椭圆的焦点弦长公式.pdf

椭圆的焦点弦长公式.pdf
椭圆的焦点弦长公式.pdf

椭圆的焦点弦长公式

θ2222

21cos 2c a ab F F ?=及其应用

在有关椭圆的综合题中,常常遇到椭圆焦点弦的问题,如何解决这类问题呢?首先我们有命题:

若椭圆的焦点弦21F F 所在直线的倾斜角为θ,a 、b 、c 分别表示椭圆的长半轴长、短半轴长和焦半距,则有θ

2222

21cos 2c a ab F F ?=。 上面命题的证明很容易得出,在此笔者只谈谈该命题的应用。

例1、已知椭圆的长轴长AB 8=,焦距21F F =24,过椭圆的焦点1F 作一直线交椭圆于P 、Q 两点,设X PF 1∠=α)0(πα<<,当α取什么值时,PQ 等于椭圆的短轴长?

分析:由题意可知PQ 是椭圆的焦点弦,且4=a ,22=c ,从而22=b ,故由焦

点弦长公式θ222221cos 2c a ab F F ?=及题设可得:24cos 816)22(4222

=???α

,解得αcos ±=22?,即α=arc 22cos ?或arc ?π22cos ?。

例2、在直角坐标系中,已知椭圆E 的一个焦点为F (3,1),相应于F 的准线为Y 轴,直线l 通过点F ,且倾斜角为

3

π,又直线l 被椭圆E 截得的线段的长度为516,求椭圆E 的方程。 分析:由题意可设椭圆E 的方程为1)1()3(22

22=?+??b

y a c x ,又椭圆E 相应于F 的准线为Y 轴,故有32

+=c c a (1), 又由焦点弦长公式有3cos 22222π

c a ab ?=5

16 (2)又 222c b a += (3)。解由(1)、(2)、(3)联列的方程组得:42=a ,32=b ,1=c ,

从而所求椭圆E 的方程为13

)1(4)4(2

2=?+?y x 。 例3、已知椭圆C :12222=+b y a x (0>>b a ),直线1l :1=?b

y a x 被椭圆C 截得的

弦长为22,过椭圆右焦点且斜率为3的直线2l 被椭圆C 截得的弦长是它的长轴长的5

2,求椭圆C 的方程。

分析:由题意可知直线1l 过椭圆C 的长、短轴的两个端点,故有822=+b a , (1)又由焦点弦长公式得θ2222cos 2c a ab ?=54a , (2) 因tan θ=3,得3

πθ=,(3) 又 222c b a += (4)。解由(1)、(2)、(3)、(4)联列的方程组得:62=a ,22=b ,

从而所求椭圆E 的方程为12

62

2=+y x 。

相关主题
相关文档
最新文档