平方差公式练习题及答案

合集下载

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题(附答案)初中数学平方差完全平方公式练题一、单选题1.下列各式添括号正确的是(。

)A.x y(y x)B.x y(x y)C.10m5(2m)D.32a(2a3)2.(1y)(1y)(。

)A.1+y2B.1y2C.1y2D.1y23.下列计算结果为2ab a2b2的是(。

)A.(a b)2B.(a b)2C.(a b)2D.(a b)24.5a24b2=()25a416b4,括号内应填(。

)A.5a24b2B.5a24b2C.5a24b2D.5a24b25.下列计算正确的是(。

)A.(x y)2x22xy y2B.(m2n)2m24n2C.(3x y)2=9x2-6xy+y2D.x5x25x25/46.多项式15m3n25m2n20m2n3各项的公因式是(。

)A.5mnB.5m2n2C.5m2nD.5mn27.下列多项式中,能用平方差公式分解因式的是(。

)A.a2b 2B.5m220mnC.x2y2D.x298.化简(x3)2x(x6)的结果为(。

)A.6x9B.12x9C.9D.3x99.下列多项式能用完全平方公式分解的是(。

)A.x2x 1B.12x x2C.a2a1/2D.a2b22ab10.计算(3a bc)(bc3a)的结果是(。

)A.b2c29a2B.b2c23a2C.b2c29a2D.9a2b2c211.如果x2(m1)x9是一个完全平方式,那么m的值是(。

)A.7B.7C.5或7D.5或512.若a,b,c是三角形的三边之长,则代数式a22bc c2b2的值(。

)A.小于0B.大于0C.等于0D.以上三种情况均有可能二、解答题13.计算:1)-3x2-5y/(x2-5y);2)9x2+1(1-3x)(-3x-1)。

解:(1)-3x2-5y/(x2-5y)= -3x2/(x2-5y) - 5y/(x2-5y) = -3 - 5y/(x2-5y)。

2)9x2+1(1-3x)(-3x-1) = 9x2+1(9x2+3x-x-1) = (3x+1)(3x-1)。

平方差公式练习题解方程

平方差公式练习题解方程

平方差公式练习题解方程平方差公式(差平方公式)是指两个数的平方之差可以表示为这两个数和差的乘积。

在代数运算中,我们经常会遇到需要解方程的情况。

而平方差公式则是解决一类特定形式方程的利器。

下面我们通过一些练习题来掌握平方差公式的应用,进而解方程。

练习题1:已知方程 x^2 - 9 = 0,请解方程并写出解的集合。

解法:根据平方差公式,我们可以将方程 x^2 - 9 = 0 转化为 (x-3)(x+3) = 0。

根据乘法为零的性质可知,当 (x-3) = 0 或 (x+3) = 0 时,方程成立。

解得 x = 3 或 x = -3。

因此,解方程 x^2 - 9 = 0 的解集为 {-3, 3}。

练习题2:已知方程 4x^2 - 81 = 0,请解方程并写出解的集合。

解法:根据平方差公式,我们可以将方程 4x^2 - 81 = 0 转化为 (2x-9)(2x+9) = 0。

立。

解得 x = 9/2 或 x = -9/2。

因此,解方程 4x^2 - 81 = 0 的解集为 {-9/2, 9/2}。

练习题3:已知方程 2x^2 - 16 = 0,请解方程并写出解的集合。

解法:根据平方差公式,我们可以将方程 2x^2 - 16 = 0 转化为 2(x-2)(x+2)= 0。

根据乘法为零的性质可知,当 (x-2) = 0 或 (x+2) = 0 时,方程成立。

解得 x = 2 或 x = -2。

因此,解方程 2x^2 - 16 = 0 的解集为 {-2, 2}。

练习题4:已知方程 9x^2 - 4 = 0,请解方程并写出解的集合。

解法:根据平方差公式,我们可以将方程 9x^2 - 4 = 0 转化为 (3x-2)(3x+2)= 0。

立。

解得 x = 2/3 或 x = -2/3。

因此,解方程 9x^2 - 4 = 0 的解集为 {-2/3, 2/3}。

通过练习题的解答,我们可以看到平方差公式在解方程中的应用。

平方差公式练习题(打印版)

平方差公式练习题(打印版)

