转动惯量的测定(精)

转动惯量的测定(精)
转动惯量的测定(精)

转动惯量的测定

【教学目的】

1. 学习用恒力矩转动法测定刚体转动惯量的原理和方法;

2. 观测刚体的转动惯量随其质量、质量分布及转轴不同而改变的情况,验证平行轴定理;

3. 学会使用通用电脑计量器测量时间。

【教学重点】

准确测量圆盘及圆环的转动惯量;验证平行轴定理。

【教学难点】

理解并掌握恒力矩转动法测定刚体转动惯量的原理及方法。

【课程讲授】

提问:1.如何利用恒力矩转动法测定刚体转动惯量?

2.什么是平行轴定理?本实验是如何验证平行轴定理的?

一、实验原理

试样

图1 转动惯量实验仪

1. 空实验台的转动惯量1J为:

1

221)

(βββ--=

R g mR J (1)

式中m 、R 分别为砝码的质量、塔轮半径,1β、2β分别为实验台加砝码前匀减速、加砝码后匀加速运动的角加速度。

2. 加试样后实验台的转动惯量2J 为:

3

442)

(βββ--=

R g mR J (2)

3β、4β分别为加砝码前、后实验台的角加速度。

3. 试样的转动惯量为:

12J J J -= (3)

4. 角加速度的测量表达式: n

m m n n m m n t t t t t k t k 22)

(2--=

πβ (4)

式中k 、t 为计数器遮挡的次数和相应的时间。

二、实验仪器

ZKY-ZS 转动惯量实验仪 ZKY-J1通用记时器

实验装置图

三、实验步骤

1. 实验准备

在桌面上放置ZKY-ZS转动惯量实验仪,并利用基座上的三颗调平螺钉,将仪器调平。将滑轮支架固定在实验台面边缘,调整滑轮高度及方位,使滑轮槽与选取的绕线塔轮槽等高,且其方位相互垂直,如图1所示。

通用电脑计时器上2路光电门的开关应1路接通,另1路断开作备用。当用于本实验时,建议设置1个光电脉记数1次,1次测量记录大约8组数

2. 测量并计算实验台的转动惯量

1) 测量β 1

接通电脑计时器电源开关(或按“复位”键),进入设置状态,不用改变默认值;用手拨动载物台,使实验台有一初始转速并在摩擦阻力矩作用下作匀减速运动;按“待测/+”键后仪器开始测量光电脉冲次数(正比于角位移)及相应的时间;显示8组测量数据后再次按“待测/+”键,仪器进入查阅状态,将查阅到的数据记入表1中。

采用逐差法处理数据,将第1和第5组,第2和第6组……,分别组成4组,用(4)式计算

对应各组的β1值,然后求其平均值作为β1的测量值。

2) 测量β 2

选择塔轮半径R及砝码质量,将1端打结的细线沿塔轮上开的细缝塞入,并且不重叠的密绕于所选定半径的轮上,细线另1通过滑轮扣连接砝码托上的挂钩,用于将载物台稳住;按“复位”键,进入设置状态后再按“待测/+”键,使计时器进入工作等待状态;释放载物台,砝码重力产生的恒力矩使实验台产生匀加速转动;电脑计时器记录8组数据后停止测量。查阅、记录数据于表1中并计算β2的测量值。由(1)式即可算出J1的值。

3. 测量并计算实验台放上试样后的转动惯量

将待测试样放上载物台并使试样几何中心轴与转轴中心重合,按与测量J1同样的方法可分别测量未加法码的角加速度β3与加砝码后的角加速度β4。由(2)式可计算J2,由(3)式可计算试样的转惯量J。计算试样的转动惯量并与理论值比较,计算测量值的相对误差。

4. 验证平行轴定理

将两圆柱体对称插入载物台上与中心距离为d的圆孔中,测量并计算两圆柱体在此位置的转动惯量。将测量值与理论计算值比较,计算测量值的相对误差。

四、数据记录和数据处理

1.测量实验台的角加速度

根据1

221)

(βββ--=

R g mR J ,计算空实验台的转动惯量1J 。

2.测量圆环的角加速度

计算3

442)

(βββ--=

R g mR J ,根据12J J J -=环求圆环的转动惯量环J

3.测量圆柱体的角加速度

d= mm r= mm m= g

计算5

663)

(βββ--=

R g mR J ,根据2/)(13J J J -=柱求圆柱的转动惯量柱J 。再根据

202

1

mr J =

和平行轴定理 20md J J +'=柱

计算圆柱的转动惯量柱J ',比较二者求相对误差。

五、思考题

1.验证平行轴定理时,为什么不用一个圆柱体而采用两个对称放置?

提示:若只用一个圆柱体,则圆盘会受到一个沿盘切向的力矩的作用,转动时间,必然会导致摩擦力矩的增加,一方面增大了测量误差,另方面影响仪器的使用寿命。如果采用两个到处放置,两力矩大小相等,方向相反,于是相互抵消了。

2.采用本实验测量方法,对测量试样的转动惯量的大小有什么要求吗?

提示:试样的测量公式为J =J 2-J 1,其中J 是试样的转动惯量、J 1是实验台的转动惯量、J 2是放上试样后实验台的转动惯量,由误差传递公式有:1222J J J ?+?=

?, 显然,当试样

的转动惯量远小于实验台的转动惯量时,测量的相对误差会很大,所以,待测实验的转动惯量不能比实验台的转动惯量小很多。

测量刚体的转动惯量实验报告及数据处理

实验讲义补充: 1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不 变的物体。 2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分布、 形状大小和转轴位置 3.转动定律:合外力矩=转动惯量×角加速度 4.转动惯量叠加: 空盘:(1)阻力矩(2)阻力矩+砝码外力→J1 空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2 被测物体:J3=J2-J1 5.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12) 6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮 半径,3组砝码质量 7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值; 8.泡沫垫板 9.重力加速度:s^2 10.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体; 11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求 平均值) 12.实验目的:测量值与理论值对比 实验计算补充说明: 1.有效数字:质量,故有效数字为3位 2.游标卡尺:,读数最后一位肯定为偶数; 3.误差&不确定度: (1)理论公式计算的误差: 圆盘:J=0.5mR2(注意:直接测量的是直径) 质量m=±;(保留4位有效数字) um=*100%=% 半径R=± 若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值 , 取n=6时的 ,我们处理为0 C=,仪器允差,δB= 总误差:,ux= m

