纳米二氧化钛
二氧化钛纳米粒子声敏剂特点

二氧化钛纳米粒子声敏剂特点
二氧化钛纳米粒子作为一种典型的无机纳米声敏剂,具有广泛的应用前景。
以下是其主要特点:
1. 无毒环保:二氧化钛纳米粒子本身无毒,且具有良好的生物相容性,因此在药物载体、食品添加剂、环境修复等领域应用广泛。
2. 稳定性高:二氧化钛纳米粒子具有稳定的化学性质和良好的耐候性,不易分解变色,可在不同环境下保持稳定的性能。
3. 声学性能优异:二氧化钛纳米粒子具有较高的声学响应性能,能够有效吸收超声波并转换为热能,促进肿瘤细胞的凋亡。
4. 易于改性:通过物理或化学方法,可以对二氧化钛纳米粒子进行表面改性,提高其在特定环境中的分散性和稳定性,进一步拓展其在生物医学领域的应用。
5. 易于合成:二氧化钛纳米粒子可通过多种方法进行合成,如水热法、化学沉淀法、溶胶-凝胶法等。
这些方法可以根据实际需求进行选择或优化,实现大规模制备。
6. 良好的光催化性能:二氧化钛纳米粒子在紫外光下具有优异的光催化性能,能够降解有机污染物和抗菌消毒。
这一特点使其在环保、卫生等领域备受关注。
7. 广泛的应用领域:除了在声敏剂领域的应用外,二氧化钛纳米粒子还可应用于光电、传感、太阳能利用等领域。
其多功能性使得它在未来科技发展中具有广阔的应用前景。
综上所述,二氧化钛纳米粒子作为一种无机纳米声敏剂,具有无毒环保、稳定性高、声学性能优异、易于改性、易于合成、良好的光催化性能和广泛的应用领域等特点。
这些优势使得它在生物医学、环保、卫生等领域具有重要的应用价值和发展前景。
(精选)纳米二氧化钛在物体表面的抗菌作用

纳米二氧化钛在物体表面的抗菌作用纳米TiO2问世于20世纪80年代后期,是一种有着普遍用途的无机材料。
因其独特的紫外线屏蔽、光催化作用、颜色效应等性能,在高级涂料、化妆品、废水处置、空气净化、杀菌和高效太阳能电池等方面有着广漠的应用前景。
纳米二氧化钛(TiO2)作为光催化半导体无机抗菌剂,具有广谱抗菌功能,能抑制和杀灭微生物,并有除臭、防霉、消毒的作用,其本身化学性质稳固且对人体和环境无害,光催化作用持久,因此愈来愈取得世人青睐。
纳米TiO2的结晶有两种晶态:即金红石型和锐钛型。
通常,金红石型的二氧化钛光催化能力差,而锐钛型的二氧化钛具有强光催化能力。
锐钛型纳米TiO2在H2O、O2体系中发生光催化反映,产生的羟基自由基(HO·),能和多种细菌和臭体反映,而有效地灭菌和排除臭味,因此能够制成纳米TiO2抗菌剂。
纳米TiO2抗菌剂具有将细菌及其残骸一路杀灭清除的能力,同时还能将细菌分泌的毒素也分解掉。
而且纳米TiO2作为杀菌剂还具有以下几个特点:一是即效性好,如银系列抗菌剂的成效约在24h左右发生,而纳米TiO2仅需1h左右;二是TiO2是一种半永久维持抗菌成效的抗菌剂,不像其它抗菌剂会随着抗菌剂的溶出而成效慢慢下降;三是有专门好的平安性,与皮肤接触无不良阻碍。
本实验采纳了四种新型的纳米TiO2喷液(原液、复合液1#、复合液2斡、复合液3#)喷涂在瓷片和纸片上,并对其在瓷片和纸片应用中的杀菌成效进行了实验观看;同时咱们对涂有纳米TiO2喷液的部份瓷片通太高温预处置以后对其灭菌成效进行了观看实验。
1 材料与方式菌种来源大肠杆菌华南理工大学食物科学与工程学院实验室提供。
材料培育基营养肉汤培育基(g/100mL):酪蛋白胨,牛肉浸膏,。
MR-VP培育基(g/100mL):(月示)胨,葡萄糖,K2HPO4,pH值。
瓷片和纸片瓷片:3cm×3cm的干净瓷片。
纸片:白度为85(%,ISO)的针叶木浆抄成定量为60g/m2的纸片,其中不加任何化学药品。
实验溶胶凝胶法制备纳米二氧化钛实验

