复杂电磁评估(郭静)

合集下载

复杂电磁环境下武器装备试验与评估

复杂电磁环境下武器装备试验与评估

复杂电磁环境下武器装备试验与评估Chapter 1: Introduction- Background and significance- Research purpose and objectives- Research questions and hypotheses- Overview of research methodsChapter 2: Literature Review- Overview of electromagnetic environment- Characterization of complex electromagnetic environment- Impacts of electromagnetic environment on weapon systems- Methods and techniques for electromagnetic testing and evaluation- Challenges and limitations of testing in complex electromagnetic environmentChapter 3: Research Methodology- Research design and approach- Data collection methods and instruments- Data analysis techniques and tools- Ethical considerationsChapter 4: Results and Findings- Description of the electromagnetic test environment- Analysis of the test data and results- Evaluation of the weapon systems' performance in the complex electromagnetic environment- Identification of the strengths and weaknesses of the weapon systemsChapter 5: Conclusions and Recommendations- Summary of the research findings and results- Implications and contributions of the study- Limitations of the study and suggestions for future research- Recommendations for improving weapon systems performance in complex electromagnetic environmentChapter 1: Introduction Background and Significance:In modern warfare, electronic warfare has become an integral part of military operations. Electronic Warfare involves the use of electromagnetic spectrum to gain advantage over the opponent, and this makes the electromagnetic environment (EME) a critical aspect of modern weapon system design. However, the increasing complexity of the electromagnetic environment has created several challenges in testing and evaluating weapon systems. This research aims to assess the performance of weapon systems in a complex electromagnetic environment.Research Purpose and Objectives:The purpose of this research is to evaluate the performance of weapon systems in a complex electromagnetic environment. The specific objectives of this research are:1. To characterize the complex electromagnetic environment in which modern weapon systems operate.2. To evaluate the impacts of the electromagnetic environment on weapon system performance.3. To examine the methods and techniques used in testing and evaluating weapon systems in complex electromagnetic environments.4. To identify the strengths and weaknesses of weapon systems operating in a complex electromagnetic environment.Research Questions and Hypotheses:The research questions to be addressed in this study are as follows: 1. What are the characteristics of complex electromagnetic environments in which modern weapon systems operate?2. How does the electromagnetic environment impact weapon system performance?3. What testing and evaluation methods and techniques are best suited for evaluating weapon systems in complex electromagnetic environments?4. What are the strengths and weaknesses of weapon systems operating in complex electromagnetic environments?The null hypotheses for this research are:1. The electromagnetic environment has no significant impact on weapon system performance.2. The current methods and techniques used in testing weapon systems in complex electromagnetic environments are adequate.3. Weapon systems operating in complex electromagnetic environments have no inherent weaknesses.Overview of Research Methods:To evaluate weapon systems' performance in a complex electromagnetic environment, this research will utilize a mixed approach that involves both qualitative and quantitative data collection and analysis. Data will be collected through acombination of literature review, surveys, interviews, and simulation studies. The collected data will be analyzed using appropriate statistical and qualitative analysis methods. The results of the analysis will be used to draw conclusions and make recommendations for improving the performance of weapon systems operating in complex electromagnetic environments.In summary, this chapter has introduced the research background and significance, research purpose and objectives, research questions and hypotheses, and the research methods that will be used in this study. The next chapter will provide a comprehensive literature review of the electromagnetic environment and its impact on weapon systems.Chapter 2: Literature Review Introduction:The electromagnetic environment (EME) is defined as the physical space in which electromagnetic energy is present, and it includes all frequencies of the electromagnetic spectrum. The EME is a complex and dynamic environment, and understanding it is critical to the design and evaluation of weapon systems. In this literature review, we will examine the characteristics of the EME and its impact on weapon systems.Characteristics of the Electromagnetic Environment:The EME is a complex environment with a wide range of physical and environmental factors that affect the propagation of electromagnetic waves. The EME includes natural sources of electromagnetic radiation, such as the sun, as well as man-made sources, including radio and television broadcasting, telephone and data communication, and electronic warfare systems. The EMEcan also be influenced by environmental factors such as temperature, humidity, and atmospheric pressure.The EME can be characterized by several factors, including frequency, power density, polarization, bandwidth, and direction of arrival. Frequency is the number of waves that pass a fixed point per unit time, and it is measured in hertz (Hz). Power density is the amount of electromagnetic energy that passes through a unit area in a specified time, and it is measured in watts per square meter (W/m²). Polarization refers to the orientation of electric and magnetic fields in an electromagnetic wave. Bandwidth refers to the range of frequencies that a system can receive or transmit. Direction of arrival refers to the direction from which an electromagnetic wave arrives at a receiving antenna.Impact of the Electromagnetic Environment on Weapon Systems: The EME can have a significant impact on the performance of weapon systems, especially those that rely on the use of the electromagnetic spectrum. The electromagnetic radiation from civilian and military sources can cause interference or jamming that can disrupt the operation of weapon systems. In addition, the use of electronic warfare systems can create a hostile electromagnetic environment that can compromise the performance of weapon systems.Weapon systems' susceptibility to the