,u rx==% R=± urx=% 计算转动惯量的结果表示: J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上. (2)实验测量计算的误差: J=mR(g?Rβ2)β2?β1 根据,,对R(塔轮半径),m(砝码质量),β2和β1求导, ?J ?m=R(g?Rβ2)β2?β1 ?J ?R=mg?2Rβ2β2?β1 ?J ?β2=?mR2(β2?β1)?mR(g?Rβ2) (β2?β1)^2 ?J ?β1= mR(g?Rβ2) (β2?β1)^2

实验一测量刚体的转动惯量

实验一 测量刚体的转动惯量 转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分布、形状大小和转轴位置。对于形状简单,质量均匀分布的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量,但对于形状比较复杂,或质量分布不均匀的刚体,用数学方法计算其转动惯量是非常困难的,因而大多采用实验方法来测定。 转动惯量的测定,在涉及刚体转动的机电制造、航空、航天、航海、军工等工程技术和科学研究中具有十分重要的意义。测定转动惯量常采用扭摆法或恒力矩转动法,本实验采用恒力矩转动法测定转动惯量。 【实验目的】 1.学习用恒力矩转动法测定刚体转动惯量的原理和方法。 2.观测转动惯量随质量、质量分布及转动轴线的不同而改变的状况,验证平行轴定理。 3.学会使用智能计时计数器测量时间。 【实验原理】 1、恒力矩转动法测定转动惯量的原理 根据刚体的定轴转动定律: βJ M = (1) 只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量J 。 设以某初始角速度转动的空实验台转动惯量为J 1,未加砝码时,在摩擦阻力矩M μ的作用下,实验台将以角加速度β1作匀减速运动,即: 11βμJ M =? (2) 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。若砝码的加速度为a ,则细线所受张力为T= m (g - a)。若此时实验台的角加速度为β2,则有a= R β2。细线施加给实验台的力矩为T R= m (g -R β2) R ,此时有: 212)(ββμJ M R R g m =?? (3) 将(2)、(3)两式联立消去M μ后,可得: 1 221)(βββ??=R g mR J (4) 同理,若在实验台上加上被测物体后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有: 3 442)(βββ??=R g mR J (5) 由转动惯量的迭加原理可知,被测试件的转动惯量J 3为: 123J J J ?= (6) 测得R 、m 及β1、β2、β3、β4,由(4),(5),(6)式即可计算被测试件的转动惯量。 2、β的测量 实验中采用智能计时计数器计录遮挡次数和相应的时间。固定在载物台圆周边缘相差π角的两遮光细棒,每转动半圈遮挡一次固定在底座上的光电门,即产生一个计数光电脉冲,计数器计下遮档次数k 和相应的时间t 。若从第一次挡光(k =0,t =0)开始计次,计时,且初始角速度为ω0,则对于匀变速运动中测量得到的任意两组数据(k m ,t m )、(k n ,t n ),相

用刚体转动仪测刚体转动惯量

用刚体转动仪测刚体转动惯量 [播放视频] 一、概念理解 刚体转动惯量是刚体在转动中惯性大小的量度,它的重要性类似于平动中物体的质量。一刚体对于某一给定轴的转动惯量,是刚体中每一单元质量的大小与单元质量到转轴的距离的平方的乘积的总和。 刚体的转动惯量与刚体的质量、刚体的质量分布、转轴的位置与方位有关。对于几何形状规则的刚体,可用积分式计算出它绕过质心轴转动的转动惯量,并根据平行轴定理,计算出刚体绕任一特定轴转动的转动惯量。但对于形状复杂的刚体,用数学方法求转动惯量则相当困难,一般宜采用实验的方法来测定。因此,学会对刚体转动惯量的测量方法,具有重要的现实意义,如对研究机械转动性能,包括飞轮、炮弹、发动机叶片、电机、电机转子、卫星外形等的设计工作都有重要意义。 二、刚体转动惯量测量的常用方法 1. 1. 三线摆法 三线摆法是通过扭转运动来测量刚体转动惯量的方法。它具有装置简单、操作方便不受场地限制且结果精确等优点,是被广泛应用的一种测量刚体转动惯量的方法。 2.单线扭摆法 单线摆(简称扭摆)是比三线摆更简单的力学实验装置。它不仅可以测定较小物体如钟表齿轮、录音机转子等的转动惯量,且可测量金属悬丝的扭转系数和材料的切变模量。在许多仪器仪表中(例如灵敏电流计、扭称等),扭摆又是其中的主要组成部分。由于它结构简单、稳固耐用,对学生又有多方面的训练,所以它也是力学实验中较好的实验之一。 3.转动惯量仪法法(本实验采用此法,其特点请自行总结)。 三、理论知识准备 1. 1. 均质钢块、钢环(铝环)的转动惯量 一刚体对于某一给定轴的转动惯量,是刚体中每一单元质量的大小与单元质量到转轴的距离的平方的乘积的总和。如果刚体的质量是连续分布的,则转动惯量可表示为: ?=dm r I 2 用上式容易求出均匀钢块及钢环(或铝环)绕中心轴转动的转动惯量的理论值: 221 块块块理R m I = )(2122外内环环理R R M I += ] 2.2.本实验原理 如图2-18所示,当重物m 由静止下降距离为h 时,重物的势能将减少mgh ,设此时重物m 的速度为v t ,待测物体的角速度为t ω,根据机械能转换和守恒定律可知,减少的能量 mgh 将转化为重物的平动动能和被测物体的转动动能,即

