区域;e)用shift+鼠标左键点击混合器入流口界面边线。

f)点击apply(2)重复上述步骤设置另一个入流口(inlet-2).(3)设置下部出流口边界类型为PRESSURE_OUTLET.第11步:输出网格文件(.msh)操作:file→export→mesh…二、利用FLUENT 3D求解器进行求解第1步:检查网格并定义长度单位1.读入网格文件2.确定长度单位为cm操作:grid→scale…(1)在units conversion下的grid was created in 列表中选择cm;(2)点击change length units;此时左侧的scale factors下的X,Y,Z都变为0.01. (3)点击下边scale按钮;单位由m变为cm;(4)Close第2步:创建计算模型1.设置求解器操作:define→models→energy…(1)在solver想选择pressure basic(2)在formulation项选择implicit(3)在space项选择3D(4)在time项选择steady(5)Ok。

ansys流体力学仿真应用实例

ansys流体力学仿真应用实例

ansys流体力学仿真应用实例
你们有没有想过,水在管道里流动的时候,到底发生了什么奇妙的事情呀?今天呀,咱们就一起来了解一个特别有趣的东西——ANSYS流体力学仿真,通过它,咱们就能像有一双神奇的眼睛一样,看清水流在管道里的奇妙之旅啦!
想象一下,你家厨房的水龙头打开了,水哗哗地流出来,然后通过水管流到了水池里。

这看起来好像很平常,对不对?可是呀,这里面藏着好多小秘密呢!比如说,水在管道里流动的速度是不是到处都一样呀?水对管道壁会不会有压力呀?
ANSYS流体力学仿真就像一个超级厉害的魔法盒子,它能帮我们把这些秘密都找出来。

就好比你有了一个能看透一切的望远镜,能清楚地看到水在管道里是怎么一步一步流动的。

举个例子哈,假如咱们要设计一个灌溉农田的水管系统。

如果不了解水在管道里的流动情况,可能就会出现有的农田水太多,都漫出来了;而有的农田呢,又得不到足够的水,庄稼就会渴坏啦。

但是有了ANSYS流体力学仿真,咱们就能提前知道水在管道里哪个地方流得快,哪个地方流得慢,然后根据这些情况来设计管道的粗细和形状,这样就能让每一块农田都得到刚刚好的水,庄稼就会长得又高又壮啦!
再比如说,你有没有见过喷泉呀?喷泉里的水喷得那么高,那么漂亮。

这背后呀,也有流体力学的功劳呢!设计师们可以用ANSYS流体力学仿真来看看水在喷泉管道里是怎么流动的,然后调整喷水的角度和力度,让喷泉变得更加美丽壮观。

ANSYS流体力学仿真是不是很神奇呀?它就像一个魔法助手,能帮助我们解决好多和流体有关的问题,让我们的生活变得更加方便和美好。

以后呀,说不定你们也能学会这个神奇的魔法,去探索更多有趣的秘密呢!。

AnsysWorkbenchFluent流体管道初级教程示例合并

AnsysWorkbenchFluent流体管道初级教程示例合并

Fluent示例鉴于网上Fluent免费资料很少,又缺少实例教程。

所以,分享此文章,希望对大家有所帮助。

1.1问题描述本示例为ansys-fluent15.0-指南中的,不过稍有改动。

1.2 Ug建模图1.3 Workbench设置项目设置如下图所示。

(为了凸显示例,所以个项目名称没改动;并且用两种添加项目方式分析,还增加了一个copy项,以供对比。

)说明:ansys workbench15.0与ug8.5(当然,也包括同一时期的solidworks、Pro/e等三维CAD软件)可无缝连接,支持ug8.5建立的模型,可直接导入到ansys workbench15.0中。

方法:在workbench中的Geometry点击右键,弹出快捷菜单,选择“browse”,浏览到以保存的文件,打开即可。

个人感觉workbench 建模不方便。

1.4 DM处理Workbench中的DM打开模型,将导入的模型在DM中切片处理,以减少分网、计算对电脑硬件的压力(处理大模型常用的方法,也可称之为技巧)。

最终效果,如下图所示。

为以后做Fluent方便,在这里要给感兴趣的面“取名”(最好是给每一个面都取名。

这样,便于后续操作)。

方法是右键所选择的面,在弹出的对话框中“添加名称”即可,给“面”取“名“成功后,会在左边的tree Outline中显示相应的“名”。

结果如下图所示(图中Symmetry有两个,有一个是错的,声明一下)1.5 Mesh设置如下图所示。

在Mesh中insert一个sizing项(右键Mesh,选Sizing即可),以便分体网格,其设置如下:分体网格的方法:先选择“体”,然后在Geometry中选择Apply 即可。

