【数学】河南省驻马店市2014-2015学年高一下学期期末考试(理)

合集下载

指数对数运算练习题40道(附答案)

指数对数运算练习题40道(附答案)

每天一刻钟,数学点点通郭大侠的数学江湖指数对数运算练习题1.已知,b=0.32,0.20.3c =,则a,b,c 三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a2.已知432a =,254b =,1325c =,则(A)b a c <<(B)a b c <<(C)b c a<<(D)c a b<<3.三个数6log ,7.0,67.067.0的大小顺序是()A.7.07.0666log 7.0<< B.6log 67.07.07.06<<C.67.07.07.066log << D.7.067.067.06log <<4.已知4log ,4.0,22.022.0===c b a ,则()A.c b a >>B.a c b>>C.c a b>>D.b c a>>5.设 1.1 3.13log 7,2,0.8ab c ===则()A.c a b <<B.ba c << C.ab c << D.bc a <<6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是()A.b c a <<B.c b a <<C.ca b <<D.ac b <<7.已知 1.22a =,0.80.5b =,2log 3c =,则()A.a b c>>B.c b a <<C.c a b>>D.a c b>>8.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a >>9.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则()A.a>b>cB.a>c>bC.b>c>aD.c>b>a10.设0.61.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是()(A)a b c <<(B) a c b <<(C)b a c <<(D)b c a<<试卷第2页,总8页11.设a=34⎛⎫ ⎪⎝⎭0.5,b=43⎛⎫ ⎪⎝⎭0.4,c=log 34(log 34),则()A.c<b<a B.a<b<c C.c<a<bD.a<c<b12.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>13.已知03131log 4,(),log 105a b c ===,则下列关系中正确的是()A.a b c >>B.b a c >>C.a c b >>D.c a b>>14.设0.5342log log 2a b c π-===,,,则()A.b a c>> B. b c a >> C.a b c >> D.a c b>>15.设0.90.48 1.512314,8,(2y y y -===,则()A.312y y y >>B.213y y y >>C.132y y y >>D.123y y y >>16.设12log 5a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则()A .a b c<<B .c b a<<C .c a b<<D .b a c<<17.设221333111(,(),()252a b c ===,则,,a b c 的大小关系是()A.a b c >>B.c a b >>C.a c b>> D.c b a>>18.已知0.5log sin a x =,0.5log cos b x =,0.5log sin cos c x x =,,42x ππ⎛⎫∈ ⎪⎝⎭,则,,a b c 的大小关系为()A.b a c>> B.c a b>> C.c b a>> D.b c a>>19.设0.50.82x =,2log y =sin1z =,则x 、y 、z 的大小关系为()A.x y z<< B.y z x<< C.z x y<< D.z y x<<每天一刻钟,数学点点通郭大侠的数学江湖20.若21log 0,(12ba <> ,则()A .1,0a b >>B .1,0a b ><C .01,0a b <<> D .01,0a b <<< 21.已知1122log log a b <,则下列不等式一定成立的是()A.1143ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.11a b> C.()ln 0a b -> D.31a b-<22.计算(1)(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+23.计算:1132081()274e π-⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭;②2lg 5lg 4ln ++.24.化简下列各式(其中各字母均为正数):(1)131.5-×76⎛⎫-⎪⎝⎭0+80.25)6;211113322---()(3)41332233814a a bb a⎛÷⨯⎝--+25.(12分)化简或求值:(1)110232418(22(2)()5427--+⨯-;(2)2lg5+试卷第4页,总8页每天一刻钟,数学点点通郭大侠的数学江湖26.(12分)化简、求值:(1)220.53327492()()(0.008)8925---+⨯;(2)计算2lg 5lg8000(lg 11lg 600lg 36lg 0.0122⋅+--27.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+-;(2)5log 33332log 2log 32log 85-+-试卷第6页,总8页28.计算:(1)0021)51(1212)4(2---+-+-;(2)3log 5.222ln 001.0lg 25.6log +++e 29.(本题满分12分)计算以下式子的值:1421(0.252--+⨯;(2)7log 237log 27lg 25lg 47log 1++++.30.计算(1)7log 203log lg 25lg 47(9.8)+++-(2)32310641(833()1(416-+--π-每天一刻钟,数学点点通郭大侠的数学江湖31.计算:()10012cos3022π-⎛⎫-+- ⎪⎝⎭.32.(本题满分12分)计算(1)5log 923215log 32log (log 8)2+-(2)())121023170.0272179--⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭33.(1)化简:1222232()()()a b ab a b ---⋅÷;.34.计算:(1)2482(2013)ππ---⨯--(26cos 45-o试卷第8页,总8页35.(1)计算3log 238616132(log 4)(log 27)log 82log 3--+.(2)若1122x x-+=,求1223x x x x --++-的值.36.求值:(122316ln 4⎛⎫-+ ⎪⎝⎭37.(1)求值:(2)已知31=+x x 求221xx +的值38.计算:(1)943232053312332278-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛(2)23log 32lg 222lg 52lg ++-39.下列四个命题:①11(0,),()()23xxx ∃∈+∞>;②23(0,),log log x x x ∃∈+∞<;③121(0,),()log 2xx x ∀∈+∞>;④1311(0,),(log 32xx x ∀∈<.其中正确命题的序号是.40.(23227log 28-⎛⎫--- ⎪⎝⎭=_____________________________参考答案1.A【来源】2013-2014学年福建省三明一中高二下学期期中考试文科数学试卷(带解析)【解析】试题分析:由指数函数的单调性可知0.3xy =是单调递减的所以0.50.20.30.3<即a<c<1;2xy =是单调增的,所以0.30221y =>=,即可知A 正确考点:指数函数比较大小.2.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A.【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.3.D【来源】2013-2014学年广西桂林十八中高二下学期开学考理科数学试卷(带解析)【解析】试题分析:0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=,所以60.70.7log 600.716<<<<.考点:用指数,对数函数特殊值比较大小.4.A .【来源】2014届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析)【解析】试题分析:因为0,10,1<<<>c b a ,所以c b a >>,故选A.考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小.5.B【来源】2014年全国普通高等学校招生统一考试文科数学(安徽卷带解析)【解析】试题分析:由题意,因为3log 7a=,则12a <<; 1.12b =,则2b >; 3.10.8c =,则00.81c <=,所以c a b<<考点:1.指数、对数的运算性质.6.C【来源】2014-2015学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析)【解析】试题分析:∵200.31a <=<,22b log 0.3log 10=<=,0.30221c =>=,∴c a b <<考点:根式与分数指数幂的互化及其化简运算.7.D【来源】2014届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析)【解析】试题分析:∵ 1.222a =>,0.800.51<<,21log 32<<,∴a c b >>.考点:利用函数图象及性质比较大小.8.C【来源】2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)【解析】试题分析:因为132(0,1)a -=∈,221log log 103b =<=,112211log log 132c =>=,故c a b >>.考点:指数函数和对数函数的图象和性质.9.A【来源】2014届浙江省嘉兴市高三上学期9月月考文科数学试卷(带解析)【解析】试题分析:由指数函数和对数函数的图像和性质知0a >,0b <,0c <,又对数函数()0.2log f x x =在()0,+∞上是单调递减的,所以0.20.2log 3log 4>,所以a b c >>.考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015年全国普通高等学校招生统一考试文科数学(山东卷带解析)【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .考点:1.指数函数的性质;2.函数值比较大小.11.C【来源】2014届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析)【解析】由题意得0<a<1,b>1,而log 34>1,c=log 34(log 34),得c<0,故c<a<b.12.C【来源】2014年全国普通高等学校招生统一考试理科数学(辽宁卷带解析)【解析】试题分析:1032122110221,log 0,log log 31,33ab c -<=<==<==>所以c a b >>,故选C.考点:1.指数对数化简;2.不等式大小比较.13.A.【来源】2015届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析)【解析】试题分析:∵33log 4log 31a =>=,01(15b ==,11331log 10log 13c =<=,∴a b c >>.考点:指对数的性质.14.A【来源】2015届河南省八校高三上学期第一次联考文科数学试卷(带解析)【解析】试题分析:∵0.53422,,a b log c log π-===,0.52112>-,341122>,=log log π.∴>>b a c .故选:A.考点:不等式比较大小.15.C【来源】2012-2013学年广东省执信中学高一下学期期中数学试题(带解析)【解析】试题分析:根据题意,结合指数函数的性质,当底数大于1,函数递增,那么可知0.9 1.80.48 1.44 1.5 1.5123142,82,()22y y y -======,结合指数幂的运算性质可知,有132y y y >>,选C.考点:指数函数的值域点评:解决的关键是以0和1为界来比较大小,属于基础题。