electromagnetic environment can also depend on their design and architecture. For example, some weapon systems may be more prone to interference or jamming due to the frequency range they operate in or the design of their antennas. The susceptibility of weapon systems to theelectromagnetic environment can be evaluated through testing and evaluation in a controlled environment.Methods and Techniques for Testing and Evaluating Weapon Systems in the Electromagnetic Environment:There are several methods and techniques used to test and evaluate weapon systems in the electromagnetic environment. These include simulation studies, laboratory testing, and field testing. Simulation studies involve the use of computer programs to simulate the electromagnetic environment and evaluate the performance of weapon systems in that environment. Laboratory testing involves the use of specialized equipment to create a controlled electromagnetic environment and evaluate weapon system performance. Field testing involves the use of weapon systems in real-world scenarios to assess their performance in actual electromagnetic environments.Strengths and Weaknesses of Weapon Systems Operating in the Electromagnetic Environment:The strengths and weaknesses of weapon systems operating in the electromagnetic environment can depend on several factors. The design and architecture of the weapon system can impact its resistance to interference and jamming. In addition, the use of advanced technologies such as adaptive signal processing and frequency hopping can increase the resilience of weapon systems to electromagnetic interference.However, weaknesses in the electromagnetic environment can compromise weapon system performance. Electronic warfare systems and other sources of electromagnetic radiation can causeinterference or jamming, reducing the effectiveness of weapon systems. Moreover, the increasing complexity of the electromagnetic environment makes it difficult to predict the impact of the environment on weapon system performance. Conclusion:The electromagnetic environment is a critical aspect of modern weapon system design and evaluation. The EME is a complex and dynamic environment that can impact weapon system performance in various ways. Weapon systems' susceptibility to the electromagnetic environment can depend on their design and architecture, and their resistance to interference and jamming can be improved through the use of advanced technologies. There are several methods and techniques used to test and evaluate weapon systems in the electromagnetic environment, and field testing is essential for assessing weapon systems' performance in actual electromagnetic environments.Chapter 3: Impact of the Electromagnetic Environment on Specific Weapon Systems Introduction:In this chapter, we will examine the impact of the electromagnetic environment on specific weapon systems. The performance of different weapon systems can be affected in different ways by the electromagnetic environment, and understanding these effects is vital for weapon system design and evaluation.Impact of the Electromagnetic Environment on Radar Systems: Radar systems rely heavily on the use of the electromagnetic spectrum to detect and track targets. The susceptibility of radar systems to the electromagnetic environment can depend on severalfactors, including the type of radar system, the frequency range it operates in, and the design of its antenna.The electromagnetic environment can affect radar systems in several ways. Interference from other sources of electromagnetic radiation can lead to false readings or cause a loss of target tracking. Jamming from electronic warfare systems can also compromise the performance of radar systems.The impact of the electromagnetic environment on radar systems can be mitigated through the use of advanced signal processing techniques, such as adaptive beamforming and frequency agility. These techniques can increase a radar system's ability to operate in a hostile electromagnetic environment.Impact of the Electromagnetic Environment on Communications Systems:Communications systems also rely heavily on the use of the electromagnetic spectrum, especially in the areas of radio and satellite communications. Interference from other sources of electromagnetic radiation can reduce the quality and clarity of communication signals, leading to missed or misinterpreted information.Electronic warfare systems and other sources of electromagnetic radiation can also cause intentional jamming of communication signals, compromising the ability of military personnel to communicate effectively. The impact of the electromagnetic environment on communications systems can be mitigated through the use of frequency hopping and other advanced signal processingtechniques.Impact of the Electromagnetic Environment on Guided Missiles: Guided missile systems use guidance systems that rely on electromagnetic signals to reach and track their targets. The electromagnetic environment can impact the performance of guided missile systems, especially when the enemy deploys countermeasures such as jamming or deception.Advanced missile guidance systems can incorporate advanced signal processing techniques like multiple mode signal processing and adaptive filtering to increase the resilience of the missile to countermeasures in the electromagnetic environment. These techniques can help the missile maintain accuracy and target tracking despite interference or jamming.Impact of the Electromagnetic Environment on Unmanned Aerial Systems (UAS):UAS systems, commonly called "drones," rely heavily on the use of the electromagnetic spectrum to communicate with operators and to maintain their position and orientation in the air. The electromagnetic environment can impact the connectivity and communication quality of UAS systems, reducing their ability to transmit critical information.Interference from other sources of electromagnetic radiation, including other UAS or radio stations, can cause loss of communication signals and reduce UAS system performance. Advanced signal processing techniques, like multiple-input and multiple-output signal processing or time-reversal, can improve theconnectivity and communication quality of UAS systems in the electromagnetic environment.Conclusion:The electromagnetic environment can impact the performance of specific weapon systems, including radar, communication, guided missile, and unmanned aerial systems. The susceptibility of these systems to electromagnetic interference and jamming can depend on their