最后设置单元大小6e-3m。

1.6 setup设置如下图所示。

1.6.1Units设置选择General中的Units项,打开对话框,如下设置:选择好后,点击close后确认并关闭对话框。

最新 ANSYS Fluent中文版介绍

最新 ANSYS Fluent中文版介绍

有 液 体 受 热 或 受 冷 产 生 相 变 的 系 统( 例 如 如何影响流体温度变化等。
热 交换器)需要精确的多相流模拟功能; 在这个血液流经心脏三叶瓣阀的瞬态 双 向 流 固 耦 合 解 决 方 案 中, 血 液 流 面临多物理场现象挑战的系统(例如流固耦合) 将正确的投资用于合适的技术
使 用的是非牛顿流体,生物组织使用 需要简单易用且高精度的高级功能。
并行可扩展性 Fluent 的并行扩展功能确保您的仿真能够 高效地利用由同类或异类处理器构成的并行 网络。动态的、基于物理的负载平衡技术 自 动化地探测和分析并行性能,在不同的 处理器之间调整计算网格的分布情况,最大化 计算速度。
用户定制化 ANSYS Fluent 可以轻易实现定制和扩展。 例 如, 可 以 实 现 您 自 己 专 业 的 物 理 模 型, 设计以及脚本化用户环境以拥有更好的操作 体验,或者更进一步实现工作流程的自动化。
处理完整系统的复杂物理现象
您可以使用 Fluent 无缝耦合 ANSYS 的结构
多年以来,产品已经变得非常复杂,您所面 或电磁仿真工具,获取对整个系统更深入的
临的流体动力学问题也更加复杂:有运动部 认识。例如,您可以研究流体系统如何导致
件的系统(例如活塞和阀门)需要瞬态分析; 容 器 的 结 构 变 形, 或 者 电 子 器 件 产 生 热 量
在某些应用领域,需要软件产品具有可追溯 的、信誉卓著的质量认证过程。ANSYS 对产品 质量有着深入和长期的承诺。我们是第一家 获得 ISO9001 设计分析软件认证的机构, 并且年复一年地维持着这项认证。
对于 HEV/EV 的开发,例如电池包内的电池单体温度 分布和流场,ANSYS 集成平台可以让研究人员同时 评估多种物理现象(包括流体、结构应力、热、电磁 场等)在各部件、各子系统上的作用情况,以及系统 级的各物理场之间的相互作用情况。

学习fluent (流体常识及软件计算参数设置)

学习fluent (流体常识及软件计算参数设置)

luent中一些问题----(目录)1 如何入门2 CFD计算中涉及到的流体及流动的基本概念和术语2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid)2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid)2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid)2.4 层流(Laminar Flow)和湍流(Turbulent Flow)2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow)2.6 亚音速流动(Subsonic)与超音速流动(Supersonic)2.7 热传导(Heat Transfer)及扩散(Diffusion)3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?3.1 离散化的目的3.2 计算区域的离散及通常使用的网格3.3 控制方程的离散及其方法3.4 各种离散化方法的区别4 常见离散格式的性能的对比(稳定性、精度和经济性)5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?6.1 可压缩Euler及Navier-Stokes方程数值解6.2 不可压缩Navier-Stokes方程求解7 什么叫边界条件?有何物理意义?它与初始条件有什么关系?8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?16 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?17 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响18 24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响26 什么叫问题的初始化?在FLUENT中初始化的方法对计算结果有什么样的影响?初始化中的“patch”怎么理解?27 什么叫PDF方法?FLUENT中模拟煤粉燃烧的方法有哪些?30 FLUENT运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差震荡对计算收敛性和计算结果有什么影响?31数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免?32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决?33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值?参考压力有何作用?如何设置和利用它?35 在FLUENT结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示意图插入到论文中来说明问题?36 在DPM模型中,粒子轨迹能表示粒子在计算域内的行程,如何显示单一粒径粒子的轨道(如20微米的粒子)?37 在FLUENT定义速度入口时,速度入口的适用范围是什么?湍流参数的定义方法有哪些?各自有什么不同?38 在计算完成后,如何显示某一断面上的温度值?如何得到速度矢量图?如何得到流线?39 分离式求解器和耦合式求解器的适用场合是什么?分析两种求解器在计算效率与精度方面的区别43 FLUENT中常用的文件格式类型:dbs,msh,cas,dat,trn,jou,profile等有什么用处?44 在计算区域内的某一个面(2D)或一个体(3D)内定义体积热源或组分质量源。

ansys流固耦合案例

ansys流固耦合案例

ansys流固耦合案例1. Ansys流固耦合案例:热沉设计热沉是一种用于散热的设备,通常用于电子设备中,以降低温度并保护设备不受过热损坏。

在设计热沉时,流体流动和热传导是两个重要的物理过程。

Ansys流固耦合可以帮助工程师模拟和优化热沉的设计。

在这个案例中,我们考虑了一个由铝合金制成的热沉。

热沉的底部与电子设备紧密接触,通过流体流动和热传导来吸收和传递热量。

通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 流体流动模拟:我们可以使用Ansys Fluent模块模拟流体在热沉内部的流动情况。