平方差公式练习题(打印版)# 平方差公式练习题(打印版)## 一、基础练习题1. 计算下列平方差:- \( a^2 - b^2 \)- \( (x + 2)^2 - (x - 2)^2 \)2. 利用平方差公式,简化以下表达式:- \( (3x + 1)^2 - (3x - 1)^2 \)- \( (2y + 3)^2 - (2y - 3)^2 \)3. 计算下列多项式的差,并用平方差公式简化:- \( (x + y)^2 - (x - y)^2 \)- \( (a + b)^2 - (a - b)^2 \)## 二、进阶练习题4. 若 \( x^2 - 4 = 0 \),求 \( x^4 - 16 \) 的值。

5. 已知 \( a^2 - b^2 = 20 \),求 \( (3a + 3b)^2 - (3a - 3b)^2 \)。

6. 利用平方差公式证明:- \( (x + y + z)^2 - (x - y - z)^2 = 4xy + 4xz + 4yz \)## 三、应用题7. 一个长方形的长是宽的两倍,若长和宽都增加2米,面积增加了40平方米。

求原长方形的长和宽。

8. 在一个正方形的四个角上各剪去一个边长为1米的正方形,求剩下的图形面积。

9. 一个数的平方减去另一个数的平方等于这个数的两倍,求这个数。

## 四、探索题10. 探索并证明:\( (a + b + c)^2 - (a - b + c)^2 = 4ab \)。

11. 给定 \( a^2 - b^2 = 25 \) 和 \( c^2 - d^2 = 36 \),求\( (a + b + c + d)^2 - (a - b + c - d)^2 \)。

12. 证明:对于任意实数 \( x \) 和 \( y \),都有 \( (x^2 +y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2 \)。

## 答案提示:- 对于基础练习题,可以直接应用平方差公式 \( (a + b)(a - b) =a^2 - b^2 \) 进行计算。

平方差公式训练题

平方差公式训练题

平方差公式训练题平方差公式是数学中一个非常重要的公式,形如$(a+b)(a-b)=a^2 -b^2$。

接下来咱们就一起通过一些训练题来好好练练手!咱先来看一道简单的:计算$(3 + 2x)(3 - 2x)$。

这道题就是直接套平方差公式,$a = 3$,$b = 2x$,所以结果就是$3^2 - (2x)^2 = 9 - 4x^2$。

再来看这道:$(5m + 3n)(5m - 3n)$。

还是同样的套路,$a = 5m$,$b = 3n$,答案就是$(5m)^2 - (3n)^2 = 25m^2 - 9n^2$。

下面这道有点意思哈,计算$(1 + 4x^2)(1 - 4x^2)$。

按照公式,$a =1$,$b = 4x^2$,结果就是$1^2 - (4x^2)^2 = 1 - 16x^4$。

有一次我在课堂上讲平方差公式的练习题,一个平时挺调皮的学生突然举手说:“老师,我感觉这个公式就像变魔术一样,一展开就变得简单了。

”我笑着回答他:“对呀,数学里的公式就像是魔法咒语,用对了就能轻松解决难题。

”他听了之后眼睛都亮了,接下来做题的时候特别认真。

咱们继续,$(0.5x + 3y)(0.5x - 3y)$,$a = 0.5x$,$b = 3y$,得出$(0.5x)^2 - (3y)^2 = 0.25x^2 - 9y^2$。

还有这道:$(2a + 5b)(2a - 5b)$,$a = 2a$,$b = 5b$,答案是$(2a)^2 - (5b)^2 = 4a^2 - 25b^2$。

来一道稍微复杂点的,计算$(x + 3)(x - 3)(x^2 + 9)$。

这道题可不能着急,先算前面的$(x + 3)(x - 3)$,得到$x^2 - 9$,然后再乘以$(x^2 + 9)$,就变成了$(x^2 - 9)(x^2 + 9)$,这时候再用平方差公式,$a = x^2$,$b = 9$,结果就是$x^4 - 81$。

平方差、完全平方公式专项练习题 经典

平方差、完全平方公式专项练习题  经典

平方差公式专项练习题有关配方问题(一)对于a2+2ab+b2=(a+b)2、a2-2ab+b2=(a-b)2的配方问题是,对于a2,2ab,b2这三项,认准特点,式子中缺哪项就补哪项,但要保证式子相等。