恒力矩转动法测刚体转动惯量

恒力矩转动法测刚体转动惯量

恒力矩转动法测刚体转动惯量 转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分布、形状大小和转轴位置。对于形状简单,质量均匀分布的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量,但对于形状比较复杂,或质量分布不均匀的刚体,用数学方法计算其转动惯量是非常困难的,因而大多采用实验方法来测定。 转动惯量的测定,在涉及刚体转动的机电制造、航空、航天、航海、军工等工程技术和科学研究中具有十分重要的意义。测定转动惯量常采用扭摆法或恒力矩转动法,本实验采用恒力矩转动法测定转动惯量。 一、实验目的 1、学习用恒力矩转动法测定刚体转动惯量的原理和方法。 2、观测刚体的转动惯量随其质量,质量分布及转轴不同而改变的情况,验证平行轴定理。 3、学会使用智能计时计数器测量时间。 二、实验原理 1、恒力矩转动法测定转动惯量的原理 根据刚体的定轴转动定律: β J M =(1) 只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量J 。 设以某初始角速度转动的空实验台转动惯量为J 1,未加砝码时,在摩擦阻力矩M μ的作用下,实验台将以角加速度β1作匀减速运动,即: 1 1βμJ M =-(2) 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。若砝码的加速度为a ,则细线所受张力为T= m (g - a)。若此时实验台的角加速度为β2,则有a= Rβ2。细线施加给实验台的力矩为T R= m (g -Rβ2) R ,此时有: 2 12)(ββμJ M R R g m =--(3) 将(2)、(3)两式联立消去M μ后,可得: 1 221)(βββ--= R g mR J (4) 同理,若在实验台上加上被测物体后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有: 3 442)(βββ--= R g mR J (5) 由转动惯量的迭加原理可知,被测试件的转动惯量J 3为 : 1 23J J J -=(6) 测得R 、m 及β1、β2、β3、β4,由(4),(5),(6)式即可计算被测试件的转

转动惯量的测定

转动惯量的测定 【实验目的】 (1)学习用恒力矩转动法测定刚体转动惯量的原理和方法。 (2)观测刚体的转动惯量随其质量、质量分布及转轴不同而改变的情况,验证平行轴定理。 (3)学会使用通用电脑计时器来测量时间。 【实验原理】 1. 恒力矩转动法测定转动惯量的原理 根据刚体的定轴转动定律有 M =J β (3.3.1) 只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量J 。 假设以某初始角速度转动的空实验台转动惯量为J 1,未加砝码时,在摩擦阻力矩M 的作用下,实验台将以角加速度β1作匀减速运动,即: -M μ=J 1β1 (3.3.2) 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。若砝码的加速度为a ,则细线所受张力为()T m g a =-。若此时实验台的角加速度为β2,则有a =R β2,细线施加给实验台的力矩为2()TR m g R R β=-,此时有: 2μ12()m g R R M J ββ--= (3.3.3) 将式(3.3.2)、(3.3.3)两式联立消去M μ后,可得: 2121 ()mR g R J βββ-=- (3.3.4) 同理,若在实验台上加上被测物件后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有

4243()mR g R J βββ-=- (3.3.5) 由转动惯量的叠加原理可知,被测试件的转动惯量J 3为: 321J J J =- (3.3.6) 测得R 及β1、β2、β3、β4,由式(3.3.4),(3.3.5),(3.3.6)即可计算被测试件的转动惯量。 2. 刚体转动角加速度β的测量 实验中采用XD-GLY 通用电脑计时器,记录下遮挡次数和相应的时间。固定在载物台圆周边缘的两遮光片,每转动半圈遮挡一次固定在底座上的光电门,即产生一个计数光电脉冲。计数器记录下遮挡次数和从第一次遮挡光到其后各次扫光所经历的时间,即是第二次扫光时,计时器计下的时间t 1是从第一次挡光开始载物台转动了π弧度所经历的时间;即第三次扫光时,计时器计下的时间t 2是从第一次挡光开始载物台转动了2π弧度所经历的时间…;第k+1次扫光,计时器计下的时间t k 是从第一次挡光开始载物台转动了k π弧度所经历的时间。初始角速度为0,则对匀变速运动,测量得到任意两组数据(k m ,t m ) 、(k n ,t n ),相应的角位移m , n 分别为: 201 π2 m m m m k t t θωβ==+? (3.3.7) 201 π2 n n n n k t t θωβ==+? (3.3.8) 从式(3.3.7)、(3.3.8)两式中消去0,可得: 222π()n m m n n m m n k t k t t t t t β-=- (3.3.9) 由式(3.3.9)即可计算角加速度。 3. 平行轴定理 理论分析表明,质量为m 的物体围绕通过质心O 的转轴转动时,其转动惯量J 0最小。当转轴平行移动距离d 后,围绕新转轴转动的转动惯量为

实验名称刚体转动惯量的测量

实验名称:刚体转动惯量的测量 姓 名 学 号 班 级 桌 号 同组人 本实验指导教师 实验地点:基教1208教室 实验日期 20 年 月 日 时 段 一、实验目的: 1. 用实验方法检验刚体的转动定律; 2. 掌握利用刚体转动定律测定刚体转动惯量的实验方法; 3. 学习曲线改直的方法; 4. 学习用ORIGIN 软件处理实验数据。 二、实验仪器与器件 刚体转动惯量仪一套,毫秒计时器一台,铝圆环一个,请自带计算器。 三、实验原理: 当砝码以加速度a 加速下落带动转动体系运动时,在a <