design and architecture, and their resilience to interference can be improved through the use of advanced signal processing techniques. Understanding the impact of the electromagnetic environment on specific weapon systems is critical for system design and evaluation, to ensure that these systems can operate effectively in a changing and complex electromagnetic environment.Chapter 4: Mitigating the Impact of the Electromagnetic Environment on Weapon Systems Introduction:In the previous chapter, we explored how the electromagnetic environment can impact specific weapon systems. In this chapter, we will focus on various techniques that can be used to mitigate these effects and enhance the resiliency of weapon systems to operate in adverse electromagnetic environments.Frequency Agility:Frequency agility involves rapidly changing the frequency of the electromagnetic signal transmitted or received by a weapon system. It can help the system adapt to changes in the electromagnetic environment, making it difficult for an adversary to jam the system. This technique is commonly used in radar and communicationsystems.Electronic Counter-Counter-Measures (ECCM):ECCM involves the use of methods to detect and counter electronic warfare systems deployed by an adversary. It can be used to identify and mitigate jamming attempts or other forms of electromagnetic interference. ECCM techniques can include digital processing or adaptive filtering, which can effectively remove unwanted signals or distortions in a system's data.Multiple-Input, Multiple-Output (MIMO) Signal Processing: MIMO signal processing involves the use of multiple antennas to transmit and receive signals simultaneously. It can improve the resiliency of a system to interference and improve its accuracy and performance by reducing signal fading or distortion. This technique is used in both radar and communication systems. Adaptive Beamforming:Adaptive beamforming involves the use of algorithms that can adjust the direction or shape of an antenna pattern. It can enhance the ability of a system to detect and track targets in adverse electromagnetic environments. The technique can be used in both radar and communication systems to improve their resiliency to interference.Time-Reversal Signal Processing:Time-reversal signal processing involves the use of a signal that is transmitted, receives a reflection from the target, and then retraces its path back to its point of origin. This technique can help to overcome the effects of multipath interference in a communicationsystem, allowing it to transmit or receive data more effectively. Conclusion:The electromagnetic environment poses a significant challenge to the effective operation of weapon systems. However, by using advanced signal processing techniques like frequency agility, ECCM, MIMO signal processing, adaptive beamforming, and time-reversal signal processing, weapon systems can improve their resiliency to interference and maintain their accuracy and performance even in adverse electromagnetic environments. The selection of the right technique or combination of techniques depends on the type of system under consideration and the nature of the electromagnetic environment it is expected to operate in. It is crucial to continue advancing technical capabilities to ensure that weapon systems can adapt to an ever-changing electromagnetic environment and continue to deliver the necessary capabilities to the military.Chapter 5: Future Developments in Electromagnetic WarfareIntroduction:As technology advances and new threats emerge, the field of electromagnetic warfare is constantly evolving. Developments in electronic warfare technology are advancing at a rapid pace and changing the nature of modern warfare. In this chapter, we will explore some of the emerging technologies and techniques that are likely to shape the future of electromagnetic warfare.High-Powered Microwave Weapons:High-powered microwave weapons (HPM) are a type of electronic warfare system that uses intense bursts of electromagnetic energyto disrupt or damage electronic equipment. They are being developed for use in a range of applications, including disabling enemy missile systems and disrupting communication networks. HPM weapons could provide a potent new tool for military forces in future conflicts.Quantum Cryptography:Quantum cryptography is an emerging technology that offers a new level of security for electronic communications. It uses the principles of quantum mechanics to create encryption keys that can be shared securely between users. Quantum cryptography offers the potential to ensure secure communications even in the face of sophisticated electronic warfare attacks.Artificial Intelligence (AI) in Electronic Warfare:The use of AI in electronic warfare is likely to become increasingly important in the years to come. AI has the potential to optimize sweep rates, spectrum allocation, and signal processing, improving the accuracy and efficiency of electronic warfare systems. AI algorithms could also help to automate the process of identifying and responding to electronic threats.Directed Energy Weapons:Directed energy weapons (DEW) are devices that use electromagnetic waves to destroy or disable enemy targets. They could be a game-changer in electronic warfare, providing a way to disable enemy missile systems or destroy aircraft from long range. DEW systems are being developed for use on both land and sea, and their effectiveness is likely to grow as technology improves.Autonomous Electronic Warfare Systems:Autonomous electronic warfare (EW) systems are another emerging technology in the field. These systems would be able to detect, identify, and respond to electronic threats without human intervention, allowing for faster and more effective responses to electronic attacks. Autonomous EW systems could help to improve the overall resilience of military forces to electronic warfare. Conclusion:The field of electronic warfare is rapidly evolving, and new technologies and techniques are constantly emerging. High-powered microwave weapons, quantum cryptography, AI in electronic warfare, directed energy weapons, and autonomous electronic warfare systems are just a few examples of the developments that are likely to shape the future of electromagnetic warfare. As these technologies continue to advance, the importance of electronic warfare in modern conflicts is likely to grow. It will be essential for military forces to stay on top of these developments and work to stay one step ahead of potential adversaries.。