实验八溶胶-凝胶法制备纳米二氧化钛实验一、实验目的1、掌握溶胶-凝胶法制备纳米粒子的原理;2、了解TiO2纳米粒子光催化机理;二、实验原理溶胶-凝胶法Sol-Gel法是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法;溶胶凝胶法制备TiO2纳米粒子是通过钛酸四丁酯的水解和缩聚反应来实现的,其分步水解方程式为:TiORn+H2OTiOHORn-1+ROHTiOHORn-1+H2OTiOH2ORn-2+ROH……反应持续进行,直到生成TiOHn.缩聚反应:—Ti—OH+HO—Ti——Ti—O—Ti+H2O—Ti—OR+HO—Ti——Ti—O—Ti+ROH最后获得氧化物的结构和形态依赖于水解与缩聚反应的相对反应程度,当金属-氧桥-聚合物达到一定宏观尺寸时,形成网状结构从而溶胶失去流动性,即凝胶形成;三、原料及设备仪器1、原料:钛酸正四丁脂分析纯、无水乙醇分析纯、冰醋酸分析纯、盐酸分析纯、蒸馏水2、设备仪器:电磁搅拌器、恒温干燥箱、高温炉四、实验步骤以钛酸正丁酯TiOC4H94为前驱物,无水乙醇C2H5OH为溶剂,冰醋酸CH3COOH为螯合剂,从而控制钛酸正丁酯均匀水解,减小水解产物的团聚,得到颗粒细小且均匀的二氧化钛溶胶;1、室温下量取10mL钛酸丁酯,缓慢滴入到35mL无水乙醇中,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A;2、将2mL冰醋酸和10mL蒸馏水加到另35mL无水乙醇中,剧烈搅拌,得到溶液B,滴入2-3滴盐酸,调节pH值使pH=3;3、室温水浴下,在剧烈搅拌下将溶液A缓慢滴入溶液B中;4、滴加完毕后得浅黄色溶液,40℃水浴搅拌加热,约1h后得到白色凝胶倾斜烧瓶凝胶不流动;5、置于80℃下烘干,大约20h,得黄色晶体,研磨,得到淡黄色粉末;6、在600℃下热处理2h,得到二氧化钛纯白色粉体;五、思考题1、溶胶-凝胶法制备材料有哪些优点2、纳米二氧化钛粉体有哪些用途六、实验报告要求实验报告按照学校统一模板书写,包括下列内容:1、实验名称、目的和实验步骤;2、解答思考题;。
纳米二氧化钛制备方法及其优缺点

纳米二氧化钛制备方法及其优缺点嘿,朋友们!今天咱来聊聊纳米二氧化钛的制备方法及其优缺点。
这纳米二氧化钛啊,可真是个神奇的玩意儿!先说说制备方法吧。
有一种常见的方法叫溶胶-凝胶法,就好像是在变魔术一样,把各种材料混合在一起,经过一系列反应,嘿,就变出纳米二氧化钛啦!还有水热法,就像是给材料们洗了个热水澡,然后它们就变成纳米二氧化钛啦,是不是很有意思?另外还有气相沉积法,听着就很高端大气上档次吧,就像是在空中搭建起纳米二氧化钛的小房子。
每种方法都有它的特点呢!溶胶-凝胶法操作相对简单,就像做一道家常菜,大家都能试试。
水热法呢,能得到比较纯净的产物,就像是精心挑选出来的宝贝。
气相沉积法呢,能制备出高质量的纳米二氧化钛,那可真是精益求精啊!那纳米二氧化钛有啥优点呢?哎呀呀,那可多了去了。
它的光催化性能特别好,就像是一个超级清洁工,能把好多污染物都给清理掉。
而且它还很稳定,就像一个坚强的战士,不容易被打败。
它的抗菌性能也不错哦,能把那些坏细菌都赶跑,守护我们的健康。
但是,它也不是完美无缺的啦!比如说它的成本有时候会有点高,这就像是买一件特别贵的衣服,让人有点心疼钱包呢。
还有啊,在制备过程中如果不注意,可能会出现一些团聚的现象,这就好像是一群人挤在一起,不太好分开啦。
不过,咱可不能因为这些小缺点就忽视了它的大优点呀!纳米二氧化钛在环保、医疗、化工等好多领域都有着重要的应用呢。
想象一下,如果没有纳米二氧化钛,我们的生活得失去多少便利呀!所以说呀,我们要正确看待纳米二氧化钛,既要看到它的优点,好好利用它,也要注意它的缺点,想办法去克服。
让我们一起和纳米二氧化钛做好朋友,让它为我们的生活带来更多的美好吧!这就是我对纳米二氧化钛的看法,你们觉得呢?。
纳米二氧化钛的cas号

纳米二氧化钛的cas号
纳米二氧化钛的CAS号是一个化学行业中广泛使用的标识号码,用以唯一地
识别和区分不同化学物质。
CAS号是Chemical Abstracts Service(CAS)所分配的
一串数字,由三个部分组成,分别是前缀部分、中间部分和后缀部分。
纳米二氧
化钛的CAS号为1317-70-0。
CAS号中的前缀部分通常为2-7个数字,代表化学物质的特定组合。