(b )若ω00=,则有 βθ= 22t , m g r M I t -=μθ 22 m I gr t M gr k t C =?+=?+21122θμ 改变m ,测得不同的 1 2t ,由线性回归法求出k ,可得转动惯量 I = 。 测量铝环绕轴的转动惯量,可先测量承载时的转动惯量I ,再测量空载时的转动惯量I 0,则其转动惯量 =x I 。 四、实验内容: 1. 用计算法测量铝环对中心轴的转动惯量 (1) 测承载时的转动惯量I 把铝环放在承物台上,取m 为9个砝码质量,r =2.50cm (第3个塔轮半径),取θθ12,分别为2π和8π,所对应的时间t 1和t 2,即由毫秒计分别读出所对应的时间t 1和t 2。重复五次。取m 为3个砝码质量,其余条件不变,由毫秒计分别读出所对应的时间' 1t 和' 2t 。重复五次。 (2) 测空载时的转动惯量I 0 把铝环从承物台上取下,重复上述步骤,得t 1,t 2,' 1t ,' 2t ,重复五次。 2. 用最小二乘法处理数据,测铝环对中心轴的转动惯量 需要满足ω00=(怎样操作?),为此,挡光柱初始位置应在光电门处,使体系一开始转动就开始计时。 (1)测量I

实验2 刚体转动惯量的测定

实验2 刚体转动惯量的测量 [预习思考题] 1.实验中的刚体转动惯量实验仪是由哪几部分组成的? 2.实验中可以通过什么方法改变转动力矩? 3.实验中刚体转动过程的角加速度如何测得? 转动惯量是描述刚体转动中惯性大小的物理量,对于绕定轴转动的刚体,它为一恒量,以J表示,即 ∑= i i i r m J2 式中,m i为刚体上各个质点的质量,r i为各个质点至转轴的距离。由此可见,物体的转动惯量J与刚体的总质量、质量分布及转轴的位置有关。对于几何形状规则、对称和质量分布均匀的刚体,可以通过积分直接计算出它绕某定轴的转动惯量。对于形状复杂或非匀质的任意物体,则一般要通过实验来测定,例如,机械零件、电机的转子、炮弹等。 测定物体的转动惯量有多种实验方法,主要分为扭摆法和恒力矩转动法两类。本实验介绍用塔轮式转动惯量仪测定的方法,是使塔轮以一定形式旋转,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。该方法属于恒力矩转动法。 转动惯量是研究、设计、控制转动物体运动规律的重要参数,实验测定刚体的转动惯量具有十分重要的意义,是高校理工科物理实验教学大纲中的一个重要基本实验。 一、实验目的 1.学习用转动惯量仪测定刚体的转动惯量。 2.研究作用于刚体上的外力矩与角加速度的关系。 3.验证转动定律及平行轴定理。 二、实验仪器 IM-2刚体转动惯量实验仪及其附件(霍尔开关传感器、砝码等)和MS-1型多功能数字毫秒仪。 三、仪器介绍

1.滑轮 2.滑轮高度和方向调节组件 3.挂线 4.塔轮组 5.铝质圆盘承物台 6.样品固定螺母 7.砝码 8.磁钢 9.霍尔开关传感器 10.传感器固定架 11.实验样品水平调节旋钮(共3个) 12.毫秒仪次数预置拨码开关,可预设1-64次 13.次数显示屏 14.时间显示屏 l5.次数+1查阅键 16.毫秒仪复位键 17.+5V 电源接线柱 18.电源GND (地)接线柱 19.INPUT 输入接线柱 20.输入低电平指示 21.次数-1查阅键 图4-3-1 IM-2刚体转动惯量实验仪和MS -1型多功能数字毫秒仪结构示意图 IM-2刚体转动惯量实验仪主要由绕竖直轴转动的铝质圆盘承物台、绕线塔轮、霍尔开关传感器、磁钢、滑轮组件、砝码等组成。 样品放置在铝质圆盘承物台上,承物台上有许多圆孔,可用于改变样品的转轴位置。绕线塔轮是倒置的塔式轮,分为四层,自上往下半径分别为3cm 、2.5cm 、2cm 、1.5cm 。磁钢随转动系统转动,每半圈经过霍尔开关传感器一次,传感器输出低电平,通过连线送到多功能数字毫秒仪。传感器红线接毫秒仪+5V 电源接线柱,黑线接电源GND (地)接线柱,黄线接INPUT 输入接线柱。 MS -1型多功能数字毫秒仪通过预置拨码开关预置实验所需感应次数。每轮实验开始前通过复位键清0,直到输入低电平信号触发计时开始,次数显示屏从0次开始计时,直至达到预置次数停止。计时停止后,方能查阅各次感应时间。 四、实验原理 1. 任意样品的转动惯量测定 设转动惯量仪空载(不加任何样品)时的转动惯量为J 1,称为系统的本底转动惯量,转动惯量仪负载(加上样品)时的转动惯量为J 2,根据转动惯量的可加性,则样品的转动惯量J x 为 21x J J J =- 2. 系统的转动惯量测定 1)刚体的转动定律 刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比,这个关系称为刚体的转动定律。 M J β= 利用转动定律,测得刚体转动时的合外力矩及该力矩作用下的角加速度,则可计算

扭摆法测定物体转动惯量

物理实验报告 一、【实验名称】 扭摆法测定物体转动惯量 二、【实验目的】 1、 测定扭摆弹簧的扭转常数K 。 2、 测定几种不同形状物体的转动惯量,并与理论值进行比较。 3、改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。 三、【实验原理】 扭摆的结构如图2.1所示,将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下,物体就开始绕垂直轴作往返扭转运动。 根据胡克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即 M= -K θ (2.1) 根据转动定律:M=J β 得 I M = β(2.2) 令I K = 2 ω,由式(2.1)、(2.2)得:θωθθβ2 22 -=-==I K dt d 上述方程表示扭摆运动具有角简谐振动的特性,此方程的解为: )t cos(A ?ωθ+= 此谐振动的周期为: K I T π ω π 22== (2.3) 2 24T K I π = (2.4) 由(2.3)或(2.4)式可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一 个量已知时即可计算出另一个量。 本实验用一个已知形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出仪器弹簧的K 值。 如先测载物盘转动的周期T 0,有 T=2K I 0 π (4-5) 再测载物盘加塑料圆柱(大)的转动周期T 1,有 K I I T 1 012'+=π (4-6) 图2.1