《复杂电磁环境中辐射近场预测算法研究》范文

《复杂电磁环境中辐射近场预测算法研究》范文

《复杂电磁环境中辐射近场预测算法研究》篇一一、引言随着现代电子技术的快速发展,电磁环境日益复杂,电磁辐射的预测和评估成为了一项重要的研究课题。

在众多领域中,如无线通信、雷达探测、电磁兼容性分析等,辐射近场的预测是至关重要的。

因此,本文旨在研究复杂电磁环境中辐射近场的预测算法,为相关领域的研究和应用提供理论支持。

二、复杂电磁环境概述复杂电磁环境是指由多种电磁波源共同作用形成的复杂电磁场。

这些电磁波源包括无线电、雷达、通信设备等,它们在不同的频率、功率和极化下产生复杂的电磁场分布。

在复杂电磁环境中,辐射近场的预测需要考虑多种因素的影响,如电磁波源的特性、传播路径、环境介质等。

三、辐射近场预测算法研究为了准确预测复杂电磁环境中辐射近场的分布,本文提出了一种基于多层神经网络的预测算法。

该算法通过对历史数据的学习和训练,实现对复杂电磁环境下辐射近场的准确预测。

首先,算法需要对历史数据进行收集和预处理。

这些数据包括不同频率、不同功率的电磁波源的特性和传播路径,以及相应的电磁场分布数据。

通过对这些数据的分析和处理,可以提取出影响辐射近场分布的关键因素。

其次,算法采用多层神经网络模型进行学习和训练。

在训练过程中,算法通过不断调整神经网络的参数,使得模型能够更好地拟合历史数据。

在训练完成后,算法可以根据新的输入数据(如不同频率和功率的电磁波源)预测出相应的辐射近场分布。

最后,算法采用适当的评估指标对预测结果进行评估。

常用的评估指标包括均方误差、平均绝对误差等。

通过对评估结果的分析,可以判断算法的预测精度和可靠性。

四、实验与分析为了验证本文提出的辐射近场预测算法的有效性,我们进行了大量的实验和分析。

首先,我们收集了大量的历史数据,包括不同频率、不同功率的电磁波源的特性和传播路径,以及相应的电磁场分布数据。

然后,我们使用这些数据对算法进行训练和测试。

实验结果表明,本文提出的算法在复杂电磁环境下具有较高的预测精度和可靠性。

装备试验过程中电磁环境复杂性评估方法

装备试验过程中电磁环境复杂性评估方法
5 8
航 天 电子 对抗
第 2 7卷第 1期
装 备试 验 过 程 中 电磁 环 境 复 杂性 评 估 方 法
李 竟 然 陶 西 平 , 鸿 喜 。 , 张
( .装备指 挥技 术学 院, 1 北京 1 1 1 ;.中国人 民解放 军 9 3 6部 队 , 北 秦皇 岛 04 62 13 河
2 Unt9 3 6 o A ,Qi h a g a 6 0 0,He e C ia . i 1 3 fPL n u n d o0 6 0 b i, h n )
Absr c : ta t Put o wa d a s s e ofe l to a t s a v l a i o lf r e l tng t o plxiy s f r r y t m vaua in f cor nd a e a u ton m de o vaua i hec m e t ofee toma etc e vion e t usn i a r c un e m e s e e o nas a c e i m e t e e i e t to of lc r gn i n r m n ig n r da o t r a ur r c n is n e qu p n xp rm n a i n, —
06 0) 6 0 0
摘要 : 以雷达对抗 侦察装 备试验 为例 , 出 了用 于该 装备试 验的 电磁 环境 复杂性 评估指 提
标 体 系和 评 估 模 型 , 评 估 电磁 环 境 复 杂 性 提 供 了 一 种 思路 。 为
关键词 : 电磁 环境 ; 杂性 ; 估指标 ; 复 评 评估模 型
性 。基 于试 验对 象 的复 杂 电磁 环 境 复杂 性分 级 , 是 就
简单 和复杂 就其含义 而言 , 是一 个模糊 的概 念 , 都 没有

复杂电磁环境下组网雷达探测能力仿真评估研究

复杂电磁环境下组网雷达探测能力仿真评估研究
d myo q ime t B in 0 4 6 C ia 3 U nt9 3 9, W eh i 2 4 0 a e fE up n , ej g 1 1 1 , h n ; . i i 12 ia 6 2 0, C ia hn ;
4 Un t9 2 1 Ja s u 6 4 0 . i 6 1 。 in h i 5 3 8, C i a hn )
ma k b y b o lx ee to g ei e vr n n , n tc n b mp o e y a j si g n t r r a l y c mp e lcr ma n tc n io me t a d i a e i r v d b d t ewo k u n
雷达 探 测 能力 . 关键 词 :复杂 电磁 环 境 ;组 网雷 达 ;探 测 能 力 ;云 规 则 ;评 估
中 图 分 类 号 :E 1 ,E 1 91 21
文 献 标 识 码 :A
文 章 编 号 : 10 —9 6 (0 2 40 0—7 0 82 5 2 1 )0 —0 40
S u y o i u a i n a d Ev l a i n o d r Ne wo k De e t t d n S m l to n a u to fRa a t r t c Ca biiy i mpl x El c r m a ne i v r n e pa lt n Co e e to g tc En io m nt
摘 要 :为 研 究 复 杂 电 磁 环 境 与 组 网方 式 对 组 网 雷 达 探测 能 力 的影 响 , 建 了 复 杂 电磁 环 境 下 雷 达 探 测 能 力 云 规 则 构
算 法 模 型 和探 测 能 力 评 估 模 型 , 后 利 用 N t g 仿 真平 台 实 现 了 对 3组 复杂 电 磁 环 境 下 雷 达 组 网 方 案 探 测 能 力 然 el o o 的仿 真 和评 估 . 真 结 果 表 明 复 杂 电 磁 环境 对组 网 雷 达 探 测 能 力 影 响 明 显 , 过 调 整 组 网 方 式 可 以 有 效 提 高 组 网 仿 通

复杂电磁环境下炮兵作战指挥效能评估研究

复杂电磁环境下炮兵作战指挥效能评估研究

图1 复杂 电磁 环 境 下濒 海 地 区 炮 兵 作 战指 挥 效 能 评 估体 系
3 建 立 基 于 AHP — F u z z y法 的评 估 模 型
3 . 1 运 用 AHP法 确 定 每 个 指 标 中各 因素 的权 重
ห้องสมุดไป่ตู้
2 确 定 复 杂 电磁 环 境 下 濒 海地 区炮 兵 作 战 指 挥 效 能 评 估 体 系
Cl a s s Nu mb e r TM ] 5
1 引言
随着武器装备信息化程度 的不 断提高 ,现代战场 的 电 磁环境 日趋 复杂 , 围绕 电磁 频谱 的控制 和利用 而形成 的制 电磁权 ,已成为炮兵作战双方激烈争夺 的制高点 。复杂 电 磁环境给炮兵作 战指挥控制 带来 了诸多不 利影 响 , 而炮 兵
总第 2 2 4期
舰 船 电 子 工 程
S h i p El e c t r o n i c En g i n e e r i n g
Vo 1 . 3 3 No . 2
9 4
2 0 1 3 年第 2期
复 杂 电磁 环 境 下炮 兵 作 战指 挥效 能评 估 研 究
李 泳 王 磊
指 挥 机
炮兵 作战指挥 效能
战场决策能力 . 1 l 信息保障能力4 l l 电子对抗能力 l 备保障能力
装 备 兼 容 性 能