小学五年级数学期末考试卷(2014-2015学年)

小学五年级数学期末考试卷(2014-2015学年)

小学五年级数学期末考试卷(2014-2015学年)小学五年级数学期末考试卷(2014-2015学年)一、填空(每空1分,共20分)1、5.43times;0.45的积是位小数,保留两位小数约是。

2、3.2时= 分 2.15米= 分米13400平方米= 公顷 2.5吨= 千克3、在O里填上“gt;”“lt;”或“=”号。

4.25times;0.98 O 4.25 6.75divide;0.65 O 6.752.6times;1.01 O 2.6 7.2divide;1.3 O 7.2times;1.34、一个两位小数保留一位小数是2.3,这个两位小数最大是,最小是。

5、一个足球85元,一个排球a元,足球比排球贵元,一个足球和两个排球共元。

6、方程3x+6=24的解是。

7、一个梯形的上底是5cm,下底是8cm,高是2.4cm,这个梯形的面积是Cm2。

8、盒子里装有6个标有数字1、2、3、4、5、6的小球,任意摸一个,有种可能,是单数的可能性有种。

9、比2.5的4倍多0.3的数是。

10、5.08times;1.01的积保留整数部分约为。

二、判断题(对的打“radic;”,错的打“times;”)(5分)1、a2与2a表示的意义相同( )2、用四根木条钉成的长方形,拉成平行四边形后,周长保持不变。

( )3、8.888888是循环小数。

( )4、所有的方程都是等式,但所有的等式不一定都是方程( )5、被除数不变,除数扩大100倍,商也扩大100倍。

( )1、比a多b的数的5倍是( )A、5a-5bB、5(a+ b) C. 5(a-b)2 、下列各式是方程的是( )A.5a+bB. 8+3.3=11.3C. x+9=63、每个空瓶可装2.5kg色拉油,王老师要把25.5kg的色拉油装在这样的瓶子里,至少需要( )个这样的瓶子。

A、10B、 10.2 C. 114、已知0.35times;170=59.5,那么3.5times;1.7的积是( )A、 0.595B、5.95C、 59.5D、5955、对6.4times;101-6.4进行简算,将会运用( )A、乘法交换律B、乘法分配律C、乘法结合律6、一个平行四边形的底和高分别扩大2倍,它的面积会扩大( )倍。