在纳米二
氧化钛的CAS号中,前缀部分为1317,这个数字与该化学物质的特有属性相关联。
中间部分通常由两位数字和连接字符组成,用于区分不同化学物质的排列方式。
在纳米二氧化钛的CAS号中,中间部分为70。
后缀部分则由0构成,表示纳米二氧
化钛与其他化学物质的亚型没有明显的差异。
通过CAS号,我们可以准确地确认纳米二氧化钛的身份,避免混淆或误解。
这对于科学研究、工业生产和安全监管等领域都非常重要。
总之,纳米二氧化钛的CAS号是1317-70-0,通过CAS号可以准确识别和区
分纳米二氧化钛,确保正确应用于各种领域中。
纳米二氧化钛的作用

1.纳米二氧化钛的作用a)杀菌功能用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。
b)防紫外线功能纳米TiO2既能吸收紫外线,又能反射、散射紫外线,还能透过可见光,是性能优越、极有发展前途的物理屏蔽型的紫外线防护剂。
c)对氟里昂的降解功能TiO2对于CFCl3的降解具有良好的光催化活性,用TiO2/WO3体系降解CFCl3,在100h内保持催化效率高于99.6%。
2.是否可以用作涂层添加物人们常采用的防腐措施是在金属表面涂上一层防腐涂层,以防止腐蚀介质与金属基体的直接接触,从而减轻腐蚀纳米材料表面原子数所占的比例大,表面原子周围缺少相邻的原子,具有不饱和性质,在与其他组份作用时,在两个混合相之间产生很大的作用力,将很大程度地对材料增强增韧所以,以纳米材料作为添加剂制备涂料时,就涂膜本体而言,就像复合材料一样,被显着地增强增韧,纳米材料的加入将改善涂层中颜料和填料的体积填充致密度,减少毛细管作用,提高涂层对腐蚀介质的屏蔽作用;同时,涂料的流变特性及热稳定性也得以改善.比如纳米级二氧化钛粒子常被用作涂料的助剂,用以改善涂料的流变性,提高涂层的附着力、涂膜硬度、光洁度和抗老化性能。
3.效果如何纳米材料能够提高涂层的一些性能,但是,必须严格控制其加入量,加量太多,一方面使其更难分散,从而导致其团聚量相对增多,影响其粉体与树脂的结合.另一方面,加量太少,使得没有足够纳米粉体与树脂结合,也将使其性能降低。
4.是否有这样的理论支持北京化工大学材料科学与工程学院的徐瑞芬等人曾做过方面的研究a)原材料抗菌纳米二氧化钛,实验室自制;苯-丙(BC-102)乳液;钛白粉,R-901;煅烧高岭土;立德粉;滑石粉;分散剂;消泡剂;增稠剂;成膜助剂;乙二醇,化学纯;pH调节剂,AMP-95。
b)实验室制备方法将水放入容器内,开启高速搅拌机,在低速下依次加入颜料分散剂、部分消泡剂、,AMP-95、成膜助剂,混合均匀后将纳米二氧化钛光催化剂和颜填料用筛慢慢地筛入叶轮搅起的旋涡中。
纳米二氧化钛工艺流程

纳米二氧化钛工艺流程英文回答:Titanium dioxide (TiO2) is a widely used material in various industries, including cosmetics, paints, coatings, and even in the field of environmental protection. The process of producing nanoscale titanium dioxide involves several steps.Firstly, the raw material used for the production of nanoscale titanium dioxide is typically titanium tetrachloride (TiCl4). This compound is reacted with water or steam in a hydrolysis reaction to form titanium dioxide. The reaction can be represented by the following equation:TiCl4 + 2H2O → TiO2 + 4HCl.The resulting titanium dioxide is in the form of a white powder, which is then subjected to further processing to obtain nanoscale particles. One common method is thesol-gel process, where the titanium dioxide powder is dispersed in a liquid medium, such as water or alcohol, to form a colloidal suspension. This suspension is then subjected to hydrothermal treatment or calcination at high temperatures to produce nanoparticles of titanium dioxide.Another method for producing nanoscale titanium dioxide is the precipitation method. In this process, a solution containing titanium ions is mixed with a precipitating agent, such as ammonia or sodium hydroxide, to form a precipitate of titanium dioxide. The precipitate is then washed, dried, and milled to obtain nanoscale particles.Once the nanoscale titanium dioxide particles are obtained, they can be further modified or functionalized to enhance their properties or to suit specific applications. For example, the surface of the nanoparticles can be coated with various materials, such as silica or alumina, to improve their stability or dispersibility in different media.In summary, the process of producing nanoscale titaniumdioxide involves the hydrolysis of titanium tetrachlorideto form titanium dioxide, followed by further processing to obtain nanoparticles. The resulting nanoparticles can then be modified to enhance their properties for specific applications.中文回答:纳米二氧化钛是一种广泛应用于各个行业的材料,包括化妆品、涂料、环保等领域。
锂电池专用纳米二氧化钛参数

纳米二氧化钛(锂电池专用)产品介绍纳米二氧化钛颗粒细小、颗粒分布均匀、比表面积大、光催化活性高,在可见光范围内呈现出良好的光电转换特性,同时还具有优异的宽频光吸收特性,具有量子效应、隧道效应、独特的颜色效应,以及光催化作用及紫外等功能,在功能性涂料、汽车、化妆品、卫生保健、废水处理、环保等方面应用广泛。
其具有稳定性好、无毒无害,光电转化率高,是光电太阳能转换电最普遍使用的材料。