素 质
作战指挥 控制 系统 涉及军事学 、 计算 机应 用 、 信 息处 理等诸
多学科 , 技术性 、 系统性强 ,以及信息化战场上电磁环境 的 复杂性和大量不确定信息 , 使得 对炮兵 作战 指挥效 能的评 估更加 困难 。基于 AHP F u z z y法 的炮 兵作 战指 挥效 能评 估, 就是综合考虑多种 因素 的影响 , 作 出较为合理 评估 , 从 而使评估结果更加科学 、 可靠 。

复杂电磁环境的分析与建模

复杂电磁环境的分析与建模

第1章绪论1.1 课题背景及意义任何作战行动都在一定的空间和环境中进行。

作战空间和作战环境是一个时代的科学技术、武器装备、作战方式和自然因素有机结合的产物。

当今时代,信息技术的迅猛发展及其在军事领域的广泛应用,孕育了新的战争形态——信息化战争,信息化战争中,交战双方大量使用电子信息装备,不仅数量庞大、体制复杂、种类多样,而且功率大,在激烈对抗条件下所产生的多类型、全频谱、高密度的电磁辐射信号,以及己方大量使用电子设备引起的相互影响和干扰,造成在电磁信号时域上突发多变、空域上纵横交错、频域上拥挤重叠。

即信息化战争开辟了与陆海空天相并列的“第五维战争空间”——电磁空间,形成了与传统的社会、地理、气象、水文等并重的新的战场环境——战场电磁环境。

随着军队信息化进程的加快,战场电磁环境日益复杂,电磁空间的斗争空前加剧,并对军事活动产生着深刻的影响。

使得战场感知难、指挥控制难、支援保障难以及信息化装备作战效能难。

因此夺取制电磁权,成为夺取制信息权,进而夺取战争主动权的关键。

深入研究复杂战场电磁环境,对掌握信息化战争的主动权,打赢信息化战争具有重要意义。

1.2战场复杂电磁环境的相关研究现状战场电磁环境对于世界而言还是个全新的学科,各国对于战场电磁环境的认识与研究还有无限的提升的空间。

美国国防部认为,电磁环境(EME)是存在于防护区内的一个或若干个射频场战场,在2009年指出战场电磁环境是军队、系统或平台在指定的作战环境中执行作战任务时,可能遇到的在不同频段辐射或传导的电磁发射体的功率与时间分布的作用结果。

前苏联军事百科全书中指出,电磁环境是影响无线电装置或其部件工作的电磁辐射环境。

美、俄(苏)军方对于电磁环境概念的表述不仅限于一定区域内的电磁现象总和,更有时域、频域、空域、能量域“四域”特征方面的认识。

我国对战场电磁环境相关问题的研究起步较晚,且战场电磁环境概念在学术界还未统一。

其中具有代表性的观点是:战场电磁环境,就是指在一定的战场空间内,由空域、时域、频域、能量上分布的数量繁多、样式复杂、密集重叠、动态交迭的电磁信号构成的战场电磁环境。

复杂电磁环境下舰载警戒雷达抗干扰效能的评估计算方法

复杂电磁环境下舰载警戒雷达抗干扰效能的评估计算方法

复杂电磁环境下舰载警戒雷达抗干扰效能的评估计算方法1. 引言介绍舰载警戒雷达在复杂电磁环境中的作用和重要性,阐明本文的研究目的和意义。

2. 舰载警戒雷达的抗干扰机制阐述舰载警戒雷达的工作原理和抗干扰技术,包括信号处理、发射技术、接收技术等方面的内容。

3. 电磁环境干扰因素的分析分析在舰载雷达运行过程中可能遇到的各种电磁干扰,包括电磁干扰源、电磁干扰类型和电磁干扰特征等。

4. 抗干扰效能评估方法提出一种基于数学模型的抗干扰效能评估方法,包括雷达信噪比计算方法、信号质量评估方法、抗干扰性能评价方法等。

5. 抗干扰效能评估实验与结果分析通过实验验证抗干扰效能评估方法的可行性和准确性,分析不同干扰下的警戒雷达抗干扰效能,并提出进一步的优化措施。

6. 结论总结本文的研究成果和主要结论,指出进一步研究的方向和重点。

第1章节:引言现代海上作战中,舰载警戒雷达作为一种重要的侦察手段,具有很高的战略意义和作战价值。

然而,随着电磁环境的复杂化和电子战技术的不断发展,舰载警戒雷达所面临的干扰和破坏也日益增多。

为了提高舰载警戒雷达的抗干扰能力和性能,评估计算方法的研究和应用变得尤为迫切和必要。

本论文将以复杂电磁环境下舰载警戒雷达抗干扰效能的评估计算方法为研究对象,旨在从理论和实践两个层面,探讨舰载警戒雷达的抗干扰机制和影响因素,研究抗干扰效能评估的方法和指标体系,建立数学模型,开展实验验证,为提升舰载警戒雷达的抗干扰能力和性能提供理论和技术支持。