通过设定合适的边界条件和材料属性,我们可以计算出流体的速度场和压力场。

2) 热传导模拟:我们可以使用Ansys Mechanical模块模拟热沉内部的热传导过程。

通过设定热源和材料属性,我们可以计算出热沉内部的温度分布。

3) 流固耦合模拟:在流体流动和热传导模拟的基础上,我们可以使用Ansys的流固耦合模块将二者结合起来。

通过设定合适的耦合条件,我们可以模拟出流体对热沉的冷却效果,并计算出热沉的最终温度分布。

通过这个案例,我们可以优化热沉的设计,以达到更好的散热效果。

我们可以调整热沉的几何形状、材料属性和流体流动条件,以最大程度地提高散热效率,并确保电子设备的正常运行。

2. Ansys流固耦合案例:风力发电机叶片设计风力发电机叶片是将风能转化为机械能的关键部件。

在设计风力发电机叶片时,流体力学和结构力学是两个重要的物理过程。

Ansys 流固耦合可以帮助工程师模拟和优化叶片的设计。

在这个案例中,我们考虑了一个三叶式风力发电机叶片。

叶片由复合材料制成,通过受风力作用,将机械能传递给发电机。

通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 风场模拟:我们可以使用Ansys Fluent模块模拟风力对叶片的作用。

通过设定合适的边界条件和材料属性,我们可以计算出风场的速度场和压力场。

2) 结构分析:我们可以使用Ansys Mechanical模块模拟叶片的结构响应。

fluent f_p详细讲解

fluent f_p详细讲解

fluent f_p详细讲解
Fluent是一种流体动力学仿真软件,用于解决与流体流动、传
热和化学反应相关的工程问题。

而f_p则代表着Fluent中的
“fluent-parallel”,它是指Fluent的并行计算功能。

首先,让我们来详细讲解一下Fluent。

Fluent是由Ansys公司
开发的一款CFD(计算流体力学)软件,它能够模拟和分析液体和
气体在各种工程应用中的流动、传热和化学反应等现象。

Fluent具
有强大的求解器和网格生成器,能够处理复杂的流体流动问题,如
湍流、多相流、燃烧等。

用户可以通过Fluent对液体和气体在管道、汽车、飞机、建筑等各种工程领域中的流动行为进行模拟和分析,
从而优化设计、提高性能和降低成本。

接下来,我们来详细讲解一下f_p,即Fluent中的并行计算功能。

在Fluent中,用户可以利用并行计算技术来加速求解复杂的流
体动力学问题。

并行计算可以将计算任务分配给多个处理器或计算
节点同时进行,从而提高计算效率和速度。

通过f_p,用户可以利
用多核处理器、集群系统或其他并行计算平台来加速Fluent的求解
过程,特别是对于大规模、高精度的流体动力学仿真问题来说,这
一功能显得尤为重要。

总的来说,Fluent是一款强大的流体动力学仿真软件,而f_p 则是其并行计算功能,能够帮助用户更高效地进行复杂流体流动问题的求解。

希望这个回答能够帮助你更好地理解Fluent和f_p。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ansysfluent中文版流体计算工程案例详解以汽车空气动力学为例,我们可以利用ANSYS Fluent来模拟车辆行
驶过程中的风阻和气动性能。

首先,我们需要建立车辆的几何模型,并进
行网格划分。

网格划分的精度和密度直接影响到计算结果的准确性。

在划
分网格时,我们需要考虑到车辆外形的复杂性以及细节特征,如轮胎、后
视镜等。

建立几何模型和划分网格后,我们可以导入该模型并设置初始条件。

初始条件包括初始流速、压力和温度等。

接下来,我们需要设置流体物性,如空气的密度、粘度和热导率等。

在进行计算之前,我们还需要设置边界条件。

车辆表面通常设定为无
滑移壁面,即在边界处满足流速为零的条件。

此外,我们还需要设置出口
条件来模拟车辆行驶过程中的空气流动。

出口条件可以设定为自由出流或
常数质量流率出流。

此外,我们还可以设置车辆的速度和方向等边界条件。

设置完边界条件后,我们可以开始求解流体力学方程。

ANSYS Fluent
使用的是控制方程的有限差分形式来近似求解。

利用迭代算法,可以逐步
优化流场的精度和稳定性,直至达到收敛条件。

在求解过程中,我们可以通过图形输出和数据记录等方式来观察和分
析结果。

图形输出可以显示出流场、压力分布、速度分布和湍流特性等。

数据记录可以提供流场参数的详细信息,如压力、温度、速度和质量流率等。

通过以上步骤,我们可以获得汽车在不同速度下的风阻系数、力矩和
气动特性等重要参数。

这些结果可以为汽车的空气动力学设计和优化提供
依据。

综上所述,ANSYS Fluent可以应用于各种流体力学计算工程。

通过几何建模、网格划分、边界条件设置、流体力学方程和求解等步骤,我们可以对流动过程进行模拟和分析,并获得各种流场参数。

这些参数对于优化设计、性能评估和产品改进等方面具有重要意义。

相关文档
最新文档