具体操作:先确定第一项,再确定第三项,最后确定中间项,并且要检验中间项与原式中的中间项相等。

(二)练习: 1.若x2+mx+9是完全平方式,则m=_____.2. 若x2+12x+m2是完全平方式,则m=_____.3. 若x2-mx+9=(x+3)2,则m=_____.4. 若4x2-mx+9是完全平方式,则m=_____.5.若4x2+12x+m2是完全平方式,则m=_____.6.若(mx)2+12x+9是完全平方式,则m=_____.7.若mx2+12x+9是完全平方式,则m=_____.8.已知x2-2(m+1)xy+16y2是一个完全平方式,那么m的值是_____.9.(1)化简(a-b)2+(b-c)2+(a-c).(2)利用上题的结论,且a-b=10,b-c=5,求a2+b2+c2-ab-bc-ac的值.(3)已知a=2x-12,b=2x-10,c=2x+4,求a2+b2+c2-ab-bc-ac的值(4)已知a,b,c是三角形的三边且满足a2+b2+c2-ab-bc-ac=0,判断三角形的形状.10.已知x2-2x+y2+6y+10=0,求x=_____,y=_____,x+y=_____.11. 已知x2-4x+y2+6y+13=0,求x=_____,y=_____,xy=_____.12.试说明N=x2-4x+y2+6y+15永远为正值.平方差公式专项练习题一、基础题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).二、提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.利用平方差公式计算:2009×2007-20082.(1)利用平方差公式计算:22007200720082006-⨯.(2)利用平方差公式计算:22007200820061⨯+.3.解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).三、实际应用题4.广场内有一块边长为2a 米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.拓展题型1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)( bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

平方差公式练习题

平方差公式练习题

平方差公式练习题一、选择题1. 平方差公式是什么?A. a^2 - b^2 = (a+b)(a-b)B. a^2 - b^2 = (a-b)(a+b)C. a^2 + b^2 = (a+b)^2D. a^2 - b^2 = a^2 - 2ab + b^22. 以下哪个表达式是正确的平方差公式?A. (x+y)(x-y) = x^2 + y^2B. (x+y)(x-y) = x^2 - y^2C. (x+y)(x-y) = x^2 + 2xy - y^2D. (x+y)(x-y) = x^2 - 2xy + y^23. 计算下列表达式的值:(3x+5)(3x-5) = ?A. 9x^2 - 25B. 9x^2 + 25C. 15x^2 - 25D. 15x^2 + 254. 如果 (a+b)(a-b) = 49,那么 a^2 - b^2 的值是多少?A. 49B. 7C. 50D. 0二、填空题5. 利用平方差公式,将下列表达式展开:(2x-3)(2x+3) = _______。

6. 如果 (m+n)(m-n) = 64,那么 m^2 - n^2 = _______。

7. 计算下列表达式的值:(4a+7b)(4a-7b) = _______。

8. 已知 (x-y)^2 = 25,(x+y)^2 = 36,求 x^2 - y^2 的值。

三、解答题9. 利用平方差公式简化下列表达式,并求其值:(2a+3b)(2a-3b) - 5(a^2 - b^2)。

10. 已知 a^2 - b^2 = 48,求 (a+b)(a-b) 的值。

11. 计算下列表达式的值,如果可能的话,使用平方差公式:(3x-2y)(3x+2y) + (5x+4y)(5x-4y)。

12. 假设 (x+y)(x-y) = 100,求 x^2 - y^2 的值,并说明 x 和 y 的可能值。

四、证明题13. 证明平方差公式 a^2 - b^2 = (a+b)(a-b)。

平方差公式提高测试卷(含答案)

平方差公式提高测试卷(含答案)