本文主要分为五个章节,具体安排如下:第二章:舰载警戒雷达的抗干扰机制该章节将对舰载警戒雷达的工作原理和抗干扰技术进行详细阐述和描述,包括信号处理、发射技术、接收技术等方面的内容。

通过系统的分析和比较,探讨影响舰载警戒雷达抗干扰能力和性能的关键因素和机制。

第三章:电磁环境干扰因素的分析本章节将分析在舰载雷达运行过程中可能遇到的各种电磁干扰,包括电磁干扰源、电磁干扰类型和电磁干扰特征等。

战场电磁环境复杂度评估及其应用

战场电磁环境复杂度评估及其应用
金 朝 。丁 , 勤 李 =, 冬。张锦 春 ,
洛阳 4 10 ) 7 0 3 (.军 械 工 程 学 院 , 家 庄 1 石 摘 0 0 0 ,.解 放 军 6 8 0 队 , 南 5032 38 部 河
要 : 要 阐述 了战 场 复 杂 电磁 环 境 的 特 点 及 其 对 电 子 设 备 的影 响 , 对 雷 达 对 抗 电磁 环 境 的 自身 特 点 , 析 了极 化 简 针 分
关键词 : 战场 电磁环境 , 复杂度评估 , 训练评估 , 电磁环境影响因子
中 图 分 类 号 : 9 E6 文 献 标 识码 : A
Co pl x t a u t o e ho f Ba t e i l e t o a ne i m e i y Ev l a i n M t d o t l f e d El c r m g tc
对 雷 达 对 抗 电 磁 环 境 的 影 响 , 出 了雷 达 对 抗 电 磁 环 境 复 杂 度 评 估 的改 进 方 法 , 运 用 电磁 环 境 复 杂 度 评 估 结 果 建 立 电磁 环 提 并 境 影 响 因 子 , 训 练评 估 模 型进 行 修 正 和 完 善 , 后 , 雷 达 分 队 作 战 能 力 评 估 为 例 , 讨 了战 场 电磁 环 境 复 杂 度 评 估 在 军 事 对 最 以 探 训练评估中的应用 。
Env r nm e nd S ud f is Ap i a i n io nta t y o t plc to
J N h o ”, NG n LIDo g ,Z ANG i— h n I Z a DI Ho g , n h Jn c u
( . d a c n ier g C l g , hj z u n 5 0 3 C i a 2 Unt6 8 0o L L o a g 4 1 0 . hn ) 1 Or n n eE g n ei o e e S i a h a g 0 0 0 , hn , . i 3 8 P A, u y n 7 0 3 C i a n l i f Ab t a t Th a e e c i e h h r c e it fb tl fed c m p ia e lc r ma n tce v r n n s r c : e p p rd s rb s t e c a a t r i o a t il o l t d ee to g e i n io me t s c e c a d i n l e c n e e t o i e u p e t i n tt e c a a t rs i f t e e e t o g e i n io me t n t i fu n e o l c r n c q i m n ,ami g a h h r c e itc o h lc r ma n tc e v r n n s o a a o n e wo k,i a a y e h o a ia i n o i n li fu n i g e e t o g e i e v r n n f frd rc u tr r t n l z s t e p l rz t f s g a n l e c n l c r ma n t n io me t o o c r d r o n e wo k, a d mp o e t e o l x t e a u to me h d f a t f l ee t o g e i a a c u t r r n i r v s h c mp e iy v l a i n t o o b tl i d l c r ma n tc e e e vr n n , a d s s h rs l n io me t n u e t e e u t f o l x t e a u to b i t e l c r ma n t e v r n n o c mp e iy v l a i n u l h e e t o g e i n io me t d c i fu n i g f c o o a n n o s m ma e t e t an n v l a i n mo e .F n l ,i p t n e a l f n l e c n a t rt me d a d c n u t h r i i g e a u to d 1 i a l y t u s a x mp e o o e a i n lc p b l y e au t n o a a n t t ic s h p l a i n o h o l x t v l a i n o p r t a a a i t v l a i f r d r u i o d s u s t e a p i to f t e c mp e iy e a u t f o i o c o b tl f l lc r ma n t n io me tt r i i g e a u t n a te i d e e t o g e i e v r n n o t a n n v l a i . e c o Ke wo d :b t lfed lc r ma n t e v r n e t c mp e iy v l a i n, t a n n e a u t n, y r s a t il e e t o g e i n i m n , o lx t e a u to e c o r ii g v l a i o e e t o a n tc e v r n n n l e c n a t r lc r m g e i n io me ti fu n i g f c o
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复杂电磁环境研究讲稿院(系)名称:四院八队姓名:郭静学号:XS13042013复杂电磁环境复杂度评估方法1.1电磁环境的复杂性概述未来战场上,电磁环境的复杂性已是一个公认的事实。