新人教版2014-2015年八年级下期末考试数学试题及答案

新人教版2014-2015年八年级下期末考试数学试题及答案

2014-2015学年度第二学期期终考试八年级数学试卷附:方差公式])()()[(1222212x x x x x x ns n -++-+-=第Ⅰ卷(选择题,共36分)一、选择题(每小题3分,共36分) 1. 4的算术平方根是A.2±B. 2C. -2D.4±2.函数5yx 中自变量x 的取值范围是A .x ≥-5B .x ≥5C .x >-5D .x >53.下列各组数据中,不可以构成直角三角形的是A 7,24,25B 1.5 ,2,2.5 C45,1,43D 40,50,60 4.在下列性质中,平行四边形不一定...具有的是 A 对边相等 B 对角互补 C 对边平行 D 内角和为36005.菱形的周长为8cm ,高为1cm ,则菱形两邻角度数比为 A 3:1 B 4:1 C 5:1 D 6:16.如图,矩形ABCD 中,对角线AC 、BD 交于点O ,若∠BOC =1200,AC =8,AB 的长度是A 4B 24C 34D 8 7.下列函数是一次函数的是A y =-8x ;B y =-x 8C y =-8x 2+2 D y =-x8+28.已知一次函数y kx b =+的图象如图所示,当x <0时,y 的取值范围是A y >0.B y <0.C -2y <<0.D y <-2.9.在15人参加“我爱江城”演讲比赛中,参赛选手各不相同,因此选手 要想知道自己是否进入前8名,只有了解自己的成绩以及全部成绩的A.平均数 B 众数 C 中位数 D.极差ODCBA第6题图10.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面图像中,能大致表示水的最大深度h 与时间t 之间的关系的是A B C D 第10题图11.某天早上王文上学, 先步行一段路, 因时间紧,他又改乘 出租车,结果到校时还是迟到了5分钟,其行程情况如图, 若他出门时直接乘出租车(车速不变),则他 A 仍会迟到2分钟到校 B 刚好按时到校 C 可以提前2分钟到校 D 可以提前5分钟到校12. 甲、乙两班进行电脑汉字输入速度比赛,参加学生 每分钟输入汉字的个数经过统计后如右表,规定每 分钟输入汉字数≥150个为优秀。

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析没有明显有问题的段落需要删除,只需修改格式错误和语言表达不清的地方。

XXX2014-2015学年第一学期期中考试高一数学试题第Ⅰ卷选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1、已知集合$S=\{x|x+1\geq2\}$,$T=\{-2,-1,0,1,2\}$,则$S\cap T=$()A。

$\{2\}$。

B。

$\{1,2\}$。

C。

$\{0,1,2\}$。

D。

$\{-1,0,1,2\}$解题思路】:题目给出了集合$S$和$T$,需要先求出它们的具体表达内容,再求它们的交集。

$S$是一次函数不等式的解,$S=\{x|x\geq1\}$;$S\cap T=\{1,2\}$,故选B。

2、用阴影部分表示集合$C\cup A\cup B$,正确的是()解题思路】:题目给出了四个图形,需要判断哪个图形表示$C\cup A\cup B$。

利用XXX求解,A中阴影部分表示$C\cup(A\cup B)$,B中阴影部分表示$(C\cup A)\cap B$,C中阴影部分表示$A\cap B$,D中阴影部分表示$C\cup A\cup B$,故选D。

3、函数$y=\log_{\frac{1}{2}}(x-1)$的定义域是()A。

$(1,+\infty)$。

B。

$[1,+\infty)$。

C。

$(0,+\infty)$。

D。

$[0,+\infty)$解题思路】:题目给出了函数$y=\log_{\frac{1}{2}}(x-1)$,需要求出它的定义域。

由$\log_{\frac{1}{2}}(x-1)>0$得$x-1>0$,即$x>1$,故选A。

4、下列函数中,在其定义域内既是奇函数又是减函数的是()A。

$y=-|x|$。

B。

$y=x$。

C。

$y=|x|$。

河南省鄢陵县第一高级中学2014-2015学年高一上学期第二次考试数学试题

河南省鄢陵县第一高级中学2014-2015学年高一上学期第二次考试数学试题

河南省鄢陵县第一高级中学2014-2015学年高一上学期第二次考试数学试题。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={0,1,2},B={}12x x -<<,则AB =( )A.{0}B.{1}C.{0,1}D.{0,1,2}2. 已知31,0()||,0x x f x x x +≥⎧=⎨<⎩,则((f f =( )A.2B. 2-C. 1D. 1- 3.下列函数中,既是奇函数又是增函数的为( )A .1y x =+B .2y x =-C .1y x =D .||y x x =4.函数1y ax =+在R 上是单调递减的,则2()(43)g x a x x =-+的增区间是( )A.[2,)+∞B.[2,)-+∞ C .(,2]-∞ D. (,2]-∞- 5.已知a >0且a ≠1,下列四组函数中表示相等函数的是( )A .y =2x 与y =log a a 2xB .y =a log a x 与y =xC .y =log a x 与y =(log x a )-1D .y =log a x 2与y =2log a x 6.已知3.0log 2=a ,3.02=b ,2.03.0=c ,则c b a ,,三者的大小关系是 ( )A .a c b >>B .c a b >>C .c b a >>D .a b c >>7.已知函数f (x )=x a b +的图象如左图所示,则g (x )=log ()a x b +的图象是右图中的( )D8.已知函数f (2x )的定义域为[-1,1],则函数f (log 2x )的定义域为( )A .[-1,1]B .[12,2] C .[2,2] D .[2,4]9.设函数f (x )=log a (x +b )(a >0,a ≠1)的图象过点(0,0),其反函数过点(1,2),则a +b 等于( )A .3B .4C .5D .610.函数y =lg(21-x-1)的图象关于( ) A .y 轴对称 B .x 轴对称 C .原点对称 D .直线y =x 对称11.已知log (2)a y ax =-在[]0,1上为x 的减函数,则a 的取值范围为( )A .(0,1)B .(1,2)C .(1, +∞)D .[]2,+∞12.若f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x,则有( )A .f (2)<f (3)<g (0)B .g (0)<f (3)<f (2)C .f (2)<g (0)<f (3)D .g (0)<f (2)<f (3) 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.函数y =lg x +lg (5-3x)的定义域是________.14.若 5361log log 6log 23x =,则x 的值为15. 函数y =12log (x 2-3x +2)的单调递增区间为______________.16.已知0a >且1a ≠,函数2()x f x x a =-.当(1,1)x ∈-,均有1()2f x <,则实数a 的取值范围是三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)(1)( 245)0+2-2×(214)-12 -(0.01) 12 ;(2)2(lg 2)2+lg 2·lg5.18.(本小题满分12分)已知函数)()(01xf x a a a =>≠且在[1,2]上的最大值为M ,最小值为N(1)若M+N=6,求实数a 的值 (2)若M=2N ,求实数a 的值19. (本小题满分12分)已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()(1)f x x x =+ (1)求(2)f ,(1)f - (2)求出函数的解析式(3)解不等式()6f x < 20. (本小题满分12分) 若1213log 2x -≤≤-,求22()(log )(log )24x x f x =的最值。