产品参数主要技术指标:外观:白色粉末状固体型号:HTTi-01纯度:≥99.0%水份:≤0.5%PH值: 6-7粒径:5nm、20nm、40nm比表面积:270、90、80m2/g纳米二氧化钛在锂电池中的应用锐钛矿纳米二氧化钛(HTTi-01)比表面积大,在光催化,太阳能电池,环境净化,催化剂载体,锂电池以及气体传感器等方面得到广泛的应用。
纳米二氧化钛作为电池材料,其循环性能更好,电化学性能明显提高。
可以用到钛酸锂电池材料和钴酸锂电池材料中HTTi-01具有良好的快速充放电性能和较高的容量。
经循环伏安研究表明,锂离子在纳米二氧化钛中同时存在两种动力学过程,即扩散控制的锂离子嵌入-脱出国产和赝电容性的动力学过程,更好地释放锂嵌入和脱嵌过程中的应力,提高循环寿命,这也是与纳米二氧化钛的特殊结构相关的。
由于纳米二氧化钛具有很好的化学稳定性和热稳定性,因此具有更广泛的应用范围。
纳米二氧化钛是一种优秀的锂嵌入载体,插锂电位在 1.5-1.6V,形成Li0.91TiO2-B,具有优异的可逆循环容量。
有意思的是,它的比容量要优于同种相的直径跟纳米线直径相仿的纳米性能特点:1、可以制成透明的产品,从而可应用在窗子、屋顶、汽车顶以及显示器上;2、由于所使用的染料敏化剂可以在很低的光能量下达到饱和,因此可以在各种光照条件下使用;3、光的利用效率高,对光线的入射角度不敏感,可充分利用折射光和反射光;4、对光阴影不敏感;5、可在很宽温度范围内正常工作,允许工作温度可高达70℃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米二氧化钛产品简介:纳米二氧化钛是金红石型白色疏松粉末,作为紫外线屏蔽剂,防止紫外线的侵害。
也可用于高档汽车面漆,具有随角异色效应。
纳米技术在光催化领域扮演着重要的角色。
纳米二氧化钛的光催化作用能将光能转变为电能和化学能,实现许多难以实现或不可能进行的反应。
屏蔽紫外线作用强,有良好的分散性和耐候性。
可用于化妆品、功能纤维、塑料、涂料、油漆等领域,。
目前,环境污染的控制与治理是我们面临的亟待解决的重大问题,在众多环境治理技术中,利用太阳光作为光源来活化纳米二氧化钛,使其在室温下进行氧化还原反应,杀灭有害菌、清除污染物,这一技术已成为一种理想的环境治理技术。
纳米二氧化钛属非溶出型抗菌剂,本身具有很好的化学稳定性,无毒性,重金属含量少,抗菌性广且长效,被越来越广泛地应用于日常生活之中。
如太阳能电池、抗菌材料、空气净化器、自清洁材料、精细陶瓷及建筑材料等。
将对提高我们的生活质量发挥无穷潜力。
分类:纳米二氧化钛主要有两种结晶形态:锐钛型(Anatase)和金红石型(Rutile)。
金红石型二氧化钛比锐钛型二氧化钛稳定而致密,有较高的硬度、密度、介电常数及折射率,其遮盖力和着色力也较高。
而锐钛型二氧化钛在可见光短波部分的反射率比金红石型二氧化钛高,带蓝色色调,并且对紫外线的吸收能力比金红石型低,光催化活性比金红石型高。
在一定条件下,锐钛型二氧化钛可转化为金红石型二氧化钛。
结构:纳米材料的两个重要特征是纳米晶粒与高浓度晶界。
纳米TiO2的微观结构特征的研究报道较少。
其中用拉曼散射和高分辨电镜研究了纳米TiO2陶瓷, 显示的结果与通常粗晶材料无多大的区别,晶粒间界处亦含有短程有序的结构单元。
纳米TiO2晶粒基本是等轴晶粒, 与从气体凝聚法得到的原子团簇形状相同, 尺寸相同并都服从对数正态分布。
性能:™ 纳米TiO2有白色和透明状的两种颗粒,常见的TiO2粉体有金红石、锐钛矿、板钛矿等3 种晶型。
™ 其中金红石和锐钛矿是四方晶系,板钛矿是正交晶系。
™ 纳米TiO2化学性能稳定,常温下几乎不与其它化合物反应,不溶于水和稀酸,在一定条件下微溶于碱和热硝酸,纳米TiO2热稳定性也比较好。
™ 纳米TiO2的一个显著特点是他具有半导体性质,它的禁带宽度较宽,其中锐钛矿为3.2eV,金红石为3.0eV,当吸收一定波长的光子后价带中的电子就会被激发到导带,形成带负电的高活性电子,同时在价带上产生带正电的空穴。
制备方法:纳米TiO2粉末的制备通常采用物理法和化学法。