图2 TH -2型转动惯量测量仪面板示意图 1I '为塑料圆柱转动惯量理论计算值 1I '=22 1 mr (4-7) 由式(4-5)和式(4-6)可得 K=42 211 2 T T I -'π (4-8) 若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(2.3)即可算出该物体绕转动轴的转动惯量。 理论分析证明,若质量为m 的物体绕通过质心轴的转动惯量为I 0,当转轴平行移动距离x 时,则此物体对新轴线的转动惯量变为I 0+mx 2。称为转动惯量的平行轴定理。 四、【仪器用具】 1.扭摆及几种待测转动惯量的物体 金属圆筒、实心塑料圆柱体(一长一短)、实心塑料球、验证转动惯量平行轴定理用的细金属杆(杆上有两块可自由移动的金属滑块)。 2.TH -2型转动惯量测量仪 由主机和光电传感器两部分组成。 主机采用新型的单片机作控制系统,用于测量物体转动和摆动的周期,以及旋转体的转速,能自动记录、存储多组实验数据并能够准确地计算多组实验数据的平均值。 光电传感器主要由红外接收管组成,将光信号转换为脉冲电信号,送入主机工作。因人眼无法直接观察仪器工作是否正常,可用遮光物体往返遮挡光电探头发射光束通路,检查计时器是否开始计数。为防止过强光线对光电探头的影响,光电探头不能置放在强光下,实验时采用窗帘遮光,确保计时准确。 3.仪器使用方法 TH -2型转动惯量测量仪面板如图2所示。 (1)调节光电传感器在固定支架上的高度,使被测物体上的挡光杆能自由地通过光电门,再将光电传感器的信号传输线插入主机输入端(位于测试仪背面)。 (2)开启主机电源,“摆动”指示灯亮,参量指示为“P1”、数据显示为“- - - -”。 (3)本机设定扭摆的周期数为10,如要更改,可按“置数”键,显示“n=10”,按“上

刚体转动惯量的测定_实验报告

实验三刚体转动惯量的测定 转动惯量是刚体转动中惯性大小的量度。它与刚体的质量、形状大小和转轴的位置有关。形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。 实验目的: 1、理解并掌握根据转动定律测转动惯量的方法; 2、熟悉电子毫秒计的使用。 实验仪器: 刚体转动惯量实验仪、通用电脑式毫秒计。 仪器描述: 刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。塔轮上有五个不同半径(r)的绕线轮。砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。 实验原理: 空实验台(仅有承物台)对于中垂轴OO’的转动惯量用J o表示,加上试样(被测物体)后的总转动惯量用J表示,则试样的转动惯量J1: J1 = J –J o (1) 由刚体的转动定律可知:

T r – M r = J α (2) 其中M r 为摩擦力矩。 而 T = m(g -r α) (3) 其中 m —— 砝码质量 g —— 重力加速度 α —— 角加速度 T —— 张力 1. 测量承物台的转动惯量J o 未加试件,未加外力(m=0 , T=0) 令其转动后,在M r 的作用下,体系将作匀减速转动,α=α1,有 -M r1 = J o α1 (4) 加外力后,令α =α2 m(g –r α2)r –M r1 = J o α2 (5) (4)(5)式联立得 J o = 21 2212mr mgr ααααα--- (6) 测出α1 , α2,由(6)式即可得J o 。 2. 测量承物台放上试样后的总转动惯量J ,原理与1.相似。加试样后,有 -M r2=J α3 (7) m(g –r α4)r –Mr 2= J α4 (8) ∴ J = 23 4434mr mgr ααααα--- (9) 注意:α1 , α3值实为负,因此(6)、(9)式中的分母实为相加。 3. 测量的原理 设转动体系的初角速度为ωo ,t = 0 时θ= 0 ∵ θ=ωo t + 2 2 1t α (10) 测得与θ1 , θ2相应的时间t 1 , t 2 由 θ1=ωo t 1 + 2121t α (11) θ2=ωo t 2 + 2 22 1t α (12) 得 22112 22112) (2t t t t t t --= θθα (13) ∵ t = 0时,计时次数k=1(θ=л时,k = 2) ∴ []2 2 11222112)1()1(2t t t t t k t k ----= πα (14) k 的取值不局限于固定的k 1 , k 2两个,一般取k =1 , 2 , 3 , …,30,…

刚体转动惯量的测定-样本

第一章 刚体转动惯量的测定 刚体的转动惯量是描述刚体转动惯性大小的物理量,转动惯量不仅取决于刚体的总质量,还与刚体的形状、质量分布以及转轴位置有关。对于质量分布均匀、具有规则几何形状的刚体,可以通过数学方法计算出它绕给定转动轴的转动惯量。对于质量分布不均匀、没有规则几何形状的刚体,通常采用实验的方法来进行测定。在生物医学工程方面利用转动惯性混合或分离混合液具有十分重要的意义。 实验上测定刚体转动惯量的方法很多,如三线摆法、扭摆法、复摆法、恒力矩转动法等。本实验采用恒力矩转动法测定转动惯量。 一. 实验目的 1. 掌握恒力矩转动法测定刚体转动惯量的原理和方法; 2. 观测转动惯量随刚体质量、质量分布以及转轴的不同而改变的状况; 3. 研究外力矩与刚体角加速度的关系,验证刚体转动定律和平行轴定理。 二. 实验器材 ZKY-WZS 刚体转动惯量试验仪,圆盘1个、圆环1个、圆柱2个,砝码托1个,5g 砝码1个,10g 砝码4个,细线,水准器,螺丝刀,钢卷尺1个,游标卡尺1把,数字天平1台公用。 三. 实验原理 1. 恒力矩转动法测定转动惯量 根据刚体的定轴转动定律:刚体绕定轴转动时,刚体的角加速度α与它所受的合外力矩M 成正比,与刚体的转动惯量J 成反比: M J α= (1) 只要测定刚体在转动时所受的合外力矩M 及在该力矩作用下刚体转动的角加速度α,就可以计算出该刚体的转动惯量J 。 设空载物盘转动惯量为1J ,给一初始角速度,在摩擦力矩M μ的作用下,载物盘将以角加速度1α作减速运动,这里近似取摩擦力与速度成正比关系,则有: 211M kv r kr K J μωωα=?===? (2) 式中ω、α为即时角速度、角加速度,在下面实验中取平均值。 将质量为m 的砝码用细线绕在半径为R 的载物盘塔轮上,让砝码下落,系统在恒外力矩作用下将作加速运动。若砝码的加速度为a ,则细线所受张力为()T m g a =?。设此时载物盘的角加速度为2α,则有2a R α=。细线施加给载物盘的力矩为 2()M TR mR g R α==? (3) 此时合力矩有: 2212()M M mR g R kr J μαωα?=??= (4) 当(2)、(4)两式中角速度ω相等可联立消去M μ,可得载物盘转动惯量:

刚体转动惯量的测量_评分标准

“用刚体转动惯量仪测定刚体转动惯量”评分标准 第一部分:预习报告(20分) 一.实验目的 1.掌握使用转动惯量仪检验刚体的刚体转动定律。 2.学会测定圆盘的转动惯量和摩擦力矩。 3.学会一种处理实验数据的方法-作图法(曲线改直法)。 二.实验仪器 刚体转动惯量仪、通用电脑毫秒计、水准仪、 游标尺、 砝码等 三.实验原理 1.转动定律 2.单角度设置法)0(0=w ,测量刚体的转动惯量和摩擦力矩,曲线改直法应用; * 3.双角度设置法,测量刚体的转动惯量和摩擦力矩; * 4.验证平行轴定理 四.实验内容及步骤 1.单角度设置法)0(0=w ,测量刚体的转动惯量和摩擦力矩; 2.双角度设置法,测量刚体的转动惯量和摩擦力矩。 第二部分:数据采集与实验操作(40分) 有较好的动手能力,能够很好解决实验过程中出现的问题,数据采集记录完整准确,操作过程无误(35-40分); 有一定的动手能力,能够解决实验过程中出现的一般问题, 数据采集记录完整,操作过程无大的违规(35-20); 动手能力较差,难以解决实验过程中出现的一般问题,数据采集与记录不完整、有偏差,有违规操作(0-20分)。 操作要点: 1. 拉线要与绕线塔轮水平,且相切。 2. 单角度设置法中要确保初角速度为零,即00=w ; 第三部分:数据记录与数据处理(30分) 数据处理要求: 1.原始数据需重新抄入实验报告数据处理部分的正文中,再进行具体处理,注意各测量量的单位; 2.测量塔轮半径r ,刚体圆盘质量M 盘,刚体圆盘直径R 盘;设置系统转动角度θ;

3.使用作图法(曲线改直)处理单角度设置法的数据: 1)作图时要有清楚标注,如空载图还是载荷图,坐标轴是否有标注,数据是否齐全,比例是否合适等; 2)由图可得,空载时的截距0C 和斜率0K ;载荷时的截距C 和斜率K ; 3)计算空载时系统的0J ,载荷时系统的J ,得到刚体圆盘转动惯量x J ; 4)计算刚体圆盘理论值理x J ,并与上述实验值作比较; 5)计算系统空载和载荷时的摩擦力矩0μM 、μM ,并作比较。 4.根据公式处理双角度设置法的数据: 1)根据公式,计算系统空载时0β、' 0β,以及载荷时的β、'β; β为有恒外力矩(绕线上挂有固定质量砝码)时的角加速度, 'β为无外力矩(绕线上没有挂砝码)时的角加速度; 2)根据公式,计算空载时系统的0J ,载荷时系统的J ,得到刚体圆盘转动惯量x J ; 3)计算刚体圆盘理论值理x J ,并与上述实验值作比较; 4)计算系统相应的摩擦力矩μM 。 测量结果参考值: 1.基本数据测量: 铝质圆盘直径:D 盘 =(240.00±0.05)mm 砝码质量:(5.00±0.05)g 圆盘质量:M 盘 = 482g 2.单角度设置法数据记录与处理: 1)空载数据记录: )6(102)1(==-=N N 取ππθ , cm r 000.3= , 0=盘M

转动惯量的测定

转动惯量的测定 转动惯量是刚体转动时惯性大小的量度,是表明刚体特性的一个物理量。刚体转动惯量除了与刚体的质量有关外,还与转轴的位置和质量分布(即形状、大小和密度)有关。如果刚体形状简单,且质量分布均匀,可直接计算出它绕特定转轴的转动惯量。但在工程实践中,我们常碰到大量形状复杂且质量分布不均匀的刚体,理论计算将极为复杂,通常采用实验方法来测定。 转动惯量的测量,一般都是使刚体以一定形式运动,通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。本实验使物体作扭转摆动,由摆动周期及其参数的测定算出物体的转动惯量,利用刚体转动惯量实验仪测定物体的转动惯量。 [实验目的] 1、用扭摆测定弹簧的扭摆常数K。 2、用扭摆测定几种不同形状物体的转动惯量,并与理论值进行比较。 3、验证平行轴定律。 [实验仪器] 转动惯量实验仪、米尺、游标卡尺 [实验原理] 一、扭摆的简谐运动 扭摆的构造如图10-1所示,在垂 直轴“1”上装有一根薄片状的螺旋弹 簧“2”,用以产生恢复力矩。在轴上 方可以装上各种待测刚体。垂直轴与 支座间装有轴承,摩擦力矩尽可能降 低。为了使垂直轴“1”与水平面垂 直,可通过底脚螺丝钉“7”来调节, 水平仪“8”用来指示系统调整水平。 将刚体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下,物体就开始绕垂直轴作往返扭转运动。根据胡克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即 =-(1) M Kθ