2014-2015小学六年级下学期数学期末考试试题及答案

尚重镇中心小学数学2014届毕业试卷5班级 姓名一、填空(32分)1、截止6月20日,地震已造成69180人遇难,374008人受伤,17406人失踪,请你统计一下,这次地震造成的伤亡人数大约是( )万人2、小明家这个月的收入2500元,记作+2500,在购买书籍方面支出200元,记作( )元。

3、58 的分数单位是( ),它有( )个这样的分数单位,再加( )个这样的分数单位就是最小的素数。

4、把一根3米长的铁丝平均分成5段,每一段长是这根铁丝长的( ),每段长( )米。

5、比2.5千克少20%是( )千克,5千克比4千克多( )%。

6、3.2:0.24的最简整数比是( ),比值是( )。

7、3时20分=( )时;1002立方分米=( )立方米。

8、( )÷6=6∶( )=211=( )% 9、6和15的最大公因数是( ),最小公倍数是( )10、一张地图,图上距离与实际距离比是1:6000000。

如果某两地之间的实际距离是600千米,图上距离应是( )厘米。

11、把4.05、0.4705、41%、25 、0.411从左到右依次按从小到大排列,排在第四位的数是( )。

12、从下面的比中选出两个比组成一个比例是( ) 2:1 2.4:31:54 41:810.5:0.25 13、成人身高大约是脚长度的7倍,如果一个成人的脚长χ米,那么他的身高是( )米。

14、4.3时( )4小时30分 8.999×99( )899.9 π ( ) 3.14 15、一批零件有500个,经检验有10个废品。

这批;零件的合格率是( )。

16、一个圆柱体木块,底面直径是20厘米,高是6厘米,它的表面积是( 1004.8 )平方厘米。

把它削成一个最大的圆锥,应削去( )立方厘米。

17、一组数据16、13、10、16、10、40、10、50、10、5,这组数据的平均数是( ),中位数是( ),众数是( )。

【全程复习方略】2014-2015学年高中数学 2.1.1 合情推理课件 新人教A版选修2-2

义的类似特征,所以进行类比推理的关键是明确指出两类对象
在某些方面的类似特征.
【知识拓展】类比推理的基本逻辑形式及适用前提
(1)类比推理的基本逻辑形式
A类事物具有性质a,b,c,d
B类事物具有性质a′,b′,c′
所以B类事物可能具有性质d′.(a,b,c,d与a′,b′,c′,d′相
似或相同)
(2)类比推理的适用前提 ①两类对象在某些性质上有相似性或一致性,关键是把这些相 似性或一致性确切地表述出来,再由一类对象具有的特性去推 断另一类对象也可能具有的特性. ②运用类比推理常常先寻找合适的类比对象.
知识点2
类比推理
类比推理的三个特点
(1)类比推理是从人们已经掌握了的事物的特征,推测正在被研
究的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.
(2)类比在数学发现中具有重要作用.例如,通过空间与平面、
向量与数、无限与有限、不等与相等的类比,发现可以研究的
问题及其研究方法.
(3)由于类比推理的前提是两类对象之间具有某些可以清楚定
2.合情推理
观察 归纳推理和类比推理都是根据已有的事实,经过_____、 含 _____ 、_____, 然后提出 分析、比较、_____, 联想再进行_____ 归纳 类比 义 _____ 猜想的推理.我们把它们统称为合情推理.通俗地说,合情推 理是指“合乎情理”的推理 过 程 从具体问 题出发 观察、分析、 比较、联想 归纳、 类比
2.方法一:图(1)中的圆圈数为12-0,图(2)中的圆圈数为22-1, 图(3)中的圆圈数为32-2,图(4)中的圆圈数为42-3,图(5)中的 圆圈数为52-4,„, 故猜测第n个图形中的圆圈数为n2-(n-1)=n2-n+1. 方法二:第2个图形,中间有一个圆圈,另外的圆圈指向两个方向, 共有2×(2-1)+1个圆圈; 第3个图形,中间有一个圆圈,另外的圆圈指向三个方向,每个方