平方差公式提高测试卷(含答案) 平方差公式提高测试卷时间:90分钟,总分100分。

一、选择题(本大题共10小题,共30.0分)1.下列各式中,能运用平方差公式进行计算的是()。

A。

(2a+3a)(2a−3a)B。

(−a+0.5)(−a−0.5)C。

(a+a)(−a−a)D。

(2a2+a2)(2a2+a2)2.计算2009×2011−的结果是()。

A。

1B。

−1C。

2008D。

−20083.下列算式能用平方差公式计算的是()。

A。

(2a+a)(2a−a)B。

(−2a−1)(−2a−1)C。

(3a−a)(−3a+a)D。

(−a−a)(−a+a)4.下列式子可以用平方差公式计算的是()。

A。

(a−4)(4−a)B。

(−a−3)(3−a)C。

(a+a)(−a−a)D。

(−a−a)(−a+a)5.下列运算正确的是()。

A。

a2⋅a2=2a2B。

a2−a2=(a+a)(a−a)C。

(1+2a)2=1+2a+4a2D。

(2a+3)(2a−3)=4a2−96.下列各式能用平方差公式计算的是()。

A。

(2a+a)(2a−a)B。

a2+a2=a4C。

(−a−a)(−a+a)D。

(−a+1)(a+1)=1−a27.与(7a−a2)之积等于a4−49a2的因式为()。

A。

(7a−a2)B。

(7a+a2)C。

(−7a−a2)D。

(a2−7a)8.计算(a4+1)(a2+1)(a+1)(a−1)的结果是()。

A。

a8+1B。

a8−1C。

(a+1)8D。

(a−1)89.如果一个正整数能表示为两个正整数的平方差,那么这个正整数称为“智慧数”,按你的理解,下列4个数中不是“智慧数”的是()。

A。

2002B。

2003C。

2004D。

200510.下列计算不正确的是()。

A。

(2a+1)(2a−1)=4a2−1B。

(a+3)(a−3)=a2−9C。

(−a−a)(−a+a)=a2−a2D。

(3a−a)(−3a+a)=9a2−a2二、填空题(本大题共10小题,共30.0分)11.如果a2=5,a2=3,那么(a+a)(a−a)=______。

平方差公式同步检测练习题(含答案)初中数学

平方差公式同步检测练习题(含答案)初中数学

平方差公式同步检测练习题1.下列各式中,相等关系一定成立的是( )A.(x-y)2=(y-x)2B.(x+6)(x-6)=x 2-6C.(x+y)2=x 2+y 2D.6(x-2)+x(2-x)=(x-2)(x-6)2.下列运算正确的是( )A.x 2+x 2=2x 4B.a 2·a 3= a 5C.(-2x 2)4=16x 6D.(x+3y)(x-3y)=x 2-3y 23.下列计算正确的是( )A.(-4x)·(2x 2+3x-1)=-8x 3-12x 2-4xB.(x+y)(x 2+y 2)=x 3+y 3C.(-4a-1)(4a-1)=1-16a 2D.(x-2y)2=x 2-2xy+4y 24.(x+2)(x-2)(x 2+4)的计算结果是( )A.x 4+16B.-x 4-16C.x 4-16D.16-x 45.19922-1991×1993的计算结果是( )A.1B.-1C.2D.-26.对于任意的整数n ,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是( )A.4B.3C.5D.27.( )(5a +1)=1-25a 2,(2x-3) =4x 2-9,(-2a 2-5b)( )=4a 4-25b 28.99×101=( )( )= .9.(x-y+z)(-x+y+z)=[z+( )][ ]=z 2-( )2.10.多项式x 2+kx+25是另一个多项式的平方,则k= .11.(a +b)2=(a -b)2+ ,a 2+b 2=[(a +b)2+(a -b)2]( ),a 2+b 2=(a +b)2+ ,a 2+b 2=(a -b)2+ .12.计算.(1)(a +b)2-(a -b)2; (2)(3x-4y)2-(3x+y)2;(3)(2x+3y)2-(4x-9y)(4x+9y)+(2x-3y)2;(4)1.23452+0.76552+2.469×0.7655; (5)(x+2y)(x-y)-(x+y)2.13.已知m 2+n 2-6m+10n+34=0,求m+n 的值14.已知a +a 1=4,求a 2+21a 和a 4+41a的值.15.已知(t+58)2=654481,求(t+84)(t+68)的值.16.解不等式(1-3x)2+(2x-1)2>13(x-1)(x+1).17.已知a =1990x+1989,b=1990x+1990,c=1990x+1991,求a 2+b 2+c 2-a b-a c-bc 的值.18.(2003·郑州)如果(2a +2b+1)(2a +2b-1)=63,求a +b 的值.19.已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值.20.化简(x+y)+(2x+21⨯y )+(3x+32⨯y )+…+(9x+98⨯y ),并求当x=2,y=9时的值.21.