式中,K 为弹簧的扭转常数。 根据转动定律有 M I β= (2) 式中,I 为刚体绕转轴的转动惯量,β为角加速度。由(1)与(2)得 θβI K - = 其中2 K I ω= 。忽略轴承的摩擦阻力矩,则有2 K I ω= θωθθβ222-=-==I K dt d 此方程表明忽略轴承摩擦阻力的扭摆运动是角简谐振动;角加速度与角位移成正比,且方向相反。此方程的解为 cos()A t θω?=+ 式中,A 为简谐振动的角振幅,? 为初位相,ω为角速度。此简谐振动的周期为 22T π ω = = (3) 利用公式(3),测得扭摆的周期T ,在I 和K 中任何一个量已知时,即可计算出另一个量。 本实验用一个转动惯量已知的物体(几何形状规则的物体,根据它的质量和几何尺寸,用理论公式计算得到),测出该物体摆动的周期,再算出本仪器弹簧的K 值。若要测量其他形状物体的转动惯量,只需将待测物体放在本仪器顶部的各种 夹具上,测定其摆动周期,由公式(3)即可计算出该物体绕转轴运动时的转动惯量。 二、平行轴定理 若质量为m 的刚体通过质心轴的转动惯量为c I ,当转轴平行移动距离为x 时(如图10-2 所示),此物体对新轴线的转动惯量变为20c I I mx =+,称为转动惯量的平行轴定理。 [实验内容] 1、熟悉扭摆的构造、使用方法,掌握转动惯量测试仪的正确操作要领。

刚体转动惯量的测定实验报告

刚体转动惯量的测定 物本1001班 张胜东(201009110024) 李春雷(201009110059) 郑云婌(201009110019)

刚体转动惯量的测定实验报告 【实验目的】 1.熟悉扭摆的构造、使用方法和转动惯量测试仪的使用。 2.用扭摆测定弹簧的扭转常数K和几种不同形状的物体的转动惯量,并与理论值进行比较。 3.验证转动定理和平行轴定理。 【实验仪器】 (1)扭摆(转动惯量测定仪)。 (2)实心塑料圆柱体、空心金属圆桶、细金属杆和两个金属块及支架。 (3)天平。 (4)游标卡尺。 (5)HLD-TH-II转动惯量测试仪(计时精度0.001ms)。 【实验原理】 1.扭摆 扭摆的构造如图所示,在垂直轴1 上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。在轴的上方可以装上各种待测物体。垂直轴与支座间装有轴承,以降低磨擦力矩。3 为水平仪,用来调整系统平衡。 将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。根据虎克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即

b M =-K θ (1) 式中,K 为弹簧的扭转常数,根据转动定律 M =I β 式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得 I M = β (2) 令 L K = 2 ω ,忽略轴承的磨擦阻力矩,由(1)、(2)得 θωθθβ2 2 2-=-==I K dt d (3) 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。此方程的解为: θ=Acos(ωt +φ) (4) 式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为 K I T π ω π 22== (5) 由(5)可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另一个量。 本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的K 值。若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(3)即可算出该物体绕转动轴的转动惯量。 2.弹簧的扭转系数 实验中用一个几何形状规则的物体(塑料圆柱体),它的转动惯量可以根据它的质量和集合尺寸用理论公式直接计算得到,再由实验数据算出本一起弹簧的K 值。方法如下: (1)测载物盘摆动周期T 0,由(5)式得其转动惯量为: (2)塑料圆柱放在载物盘上,测出摆动周期T 1,由(5)式其总惯量为:

刚体转动惯量的测定

刚体转动惯量的测定 转动惯量是描述刚体转动惯性大小的物理量,是研究和描述刚体转动规律的一个重要物理量,它不仅取决于刚体的总质量,而且与刚体的形状、质量分布以及转轴位置有关。对于质量分布均匀、具有规则几何形状的刚体,可以通过数学方法计算出它绕给定转动轴的转动惯量。对于质量分布不均匀、没有规则几何形状的刚体,用数学方法计算其转动惯量是相当困难的,通常要用实验的方法来测定其转动惯量。因此,学会用实验的方法测定刚体的转动惯量具有重要的实际意义。 【实验目的】 学习用转动惯量仪测定物体的转动惯量。 【实验仪器】 JM-3转动惯量实验仪及其附件(砝码,金属圆柱、圆盘及圆柱), JM-3通用电脑计时器. 【实验原理】 根据刚体的定轴转动定律 dt d J J M ω β==, 只要测定刚体转动时所受的合外力矩及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量,这是恒力矩转动法测定转动惯量的基本原理和设计思路。 一、转动惯量J 的测量原理 砝码盘及其砝码是系统转动的动力。分析转动系统受力如图2所示: 当砝码钩上放置一定的砝码时,若松开手,则在重力的作用下,砝码就会通过细绳带动塔轮加速转动。当砝码绳脱离塔轮后,系统将只在摩擦力矩的作用下转动。 图1 转动系统受力图 本实验中待测试件放在实验台上,随同实验台一起做定轴转动。设空实验台(未加试件)转动时,其转动惯量为 0J , 加上被测刚体后的转动惯量为J ,由转动惯量的叠加原理可知,则被测试件的转动惯量 被测 J 为 0J J J -=被测 或 被测物J J J +=0 实验时,先测出系统支架(空实验台)的转动惯量 0J ,然后将待测物放在支架上,测 量出转动惯量为J ,利用上式可计算出待测物的转动惯量。 未加试件及外力时(0=m ,0=T ),即外力矩为零时,若使系统以某一初角速度开