河南省洛阳市2015届高三上学期期末考试数学(理)试题 Word版含答案

洛阳市2014-2015学年高中三年级期末考试数 学 试 卷(理A )一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}24120x x x A =--<,{}2x x B =<,则()RAB =ð( )A .{}6x x <B .{}22x x -<<C .{}2x x >-D .{}26x x ≤< 2、设i 为虚数单位,复数212ii+-的共轭复数是( ) A .35i B .35i - C .i D .i - 3、已知双曲线C :22221x y a b-=(0a >,0b >)的焦距为10,点()2,1P 在C 的渐近线上,则C 的方程为( )A .221205x y -= B .221520x y -= C .2218020x y -= D .2212080x y -=4、若程序框图如图所示,则该程序运行后输出k 的值是( ) A .4 B .5 C .6 D .75、已知命题:p 0R x ∃∈,使0sin x =:q R x ∀∈,都有210x x ++>.给出下列结论:①命题“p q ∧”是真命题;②命题“()p q ∧⌝”是假命题; ③命题“()p q ⌝∨”是真命题;④命题“()()p q ⌝∨⌝是假命题. 其中正确的命题是( )A .②③B .②④C .③④D .①②③6、已知角α的终边经过点()a A ,若点A 在抛物线214y x =-的准线上,则sin α=( )A .BC .12-D .127、在平面直角坐标系内,若曲线C :22224540x y ax ay a ++-+-=上所有的点均在第四象限内,则实数a 的取值范围为( )A .(),2-∞-B .(),1-∞-C .()1,+∞D .()2,+∞ 8、已知直线:m 230x y +-=,函数3cos y x x =+的图象与直线l 相切于P 点,若l m ⊥,则P 点的坐标可能是( )A .3,22ππ⎛⎫--⎪⎝⎭ B .3,22ππ⎛⎫ ⎪⎝⎭ C .3,22ππ⎛⎫⎪⎝⎭D .3,22ππ⎛⎫-- ⎪⎝⎭9、把函数sin 6y x π⎛⎫=+ ⎪⎝⎭图象上各点的横坐标缩小到原来的12(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一条对称轴方程为( ) A .2x π=-B .4x π=-C .8x π=D .4x π=10、在平面直角坐标系x y O 中,点A 与B 关于y 轴对称.若向量()1,a k =,则满足不等式20a OA +⋅AB ≤的点(),x y A 的集合为( )A .()(){}22,11x y x y ++≤ B .(){}222,x y x y k +≤C .()(){}22,11x y x y -+≤ D .()(){}222,1x y x y k ++≤11、如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π 12、设二次函数()2f x ax bx c =++的导函数为()f x '.对R x ∀∈,不等式()()f x f x '≥恒成立,则2222b a c +的最大值为( )A 2B 2C .2D .2 二、填空题(本大题共4小题,每小题5分,共20分.)13、在62x ⎫⎪⎭的展开式中,常数项是 .14、函数()1,10,01x x x f x e x +-≤<⎧=⎨≤≤⎩的图象与直线1x =及x 轴所围成的封闭图形的面积为 .15、将5名实习老师分配到4个班级任课,每班至少1人,则不同的分配方法数是 (用数字作答). 16、如图,在C ∆AB中,C sin2∠AB =,2AB =,点D 在线段C A 上,且D 2DC A =,D B =,则cosC = . 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17、(本小题满分12分)设数列{}n a 的前n 项和为n S ,对任意正整数n 都有612n n S a =-.()1求数列{}n a 的通项公式; ()2设12log n n b a =,求22212111111n n b b b T =++⋅⋅⋅+---.18、(本小题满分12分)在某学校的一次选拔性考试中,随机抽取了100名考生的成绩(单位:分),并把所得数据列成了如下表所示的频数分布表:()1求抽取的样本平均数x 和样本方差2s (同一组中的数据用该组区间的中点值作代表);()2已知这次考试共有2000名考生参加,如果近似地认为这次成绩z 服从正态分布()2,μσN (其中μ近似为样本平均数x ,2σ近似为样本方差2s ),且规定82.7分是复试线,那么在这200012.7≈,若()2,z μσN ,则()0.6826z μσμσP -<<+=,()220.9544z μσμσP -<<+=)()3已知样本中成绩在[]90,100中的6名考生中,有4名男生,2名女生,现从中选3人进行回访,记选出的男生人数为ξ,求ξ的分布列与期望()ξE .19、(本小题满分12分)如图,在四棱锥CD P -AB 中,底面CD AB 是直角梯形,D//C A B ,DC 90∠A =,平面D PA ⊥底面CD AB ,Q 为D A 的中点,D 2PA =P =,1C D 12B =A =,CD =. ()1求证:平面Q PB ⊥平面D PA ;()2在棱C P 上是否存在一点M ,使二面角Q C M -B -为30?若存在,确定M 的位置;若不存在,请说明理由.20、(本小题满分12分)已知椭圆C :22221x y a b+=(0a b >>)的离心率为12,一个焦点与抛物线24y x =的焦点重合,直线:l y kx m =+与椭圆C 相交于A ,B 两点. ()1求椭圆C 的标准方程;()2设O 为坐标原点,22b k k aOA OB⋅=-,判断∆AOB 的面积是否为定值?若是,求出定值;若不是,说明理由. 21、(本小题满分12分)设函数()()2ln 12f x x ax a x =---(0a >).()1若0x ∃>,使得不等式()264f x a a >-成立,求实数a 的取值范围;()2设函数()y f x =图象上任意不同的两点为()11,x y A 、()22,x y B ,线段AB 的中点为()00C ,x y ,记直线AB 的斜率为k ,证明:()0k f x '>.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分. 22、(本小题满分10分)选修4-1:几何证明选讲如图,AB 是O 的切线,B 为切点,D A E 是O 的割线,C 是O 外一点,且C AB =A ,连接D B ,BE ,CD ,C E ,CD 交O 于F ,C E 交O 于G . ()1求证:CD D C BE⋅=B ⋅E ;()2求证:FG//C A .23、(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系x y O 中,过点()2,0P 的直线l 的参数方程为2x y t⎧=-⎪⎨=⎪⎩(t 为参数),圆C 的方程为229x y +=.以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.()1求直线l 和圆C 的极坐标方程;()2设直线l 与圆C 相交于A ,B 两点,求PA ⋅PB 的值.24、(本小题满分10分)选修4-5:不等式选讲()1设函数()52f x x x a =-+-,R x ∈,若关于x 的不等式()f x a ≥在R 上恒成立,求实数a 的最大值;()2已知正数x ,y ,z 满足231x y z ++=,求321x y z++的最小值.洛阳市2014-2015学年高中三年级期末考试数 学 试 卷(理A )参考答案一、选择题:13、60 14、12e 15、24016、79三、解答题。