若f(x)=2x-1(如f(-2)=2×(-2)-1,f(3)=2×3-1),求2003)2003()2()1(f f f +++ 的值.22.观察下面各式:12+(1×2)2+22=(1×2+1)222+(2×2)2+32=(2×3+1)232+(3×4)2+42=(3×4+1)2……(1)写出第2005个式子;(2)写出第n 个式子,并说明你的结论.参考答案1.A2.B3.C4.C5.A6.C7.1-5a 2x+3 -2a 2+5b8.100-1 100+1 99999.x-y z-(x-y) x-y 10.±10 11.4a b 21 - 2a b 2a b 12.(1)原式=4a b ;(2)原式=-30xy+15y ;(3)原式=-8x 2+99y 2;(4)提示:原式=1.23452+2×1.2345×0.7655+0.76552=(1.2345+0.7655)2=22=4. (5)原式=-xy-3y2.13.提示:逆向应用整式乘法的完全平方公式和平方的非负性.∵m 2+n 2-6m+10n+34=0,∴(m 2-6m+9)+(n 2+10n+25)=0,即(m-3)2+(n+5)2=0,由平方的非负性可知,⎩⎨⎧=+=-,05,03n m ∴⎩⎨⎧-==.5,3n m ∴m+n=3+(-5)=-2. 14.提示:应用倒数的乘积为1和整式乘法的完全平方公式.∵a +a 1=4,∴(a +a1)2=42. ∴a 2+2a ·a 1+21a =16,即a 2+21a+2=16. ∴a 2+21a =14.同理a 4+41a=194. 15.提示:应用整体的数学思想方法,把(t 2+116t)看作一个整体.∵(t+58)2=654481,∴t 2+116t+582=654481.∴t 2+116t=654481-582.∴(t+48)(t+68)=(t 2+116t)+48×68=654481-582+48×68=654481-582+(58-10)(58+10)=654481-582+582-102=654481-100=654381.16.x <23 17.解:∵a =1990x+1989,b=1990x+1990,c=1990x+1991,∴a -b=-1,b-c=-1,c-a =2.∴a 2+b 2+c 2-a b-a c-be =21(2a 2+2b 2+2c 2-2a b-2bc-2a c) =21[(a 2-2a b+b 2)+(b 2-2bc+c 2)+(c 2-2a c+a 2)] =21[(a -b 2)+(b-c)2+(c-a)2]=21[(-1)2+(-1)2+22] =21(1+1+4) =3.18.解:∵(2a +2b+1)(2a +2b-1)=63,∴[(2a +2b)+1][(2a +2b)-1]=63,∴(2a +2b)2-1=63,∴(2a +2b)2=64,∴2a +2b=8或2a +2b=-8,∴a +b=4或a +b=-4,∴a +b 的值为4或一4.19.a 2+b 2=70,a b=-5. 20.提示:去括号后合并同类项,然后应用S n =2)1(+n n 与111)1(1+-=+n n n n 解决问题. 原式=x+y+2x+21⨯y +3x+32⨯y +…+9x+98⨯y =(x+2x+3x+…+9x)+(y+21⨯y +32⨯y +…+98⨯y ) =(1+2+3+…+9)x+(1+21⨯y +32⨯y +…+98⨯y )y =2)19(9+·x+(1+1-21+21-31+…+71-81+81-91)y =45x+(1-91)y =45x+917y. 当x=2,y=9时,原式=45×2+917×9=107. 21.∵f(x)=2x-1,∴f(1)+f(2)+f(3)+…+f(2003)=(2×1-1)+(2×2-1)+(2×3-1)+…+(2×2003-1)=(2×1+2×2+2×3+…+2×2003)-1×2003=2(1+2+3+…+2003)-2003=2×2)12003(2003+⨯-2003 =20032+2003-2003=20032∴原式=200320032=2003. 22.解:(1)当n=1时,12+(1×2)2+22=(1×2+1)2;当n=2时,22+(2×3)2+32=(2×3+1)2;当n=3时,32+(3×4)2+42=(3×4+1)2;……第2005个式子即当n=2005时,有20052+(2005×2006)2+20062=(2005×2006+1)2.(2)第n个式子为n2+[n(n+1)]2+(n+1)2=[n(n+1)+1]2.证明如下:∵n2+[n(n+1)]2+(n+1)2=n2+n2(n+1)2+(n2+2n+1)=n2+n2(n2+2n+1)+(n2+2n+1)=n2+n4+2n3+n2+n2+2n+1=n4+2n3+3n2+2n+1,且[n(n+1)+1]2=[n(n+1)2]+2[n(n+1)]·1+12=n2(n+1)2+2n(n+1)+1=n2(n2+2n+1)+2n2+2n+1=n4+2n3+n2+2n2+2n+1=n4+2n3+3n2+2n+1,∴n2+[n(n+1)]2+(n+1)2=[n(n+1)+1]2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方差公式练习题及答案
平方差公式是数学中常见的一个公式,用于求解两个数的平方之差。