这种复杂性除了表现在诱因和结构上外,还表现在以下三个方面:形态复杂。

一是无形无像。

电磁频谱产生于有形的物质实体,却表现为无形无象的电磁信号形式,如通信信号、雷达信号、光电信号、遥测信号等。

它们看不见、摸不着,但可以通过特定的仪器或器材被人们感知,并通过一定的技术手段和数据来加以侦别。

二是无界无疆。

电磁频谱可以依靠多种传播媒介和手段到达它想到达的地方,它能够翻山越岭,掠过大江小溪,也能够登高升天、下海入地,不受地界水界乃至国界的限制。

作战中,由各种军用、民用电子设备构成的战场电磁环境,自然噪声、电离层等现象构成的自然电磁环境,以及各种对抗造成的电磁环境,将会波及信息化战场空间的每一个角落。

三是无所不能。

美军野战条令明确指出:“频率和子弹一样重要”,信息化作战中,电磁频谱既是多元作战力量的“融合剂”,又是致敌错乱的“失能剂”,更是作战效能发挥的“催化剂”,夺取制电磁权成为战争制胜的基础。

影响复杂。

在时间上,从作战准备到实施,复杂电磁环境贯穿于作战的全过程;在空间上,从地面到空中直至太空,从水面到水下,复杂电磁环境渗透于战场每个角落;在指挥上,从兵力运用、火力打击到伪装防护和综合保障,都是在复杂电磁环境中实施;在频谱上,从微波到短波,从长波到超长波,电子对抗几乎涵盖现有电子设备所有频段。

可以肯定,复杂电磁环境不仅仅是通信、电子对抗领域电磁环境的复杂,更是侦获识别、态势感知、火力打击、综合保障等各领域电子信息系统共同作用于电磁环境,并在其全域并存、相互影响的复杂。

同时,复杂电磁环境还是一把“双刃剑”,其影响不仅作用于敌方,也制约已方作战效能的发挥。

管理复杂。

电磁频谱与环境是一维作战空间,也是一种作战资源,和其它作战空间不同的是它的开放性,它无形无像,无界无疆,也就是说在这一维空间里,军地、敌我的占领、使用是交叉交融的;作为一种作战资源,它又具有和其它武器、弹药不同的共享性,谁都可以用,即使在同一个频段、甚至频点,只要是时间、空间上不冲突或技术上支持,也可以被多个用户同时使用;同时它又具有对抗性,在这一新的作战领域,围绕控制与反控制、利用与反利用,充满了斗争和对抗。

这三个特点决定了电磁频谱管理的复杂性,没有科学有效的管理,必然会导致不兼容、冲突、混乱,甚至产生内耗,致使信息设备无法正常工作,进而丧失作战主动权。

电磁环境具有一般复杂性和特殊复杂性两个方面的内涵。

其中,一般复杂性是用来定量描述特定空间上客观的、共同的、宏观的电磁环境特征,与空间上某个或某些特定的感受体无关;特定复杂性是指特定的个体和群体(一般指在某地域、某时间段的某个设备或某电子系统)所感受的电磁环境的影响程度,由其工作效能的下降推断出电磁环境复杂性的评价结论。

1.2 电磁环境的一般复杂性评估描述或评估电磁环境,一定是在一定空间Ω、时间段[]12,t t 、频段范围[]12,f f 内来考虑,其中功率、频率、时间之间的关系如图1所示。

电磁环境辐射状况可用场强表示。

空间任意点的场强r E ,在进行时频表达之前,可得到其时变功率谱(),,S r t f 。

(),,S r t f 表示任一空间位置在任一时刻、频率、单位面积上在单位时间、单位带宽流过的电磁环境能量。

1) 空间覆盖率(SO )空间覆盖率是指电磁环境的平均功率密度谱超过指定的电子系统抗扰度电平门限值0S 所占有的空间与电子系统工作空间范围的比值。

()()()22110212111,,f t f t SO U S r t f dfdt S dr V f f t t ΩΩ⎡⎤=-⎢⎥--⎣⎦⎰⎰⎰ 式中: 1f 、2f 分别为己方可用频率资源的下限和上限值;1t 、2t 为作战起止时间;Ω为作战空域;V Ω为作战空域体积;(),,S r t f 为电磁信号合成信号的时变功率谱密度;0S 为电子系统的抗扰度电平门限值;[]U *为阶跃函数,表示特定时间、频段范围内对应空间电磁辐射平均功率密度谱的所有可能值。

2) 频谱占有度( FO )频谱占有度(FO )是指电磁环境的平均功率密度谱超过指定的电子系统抗扰度电平门限值0S 所占有的频带与电子系统可用频率资源的比值,表示在指定抗扰度电平门限的情况下,可供电子系统使用的频率资源的多少。

()()()22110212111,,f t f t FO U S r t f drdt S df f f t t V ΩΩ⎡⎤=-⎢⎥--⎣⎦⎰⎰⎰ 式中: []U *为阶跃函数,表示表示特定空间、时间范围内,对应频段电磁辐射平均功率密度谱的所有可能值。

频谱占用度高,表明可供电子设系统使用的频率资源就少,这时占用频率资源较高(工作带宽较宽)的电子设备,如频率捷变雷达或跳频、扩频电台将无法正常工作。

3)时间占有度(TO )时间占有度( TO)是指电磁环境的平均功率密度谱超过指定的电子系统抗扰度电平门限值0S 所占有的时间与电子系统工作时间的比值,表示局部空间范围内,影响电子系统正常工作的背景电磁环境(干扰环境和噪声环境)所占用时间的多少。

()()()22110212111,,t f t f TO U S r t f drdf S dt t t V f f ΩΩ⎡⎤=-⎢⎥--⎣⎦⎰⎰⎰ 式中: []U *为阶跃函数,表示特定空间、频段范围内,对应时间电磁辐射平均功率密度谱的所有可能值。