【全程复习方略】2014-2015学年高中数学 第一章 统计案例单元质量评估 新人教A版选修1-2

"【全程复习方略】2014-2015学年高中数学第一章统计案例单元质量评估新人教A版选修1-2 "一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.散点图在回归分析过程中的作用是( )A.查找个体个数B.比较个体数据的大小关系C.探究个体分类D.粗略判断变量的相关关系【解析】选D.散点图对相关关系的判断是粗略的,在一定程度上存在着误差.2.下列关于线性回归的说法,不正确的是( )A.变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫散点图C.线性回归方程最能代表观测值x,y之间的关系D.任何一组观测值都能得到具有代表意义的线性回归方程【解析】选D.根据相关关系及散点图等概念知A,B,C均正确.3.(2014·广州高二检测)若身高与体重有关系,则下列选项中可以用来分析此关系的是( )A.残差B.回归分析C.等高条形图D.独立性检验【解析】选B.身高与体重的关系是相关关系,因此可用回归分析来确定其具体的数值关系,而残差分析是用来分析模型拟合效果的,等高条形图和独立性检验是用来判断两个分类变量是否有关的量.4.(2014·泰安高二检测)下列说法正确的个数是( )(1)将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变(2)设有一个回归方程=3-5x,变量增加一个单位时y平均增加5个单位(3)在一个2×2列联表中,由计算得K2=13.079,则在犯错误的概率不超过0.1的前提下认为两个变量有关系A.0B.1C.2D.3【解析】选C.(1)方差反映一组数据的波动大小,将一组数据中的每个数据加上或减去同一常数后,方差恒不变,(1)正确.(2)变量x增加一个单位时,y平均减少5个单位,故(2)错.(3)对照临界值表可得在犯错误的概率不超过0.001的前提下认为两个变量有关系,即在犯错误的概率不超过0.1的前提下认为两个变量有关系是正确的,故(3)正确.5.(2014·永州高二检测)已知x,y的值如表所示,若y与x呈线性相关且回归直线方程为y=x+,则a=( )A.4B.5C.6D.7【解析】选A.由题意可得=×(4+6+8)=6,=(5+a+6),由于回归直线y=x+过点(,),故×(5+a+6)=×6+,解得a=4.【变式训练】已知x与y之间的一组数据如表所示,则y与x的线性回归方程=x+必过点( )A.(2,2)B.C.D.(1,2)【解题指南】回归直线过样本点的中心(,).【解析】选C.由表中数据可计算=(0+1+2+3)=,=(1+3+5+7)=4.因为回归直线过样本中心点(,),所以回归直线过点.6.(2014·铜陵高二检测)如果某地财政收入x(亿元)与支出y(亿元)满足线性回归方程y=bx+a+e(单位:亿元),其中b=0.8,a=2,|e|≤0.5.如果今年该地区的财政收入为10亿元,则年支出预计不会超过( ) A.9亿元 B.9.5亿元 C.10亿元 D.10.5亿元【解题指南】将所给数据代入y=bx+a+e,利用|e|≤0.5,即可求得结论.【解析】选D.由y=0.8x+2+e知当x=10时,y=0.8x+2+e=10+e,因为|e|≤0.5,所以-0.5≤e≤0.5,所以9.5≤y≤10.5,所以今年支出预计不会超过10.5亿元.7.(2014·江西高考)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表2表3表4A.成绩B.视力C.智商D.阅读量【解题指南】根据独立性检验公式分别求出相应的K2,数据大的与性别有关联的可能性大.【解析】选D.()222152852(6221410)K ,2032163620321636⨯-⨯⨯-⨯==⨯⨯⨯⨯⨯⨯()22225211252(4201612)K ,2032163620321636⨯-⨯⨯-⨯==⨯⨯⨯⨯⨯⨯222352(824128)52(128)K ,2032163620321636⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯222452(143062)52(686)K .2032163620321636⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯分析判断K 42最大,所以选D.8.根据如图所示的列联表得到如下四个判断:①在犯错误的概率不超过0.001的前提下认为患肝病与嗜酒有关;②在犯错误的概率不超过0.01的前提下认为患肝病与嗜酒有关;③认为患肝病与嗜酒有关的出错的可能为0.001%;④没有证据显示患肝病与嗜酒有关.其中正确命题的个数为( ) A.1B.2C.3D.4【解析】选B.由K 2=得K 2的观测值k ≈56.632>10.828>6.635,①②均正确,故选B.9.下面是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图可以看出( )A.性别与喜欢理科无关B.女生中喜欢理科的百分比为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的百分比为60%【解析】选C.由条形图可知,女生中喜欢理科的百分比约为1-0.8=0.2=20%,男生中喜欢理科的百分比约为1-0.4=0.6=60%,因此男生比女生喜欢理科的可能性大些.10.(2014·太原高二检测)变量x,y具有线性相关关系,当x取值为16,14,12,8时,通过观测得到y的观测值分别为11,9,8,5,若在实际问题中,y最大取值是10,则x的最大值不能超过( )A.14B.15C.16D.17【解析】选B.根据题意y与x呈正相关关系,由最小二乘法或计算器求得回归系数=-0.857,=0.729,所以线性回归方程为=0.729x-0.857,当=10时得x≈15.11.两个分类变量X和Y可能的取值分别为{x1,x2}和{y1,y2},其样本频数满足a=10,b=21,c+d=35,若认为X 与Y有关系的犯错误的概率不超过0.1,则c的值可能等于( )A.4B.5C.6D.7【解题指南】根据条件可知2.706≤k<3.841.再由K2的公式进行估算可得c值.【解析】选B.若认为X和Y有关系的犯错误的概率不超过0.1,则K2的观测值k所在的范围为2.706≤k<3.841,根据计算公式K2=,其中n=a+b+c+d,及a=10,b=21,c+d=35可估算出c的值,选B.12.有人收集了春节期间平均气温x与某取暖商品销售额y的有关数据如下表:根据以上数据,用线性回归的方法,求得销售额y与平均气温x之间线性回归方程=x+的系数=-2.4,则预测平均气温为-8℃时该商品销售额为( )A.34.6万元B.35.6万元C.36.6万元D.37.6万元【解题指南】先求出横坐标和纵坐标的平均数,写出样本中心点,根据所给的的值,写出线性回归方程,把样本中心点代入求出的值,再代入数值进行预测.【解析】选A.==-4,==25,所以这组数据的样本中心点是(-4,25).因为=-2.4,把样本中心点代入线性回归方程得=15.4,所以线性回归方程是=-2.4x+15.4.当x=-8时,y=34.6.故选A.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知方程=0.85x-82.71是根据女大学生的身高预报体重的回归方程,其中x的单位是cm,y的单位是kg,那么针对某个体(160,53)的随机误差是.【解析】因为回归方程为=0.85x-82.71,所以当x=160时,=0.85×160-82.71=53.29,所以针对某个体(160,53)的随机误差是53-53.29=-0.29.答案:-0.2914.