物理法包括气相冷凝法和粉碎法(球磨法)。
气相冷凝是通过多种办法使物质蒸发或挥发成气相,并经特殊工艺冷凝成核得到纳米粉体,一般通过控制蒸发和冷凝的工艺条件来控制粉体的粒径。
低压气体蒸发法、溅射法、等离子法都是气相冷凝制备纳米粉体的常用方法。
化学法是制备纳米粉体的重要方法,制备过程伴随着化学反应。
一般可根据反应物系的形态分为固相法、气相法和液相法。
气相法反应速度快,能实现连续化生产,产品纯度高,分散性好,团聚少,表面活性大。
但该法反应温度较高,对设备腐蚀严重,工艺参数要求高,因此产品成本较高,也不便对纳米TiO2进行形貌控制及掺杂改性。
液相法原料来源广泛,成本较低,设备简单,便于大规模生产,常用的化学方法有:水解法、沉淀法、水热法、溶胶-凝胶法和微乳液法等,是制备纳米TiO2及其掺杂材料的重要方法,所得产品纯度高、质量好、便于涂覆在各种载体上形成负载型催化体系。
沉淀法采用钛醇盐或四氯化钛、硫酸钛以及其它含钛无机物,通过严格控制工艺参数和制备条件,就可以制得性能良好的氧化钛粉体。
(一) 液相水解法A. TiCl4氢氧火焰水解法该法与气相生产白炭黑的原理类似,是将TiCl4气体导入氢氧火焰中(700~1000℃)进行气相水解,其化学反应式为:TiCl4(g)+2H2(g)+O2→Ti O2(s)+4HCl(g)TiCl4氢氧火焰水解法最早是由德国高沙公司开发成功,并生产出纳米超细钛白粉。
目前美国的卡博特、日本的AEROSIL等公司也采用该法生产纳米钛白粉。
该工艺所生产的纳米钛白粉一般是锐钛型和金红石型的混合型,产品纯度高(99.5%),粒径小,比表面积大,分散性好,团聚程度小,主要用于电子材料、催化剂和功能陶瓷等方面。
这种工艺较成熟,自动化程度高,过程短。
但因其过程温度高,腐蚀严重,设备材质要求较严,对工艺参数控制要求精确,因此成本高,一般厂家难以承担。
B.TiOSO4水解法(也称挪威法)以TiOSO4为原料,将其制成一定浓度的溶液后,进行碱中和水解或加热水解,形成的二氧化钛水合物经解聚、洗涤、干燥处理后,根据不同的煅烧温度得到不同晶型的纳米TiO2产品。
其反应机理为:TiOSO4+2NH3·H2O→TiO(OH)2+(NH4)2SO4TiO(OH)2→TiO2(s)+H2O这种工艺突出的优点是原料来源广,产品的成本低,缺点是工艺路线长,自动化程度低,各个工序的工艺参数需严格控制,否则难以得到分散性较好的纳米钛白粉产品。
C. TiCl4碱中和水解法以TiCl4为原料,将其稀释到一定浓度后,加入碱性溶液进行中和水解,得到的二氧化钛水合物经洗涤、干燥和煅烧处理后即得到纳米二氧化钛产品。
美国的二氧化钛公司和日本石原产业公司采用这种方法生产纳米钛白粉产品。
该方法工艺技术的关键是如何控制水解条件,研究反应机理,控制反应流程,分析粉体的特性等。
D. 钛醇盐气相水解法该工艺方法最早是由美国麻省理工学院开发成功,可以用来生产单分散的球形纳米钛白粉,其化学反应式:nTi(OR)(g)+nH2O(g) → nTi(OH)4(s)+4nROH(g)nTi(OH)4(s) → nTiO2·H2O(g) nTiO2·H2O(s) → nTiO2+n H2O(g)日本曹达公司和兴产公司利用氮气、氦气或空气作载气,将钛醇盐蒸汽分别导入反应器的反应区,进行瞬间混合和快速水解反应,这种制备工艺可以获得平均原始粒径为10~150nm,比表面积为50~300m2/g的非晶型纳米钛白粉。
(二) 溶胶—凝胶法溶胶—凝胶法是先将醇盐溶解于有机溶剂中。
加入蒸馏水,使醇盐水解形成溶胶,溶胶凝化处理后得到凝胶,再干燥和煅烧,适当控制溶液的pH值、浓度、反应温度和时间,可获得纳米TiO2粉体。
该方法具有如下有点:合成温度低,成分容易控制;允许掺杂大剂量的无机物和有机物;颗粒细,纯度高;化学均匀性好;工艺设备简单等。
但缺点是原材料价格昂贵,干燥时收缩性大等。
A. 2.2.1 钛醇盐水解法该法为溶胶—凝胶法的一种,以钛醇盐为原料,通过水解和缩聚反应制得溶胶,再进一步得到凝胶。