时间占用度大,表明电子系统可正常工作的时间就少。

4)平均功率密度谱( AP)平均功率密度谱(AP)是指在一定工作时间段、工作空间和工作用频范围内,电磁环境的平均功率密度谱的大小。

平均功率密度谱AP 用于评价电磁环境在功率方面的强弱程度:()()()22112121,,t f t f S r t f drdf dtTO V t t f f ΩΩ=--⎰⎰⎰上述四个基本评价变量一经确定,可利用表1中提供的评价标准描述电磁环境的一般复杂性。

1.3 电磁环境的特定复杂性评估1.3.1 基于证据理论的复杂电磁环境评估特定复杂性是指特定的个体和群体(一般指在某地域、某时间段的某个设备或某电子系统)所感受的电磁环境的影响程度。

根据工作效能下降程度i e 的不同取值,可以把电子系统i Q 受电磁环境影响的程度分为若干等级(表2) ,比如微度、轻度、中度、重度四个等级,记为,1,2,3,4j B j =由于对电子系统工作效能下降的判断是一个定性过程,实际操作中往往采取专家打分法将其量化。

为避免由于专业素质,主观因素等造成较大的电磁环境复杂性划分误差,本文采用模糊数学中的证据理论将定性的问题巧妙地转化为定量描述,可以弥补专家打分法的不足,为电磁环境的特定复杂性判断提供一条新的思路。

这里先对证据理论做一个简单的介绍。

在DS 证据理论中,由互不相容的基本命题(假定)组成的完备集合称为识别框架,表示对某一问题的所有可能答案,但其中只有一个答案是正确的。

该框架的子集称为命题。

分配给各命题的信任程度称为基本概率分配(BPA ,也称m 函数),m(A)为基本可信数,反映着对A 的信度大小。

证据理论就是把来自不同信任源的多组证据的信任值综合考虑后进行重新分配,以得出更加合理的结论。

设1Bel 和1Bel 是同一识别框架U 上的两个信任函数, 1m 和2m 分别是其对应的基本概率赋值,则K 的值指出了被组合的两个证据之间的相互冲突的程度,K=1时,证据组合后空集的mass 值为1,也就意味着两个证据是完全冲突的,这个时候不能用上式进行证据组合;当K=0时,两个证据组合后没有空集,即两个证据是完全一致的;当 0<K<1时,表示两个证据部分一致。

表3给出了来自两个专家的不同意见及其组合情况,W 用来表示在电磁环境中受训部队的信息化武器装备和武器装备信息系统的效能可以正常发挥占用的比例;L 表示在电磁环境中完全失去效能的信息化武器装备和武器装备信息系统所占用的比例;P 表示在电磁环境中那部分可能正常发挥效能,也可能使用效能的信息化武器装备和武器装备信息系统所占用比例。

按照组合规则:()()120.150.120.27=i j i j A B K m A m A ⋂=∅=+=∑综合后基本概率赋值:m (W ) = (0. 20 + 0. 08 + 0. 15) / (1 - 0. 27) = 0. 589m (L ) = (0. 09 + 0. 06 + 0. 09) / (1 - 0. 27) = 0. 328m ( P) = 0. 06 / (1 - 0. 27) = 0. 083综合后结果: W = 58. 9% , L = 32. 8% , P = 8. 3%。

可见,在该电磁环境下,电子信息系统正常发挥其效能的比例占到了58.9% ,无法发挥其效能的比例占到了32.8% ,有可能正常发挥的比例为8.3%。

综合专家1与专家2的意见得出判决:该电磁环境对于电子系统而言属于轻度复杂电磁环境。

若要求评估多个电子系统群共同感受到的电磁环境的特定复杂性,关键是要对群中所有个体的特定感受进行聚合。

事实上对于证据理论的组合规则应用是比较简单的,在实际问题中困扰我们的往往不是怎么样组合,而是如何对得到的战场数据中建立数学模型从而得到置信函数并得到相应的mass值,从数据到证据的转化目前为止并没有一个明确的方法或体系,往往是要结合实际的工程问题的,所以上述的方法在真正作战时能否有用还有待考证,下面介绍的多元联系数的方法是基于战场实际环境给出的,更加具有实用价值。

1.3.2战场电磁环境复杂性定量评估1. 多元联系数简介1)联系数实际作战中,作战效能指标理想值与实际值之间总存在着一定的联系,可将指标理想值和指标实际值看作一对具有某种联系的集合,那么这种存在联系的两个集合就称之为集对。

集对分析( Set Pair Analysis, 缩写SPA) 是一种研究两个或两个以上的事物同、异、反联系以及相互转化的系统数学方法, 其核心是将确定与不确定视为一个系统进行综合考察。

它将系统的确定性定义为“同一”和“对立”两个方面, 将不确定性定义为“差异”, 三者之间相互联系, 相互制约, 并在一定条件下可以相互转换。

集对分析的基本概念是集对与联系度。

集对联系度是指集对共有属性的相同、相异或相反的程度。

同异反联系数是同异反联系度的数值表示形式。

假设集对中2个集合有N个共有属性,其中它们相同属性有S个,相反属性有P个,那么既不相同也不相反而是相异的属性F就有N-S-P个。

可以定义:相同属性联系度(同一度) : A = S/ N;相异属性联系度(差异度) : B = F/ N;相反属性联系度(对立度) : C = P/ N;同异反联系数: U = A + Bi + Cj 。

相关文档
最新文档