为了均衡教育资源,加大对偏远地区的教育投入,调查了某地若干户家庭的年收入x(单位:万元)和年教育支出y(单位:万元),调查显示年收入x与年教育支出y具有线性相关关系,并由调查数据得到y对x的线性回归方程:=0.15x-0.2.由线性回归方程可知,家庭年收入每增加1万元,年教育支出平均增加万元.【解析】因为线性回归方程=0.15x-0.2,y=0.15(x+1)-0.2,所以1y-=0.15(x+1)-0.2-0.15x+0.2=0.15.所以1答案:0.1515.下表是关于男女生喜欢武打剧的调查表:则列联表中A= ,B= ,C= ,D= .【解题指南】依据列联表中数据的关系,进行加减运算即可.【解析】A=105-39=66,B=100-39=61,C=66+34=100,D=105+95=200.答案:66 61 100 200【互动探究】在本题中条件不变的情况下,在犯错误的概率不超过多少时认为性别与喜欢武打剧有关? 【解析】由表中数据可计算得k=≈14.617>10.828.因P(K2≥10.828)=0.001,所以在犯错误的概率不超过0.001的前提下认为性别与喜欢武打剧有关.16.(2014·三明高二检测)某考察团对中国10个城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)调查,y与x具有相关关系,回归方程为=0.66x+1.562,若A城市居民人均消费水平为7.765(千元),估计该城市人均消费额占人均工资收入的百分比约为.【解析】因为y与x具有线性相关关系,满足回归方程=0.66x+1.562,A城市居民人均消费水平为y=7.765,所以可以估计该城市的职工人均工资水平x满足7.765=0.66x+1.562,所以x≈9.4,所以该城市人均消费额占人均工资收入的百分比约为×100%≈83%.答案:83%三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1月至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率.(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程,并预报当温差为9℃时的种子发芽数.【解题指南】(1)根据题意列举出从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,满足条件的事件包括的基本事件有6种,根据等可能事件的概率得出结果.(2)根据所给的数据,先得出x,y的平均数,即得出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程并进行预报.【解析】(1)设抽到不相邻的两组数据为事件A,从5组数据中选取2组数据共有10种情况:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),其中数据为12月份的日期数,每种情况都是等可能出现的,事件A包括的基本事件有6种,所以P(A)=,所以选取的2组数据恰好是不相邻2天数据的概率是.(2)由数据,求得=12,=27,由公式,求得=,=-=-3,所以y关于x的线性回归方程为=x-3.由此可以预报当温差为9℃时的种子发芽数为19或20颗.18.(12分)一项关于A、B两国失业情况的抽样调查结果如下:1512个A国人中有130人曾经被解雇过,其余人未曾被解雇过;而2900个B国人中有87人曾经被解雇过,其余人未曾被解雇过.(1)根据以上数据,建立一个2×2列联表.(2)根据表中数据,你能得到什么结论?【解析】(1)列联表如下:(2)K2的观测值k=≈66.595>10.828,P(K2≥10.828)≈0.001,故在犯错误的概率不超过0.001的前提下认为是否解雇与国家有关.19.(12分)(2013·吉林高二检测)调查某桑场采桑员桑毛虫皮炎发病情况结果如下表:利用2×2列联表的独立性检验估计“患桑毛虫皮炎病与采桑”是否有关?认为两者有关系会犯错误的概率是多少?K2=【解析】由题意知,a=18,b=12,c=5,d=78,所以a+b=30,c+d=83,a+c=23,b+d=90,n=113.所以K2==≈39.6>10.828.所以患桑毛虫皮炎病与采桑有关系.认为两者有关系会犯错误的概率是0.1%.【变式训练】巴西医生马廷思收集各种犯有贪污、受贿罪的官员和廉洁官员寿命的调查资料:500名贪官中有348人的寿命小于平均寿命,152人的寿命大于或等于平均寿命;590名廉洁官员中有93人的寿命小于平均寿命,497人的寿命大于或等于平均寿命.这里,平均寿命是指“当地人均寿命”.试分析官员在经济上是否清廉与他们寿命的长短之间是否有关系?【解析】根据题意列2×2列联表:由公式计算K2的观测值:k=≈325.635.因为325.635>10.828,所以在犯错误的概率不超过0.001的前提下认为官员在经济上是否清廉与他们的寿命长短有密切关系.20.(12分)想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子作的成长记录:(1)年龄(解释变量)和身高(预报变量)之间具有怎样的相关关系?(2)若年龄相差5岁,则身高有多大差异?(年龄在3~16岁之间)(3)如果身高相差20cm,其年龄相差多少?【解析】(1)散点图如图所示.由散点图可知样本点落在一条直线附近.设年龄x(岁)与身高y(cm)之间的回归直线方程是=x+,由公式计算得=≈6.314,=-≈72.003,所以=6.314x+72.003.(2)若年龄相差5岁,则预报变量变化6.314×5=31.57.(3)如果身高相差20cm,年龄相差Δx=≈3.168≈3(岁).21.(12分)某运动员训练次数与训练成绩之间的数据关系如下:(1)在图1坐标系中作出散点图.(2)求出回归方程.(3)在图2中作出残差图.(4)计算相关指数R2.(5)试预测该运动员训练47次及55次的成绩.【解析】(1)作出运动员训练次数x与成绩y的散点图,如图所示,由散点图可知,它们之间具有相关关系.(2)列表计算如图所示:所以==≈1.0415,=-=-0.00302,所以回归直线方程为=1.0415x-0.00302.(3)残差分析:下面的表格列出了运动员训练次数和成绩的原始数据以及相应的残差数据.作残差图,如图所示,由图可知,残差点比较均匀地分布在水平带状区域内,说明选择的模型比较合适.(4)计算相关指数R 2=1-82i i i 182ii 1y y y y ==--∑∑()()=0.9855.(5)作出预报:由上述分析可知, 回归直线方程=1.0415x-0.00302.将x=47和x=55分别代入该方程可得=49,=57,故预测该运动员训练47次和55次的成绩分别为49和57. 22.(12分)某地区不同身高的未成年男性的体重平均值如表:(1)试建立y 与x 之间的回归方程.(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于平均值的0.8倍为偏瘦,则这个地区一名身高为175cm、体重为82kg的在校男生的体重是否正常?【解析】(1)根据表格中的数据画出散点图,如图所示.从图可以看出,样本点分布在某条指数型函数曲线y=c1的周围,于是令z=lny,得到x与z的数据如表:根据上表中的数据作出散点图,如图所示.由表中数据可计算得z与x之间的回归方程为=0.693+0.020x,则有=e0.693+0.020x.(2)当x=175时,预测平均体重为=e0.693+0.020×175≈66.22,因为66.22×1.2≈79.46<82,所以这名男生偏胖.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
3
4
5
驻马店市2014~2015学年度第二学期期终考试
高一数学(理)参考答案
一.选择题:本大题共12小题,每小题5分,共60分.
1.B 2.C 3.C 4.B 5.A 6.D 7.C 8.A 9.B 10.B 11.D 12.A