它的形式为(a+b)(a-b)=a²-b²。

这个公式在代数中有着广泛的应用,尤其在因式分解、解方程等方面起到了重要的作用。

下面我们来通过一些练习题来熟悉和巩固平方差公式的运用。

练习题1:计算下列各式的值。

1. (5+3)(5-3)
2. (12+7)(12-7)
3. (9+4)(9-4)
4. (20+15)(20-15)
5. (8+5)(8-5)
解答:
1. (5+3)(5-3) = 8*2 = 16
2. (12+7)(12-7) = 19*5 = 95
3. (9+4)(9-4) = 13*5 = 65
4. (20+15)(20-15) = 35*5 = 175
5. (8+5)(8-5) = 13*3 = 39
练习题2:根据已知条件,求解下列方程。

1. x²-16 = 0
2. y²-36 = 0
3. z²-49 = 0
4. a²-81 = 0
5. b²-100 = 0
解答:
1. x²-16 = 0
根据平方差公式,可以得到(x+4)(x-4) = 0
因此,x+4=0 或者 x-4=0
解得 x=-4 或 x=4
2. y²-36 = 0
根据平方差公式,可以得到(y+6)(y-6) = 0
因此,y+6=0 或者 y-6=0
解得 y=-6 或 y=6
3. z²-49 = 0
根据平方差公式,可以得到(z+7)(z-7) = 0
因此,z+7=0 或者 z-7=0
解得 z=-7 或 z=7
4. a²-81 = 0
根据平方差公式,可以得到(a+9)(a-9) = 0
因此,a+9=0 或者 a-9=0
解得 a=-9 或 a=9
5. b²-100 = 0
根据平方差公式,可以得到(b+10)(b-10) = 0 因此,b+10=0 或者 b-10=0
解得 b=-10 或 b=10
通过以上练习题,我们可以看到平方差公式在解方程中的应用。

通过将方程转化为平方差形式,我们可以很轻松地求解出方程的解。

练习题3:应用平方差公式将下列各式进行因式分解。

1. x²-9
2. y²-25
3. z²-16
4. a²-36
5. b²-64
解答:
1. x²-9
根据平方差公式,可以得到(x+3)(x-3)
因此,x²-9 可以因式分解为 (x+3)(x-3)
2. y²-25
根据平方差公式,可以得到(y+5)(y-5)
因此,y²-25 可以因式分解为 (y+5)(y-5)
3. z²-16
根据平方差公式,可以得到(z+4)(z-4)
因此,z²-16 可以因式分解为 (z+4)(z-4)
4. a²-36
根据平方差公式,可以得到(a+6)(a-6)
因此,a²-36 可以因式分解为 (a+6)(a-6)
5. b²-64
根据平方差公式,可以得到(b+8)(b-8)
因此,b²-64 可以因式分解为 (b+8)(b-8)
通过以上练习题,我们可以看到平方差公式在因式分解中的应用。

通过将多项式转化为平方差形式,我们可以更方便地进行因式分解。

总结:平方差公式是数学中重要的一个公式,通过练习题的实践,我们可以更好地掌握和运用这个公式。

在解方程和因式分解中,平方差公式都起到了重要的作用。

希望通过这些练习题的训练,大家对平方差公式有了更深入的理解和掌握。

相关文档
最新文档