凝胶经干燥,煅烧得到纳米钛白粉,其反应式如下:水解Ti(OR)4+nH2O→Ti(OR)(4-n)(OH)n+nROH缩聚2Ti(OR)(4-n)(OH)n→[Ti(OR)(4-n)(OH)(n-1)]2O+H2O这种工艺原料的纯度高,整个过程不引进杂质离子,可通过严格控制工艺条件,值得纯度高、粒径小、粒度分布窄的纳米粉体,且产品质量稳定。
缺点是原料成本高,干燥、煅烧使凝胶体积收缩大,易造成颗粒团聚。
B. 2.2.2 以无机钛盐制备的溶胶法TiOSO4与碱液反应得到TiO(OH)2沉淀,经离心洗涤除去Na+、SO42-等杂质离子,再在酸性溶液中发生胶溶反应:TiO(OH)2+H+→TiO(OH)++H2O再加阴离子表面活性剂如DBS变成凝胶,用有机溶剂二甲苯等萃取抽提,对得到的透明水合TiO2胶粒进行热处理生成超细的TiO2产品。
(三) 水热(溶剂热)合成法水热合成法是制备二氧化钛纳米晶的重要方法。
该方法是在内衬耐腐蚀材料的密闭高压釜中。
以水为溶剂,加人纳米二氧化钛的前驱体,充填度为60%~80%,在温度高于100℃,水的自生压力大于101.3 kPa下进行反应。
在水热条件下发生粒子的形核和生长,生成可控形貌和大小的超细粉体,具有晶粒发育完整、粒径小、分布均匀、无团聚、无需煅烧等特点。
过程控制的重要参数有溶液的pH值、浓度、水热温度和反应时间、压强等。
将激光技术引入水热法中,将使该方法成为最有前景的纳米二氧化钛的合成方法之一。
(四) 胶溶—萃取法胶溶—萃取法是相转移法的一种,其原理为:沉淀反应TiO2++OH-→TiO(OH)+TiO(OH)+ +OH-→TiO(OH)2↓胶溶反应TiO(OH)2+H+→TiO(OH)++H2O(溶胶)热处理TiO(OH)2→TiO2+H2O向TiOSO4水溶液中加入碱性水溶液,生成二氧化钛水合物沉淀,再加酸使其变成带正电荷的透明溶胶。
加入阴离子表面活性剂和十二烷基苯磺酸钠,使溶胶胶粒转化成亲油性的聚集体。
然后加入有机溶剂,剧烈振荡,使胶体粒子转入到有机相中,得到有机溶胶,再经回流,减压蒸馏和热处理即得纳米超细钛白粉。
用这种方法制得的纳米级超细钛白粉分散性好、透明度高,但工艺流程长、成本高。
(五) 气相法气相法指直接利用气体或者通过各种手段将物质变为气体,使之在气体状态下发生物理或化学反应,最后在冷却过程中凝聚长大形成纳米TiO2的方法。
气相法包括溅射法、化学气相反应法、化学气相凝聚法、气体蒸发法等,其中应用较多的是化学气相反应法。
如化学气相沉积法利用气体原料,在气相中通过化学反应形成构成物质的基本粒子,再经过形核和生长两个阶段得到纳米材料。
通过选择适当的浓度、流速、温度和组成配比等工艺条件,控制粉体的组成、形貌尺寸、晶相等。
按加热方式的不同,化学气相沉积法又可分为电弧加热合成法、激光诱导气相沉积法、等离子气相合成法等。
气相法反应速度快,能实现连续化生产,而且制造的纳米钛白粉纯度高、分散性好、团聚少、表面活性大,是一种快速制备二氧化钛粉体的方法。
其产品特别适用于精细陶瓷材料、催化剂材料和电子材料等。
但气相法反应在高温下瞬间完成,要求反应物料在极短的时间内达到微观上的均匀混合,对反应器的形式,设备的材质,加热方式均有很高的要求。
(六) 微乳化法将氨水和TiCl4或TiOC12的溶液分别配置成两种微乳。
利用这两种微乳间的反应可以获得无定形的氧化钛,经煅烧后晶化,得到锐钛型二氧化钛纳米晶。
该法的技术关键是制备微观尺寸均匀,可控的微乳液。
因其具有成本高、易团聚等因素,估计实现工业化还需经历相当长的一段时间。
应用:纳米TiO2除了具有纳米材料的特点外,还具有光催化剂性能。
当TiO2受到阳光或荧光灯的紫外线照射后,在氧或水存在下可降解几乎所有附着在氧化钛表面的有机物、氮氧化物、硫化物、氧化物等。
纳米尺度下禁带宽度的满足使TiO2(锐钛型)从根本上解决了催化剂活性增强的问题。
目前,纳米二氧化钛光催化剂已在许多领域得到应用。
纳米TiO2涂料:纳米二氧化钛涂料外观为白色液体。