实验2用三线摆测量刚体的转动惯量

实验2 用三线摆测量刚体的转动惯量 转动惯量是刚体转动时惯性大小的量度,它与刚体的质量分布和转轴的位置有关。对于质量分布均匀、外形不复杂的刚体,测出其外形尺寸及质量,就可以计算出其转动惯量;而对于外形复杂、质量分布不均匀的刚体,其转动惯量就难以计算,通常利用转动实验来测定。三线摆就是测量刚体转动惯量的基本方法之一。 一. 实验目的 1. 学会正确测量长度、质量和时间。 2. 学习用三线摆测量圆盘和圆环绕对称轴的转动惯量。 二. 实验仪器 三线摆仪、米尺、游标卡尺、数字毫秒计、气泡水平仪、物理天平和待测圆环等。 三. 实验原理 图3-2-1是三线摆实验装置示意图。三线摆是由上、下两个匀质圆盘,用三条等长的摆线(摆线为不易拉伸的细线)连接而成。上、下圆盘的系线点构成等边三角形,下盘处 于悬挂状态,并可绕OO ‘ 轴线作扭转摆动,称为摆盘。由于三线摆的摆动周期与摆盘的转动惯量有一定关系,所以把待测样品放在摆盘上后,三线摆系统的摆动周期就要相应的随之改变。这样,根据摆动周期、摆动质量以及有关的参量,就能求出摆盘系统的转动惯量。 设下圆盘质量为0m ,当它绕OO '扭转的最大角位移为o θ时,圆 盘的中心位置升高h ,这时圆盘的动能全部转变为重力势能,有: gh m E P 0= (g 为重力加速度) 当下盘重新回到平衡位置时,重心降到最低点,这时最大角速 度为 0ω,重力势能被全部转变为动能,有: 20021ωI E K = 式中0I 是下圆盘对于通过其重心且垂直于盘面的OO ‘ 轴的转动惯量。 如果忽略摩擦力,根据机械能守恒定律可得: 200021ωI gh m = (3-2-1) 设悬线长度为l ,下圆盘悬线距圆心为R 0,当下圆盘转过一角度0θ时, 从上圆盘B 点作下圆盘垂线,与升高h 前、后下圆盘分别交于C 和C 1,如图3-2-2所示,则: 1 2 !21)()(BC BC BC BC BC BC h +-= -= ∵ 2 2 2 2 2 )()()()(r R AC AB BC --=-= 10 2 102sin 4)cos 1(2BC BC Rr BC BC Rr h += +-=θθ 在扭转角 0θ很小,摆长l 很长时,sin 22 θθ≈ ,而BC+BC 1≈2H ,其中 ) cos 2()()()(022********θRr r R C A B A BC -+-=-=

转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量 测量刚体的转动惯量 实验目的: 1.用实验方法验证刚体转动定律,并求其转动惯量; 2.观察刚体的转动惯量与质量分布的关系 3.学习作图的曲线改直法,并由作图法处理实验数据。 二.实验原理: 1.刚体的转动定律 具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律: m = iβ (1) 利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。 2.应用转动定律求转动惯量 图片已关闭显示,点此查看 如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动。 设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。刚体受到张力的力矩为tr和轴摩擦力力矩mf。由转动定律可得到刚体的转动运动方程:tr - mf = iβ。绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到: 22m(g - a)r - mf = 2hi/rt (2) mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式: 2mgr = 2hi/ rt (3) 式中r、h、t可直接测量到,m是试验中任意选定的。因此可根据(3)用实验的方法求得转动惯量i。 3.验证转动定律,求转动惯量 从(3)出发,考虑用以下两种方法: 2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下 落高度h,(3)式变为: 2m = k1/ t (4) 2式中k1 = 2hi/ gr为常量。上式表明:所用砝码的质量与下落时间t的平方成反比。实验 中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。即若所作的图是直线,便验证了转动定律。 222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。 b.作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。将式(3)写为: r = k2/ t (5) 式中k2 = (2hi/ mg)是常量。上式表明r与1/t成正比关系。实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。即若所作图是直线,便验证了转动定律。

实验1 刚体转动惯量的测定

实验1: 刚体转动惯量的测定 教师:徐永祥1.前言:转动惯量(Moment of inertia)是表征物体转动惯性大小的物理量,它与 物体平动的质量是完全对应的。转动惯量和物体的形状、大小、密度以及转轴的位置等因素有关,密度均匀形状规则的刚体(Rigid body),其转动惯量可以方便地计算出来,但不符合此条件的刚体的转动惯量一般需要通过实验的方法测出。 目前,测量转动惯量的方法有多种,如动力学法、扭摆法(三线扭摆法、单线摆法)及复摆法等等。本实验采用动力学方法测量被测物体的转动惯量。2.教学方式与时间安排 教师讲解、示范及与学生互动相结合;总实验时间:120分钟左右。 3.实验基本要求 1) 会通过转动惯量实验仪的操作测量规则物体的转动惯量,并与理论值比较进行误差分析; 2) 学会用实验方法验证平行轴原理; 3)学会用作图法处理数据,熟悉并掌握用作图法处理数据的基本要求。4.实验仪器与部件 转动惯量实验仪,电子毫秒计,可编程电子计算器,铝环,小钢柱等。5.仪器介绍 转动惯量实验仪的主体由十字形承物台和塔轮构成。塔轮带有5个不同半径的绕线轮(半径r分别为15,20,25,30,35mm共5挡),使轻质细线通过滑轮连着砝码钩;砝码钩上挂着不同数量的砝码,以改变转动体系的动力矩。承物台呈十字形,它沿半径方向等距离地排有三个小孔,这些孔离中心的距离分别为45,60,75,90,105mm,小孔中可以安插小钢珠,籍以改变体系的转动惯量。承物台下方连有两个细棒,它们随承物台一起转动,到达光电门处产生遮光并通过脉冲电路引起脉冲触发信号,从而便于计算遮光次数及某两次遮光之间的时间间隔,并最终由数字毫秒计显示出来。 关于数字毫秒计使用方法,请参见本实验讲义P66“数字毫秒计”部分。6. 实验原理 1)转动惯量的测定 由刚体转动的动力学定律得到: βJ M=(1)式中,M为转动体系所受的合外力矩,包括细绳作用于塔轮的力矩以及阻力矩;J为系统绕竖直轴的转动惯量。本实验中需要测出铝环绕转轴的转动惯量,这只要分别测出系统空转时的转动惯量及铝环与转动体系构成系统的转动惯量,两者的差值即为铝环绕中心轴的转动惯量。β为转动系统在合外力矩作用下转动的角加速度。 将砝码盘上放置质量为mf=40 g的砝码,使系统开始转动,则对砝码而言:

相关文档
最新文档