二.填空题:本大题共4小题,每小题5分,共16分.

13.17175 14. 10 15.10103 16.

110,110

三.解答题:本大题共6小题,共70分。解答应写出必要的文字说明,证明过程或演算步骤。
17.

18.解:化简函数为:
,
-----------------------------------------------------------------------------------------------------------------2分
(1) 函数)(xf在,上的单调递减,
6

当2326222kxk,Zk时,,解得 , 326kxk,
由于x,,----------------------------------------------------------------------------------------4分

函数)(xf在,上的单调递区间为:3,65和32,6-------------------------6分
(2)由条件知311)62sin(2)(ccf,又因为6C则4C
又,
,
--------------------------------------------------------------------------------10分
,由4C, 可得:
0cosc
,2c--------------------------------------------------------------------------------------12分

19.解:(Ⅰ)由题意可知,.--------------------------4分
(Ⅱ)(ⅰ)由题意可知,第4组共有4人,第5组共有2人,从竞赛成绩是80分以
上(含80分)的同学中随机抽取2名同学有,共15种情况:略--------------------------6分

设“随机抽取的2名同学来自同一组”为事件,有共7种情况.所以

答:随机抽取的2名同学来自同一组的概率是.--------------------------------------------12分

20.解:函数,
(1)对任意的,若即,,
,
设,则在上是减函数,
函数在上的最小值为,
对任意的,若恒成立,m取值范围为;
7

(2)对,有两个不等实根,即有两个
不等实根,,

问题不成立,两边同除以,得有两个不等实
根,

设,则在,和上有交点,并且此函数在两个区间
上是减函数,

又函数在,上的最小值为,在的最大值为-8,
要使对,有两个不等实根的m 的范围为m>0或者m≤-8.

21.解2()21sin3abfxxx有零点则
44(1sin)03sin03abab



sin3abS

22.(Ⅰ)圆的方程可写成 ,所以圆心为 ,
过 且斜率为 的直线方程为 .------------------------------------------------4分
8

代入圆方程得 ,整理得
. ①-------------------------------------------------------5分
直线与圆交于两个不同的点A,B 等价于

解得 ,即 的取值范围为 .-----------------------------------------------6分
(Ⅱ)设 ,则 ,
由方程①, ②
又 . ③
而 .
所以 与 共线等价于 ,----------------------------------8分
将②③代入上式,解得----------------------------------------------------------------------10分
由(Ⅰ)知 ,故没有符合题意的常数--------------------------------------------12分

相关文档
最新文档