永磁同步电机SPWM控制器设计
永磁同步伺服电机(PMSM)驱动器原理

永磁同步伺服电机(PMSM)驱动器原理中达电通股份有限公司中达电通公司伺服数控产品处 周瑞华 Zhou Reihua摘 要: 永磁交流伺服系统以其卓越的性能越来越广泛地应用到机器人、数控等领域,本文对其驱动器的功能实现做了简单的描述,其中包括整流部分的整流过程、逆变部分的脉宽调制(PWM )技术的实现、控制单元相应的算法等三个部分。
关键词: DSP 整流 逆变 PWM 矢量控制 1 引言随着现代电机技术、现代电力电子技术、微电子技术、永磁材料技术、交流可调速技术及控制技术等支撑技术的快速发展,使得永磁交流伺服技术有着长足的发展。
永磁交流伺服系统的性能日渐提高,价格趋于合理,使得永磁交流伺服系统取代直流伺服系统尤其是在高精度、高性能要求的伺服驱动领域成了现代电伺服驱动系统的一个发展趋势。
永磁交流伺服系统具有以下等优点:(1)电动机无电刷和换向器,工作可靠,维护和保养简单;(2)定子绕组散热快;(3)惯量小,易提高系统的快速性;(4)适应于高速大力矩工作状态;(5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。
永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。
全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。
现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。
伺服驱动器有两部分组成:驱动器硬件和控制算法。
控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。
2 交流永磁伺服系统的基本结构交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。
三相spwm原理

三相spwm原理三相spwm(脉宽调制-矢量控制器)是一种用于控制三相不同谐波类型的电力传动装置的最新技术。
它利用三相端口的脉宽调制原理,将目标电流和实际电流进行比较,从而调节电机的输出功率和转矩,实现传动装置的强大性能。
此外,三相spwm还可以传输一定程度的正弦波信号,以改善系统性能、降低噪声和减少体系结构负荷。
三相spwm原理主要根据三相脉宽调制原理控制电机,将目标电流和实际电流进行比较,调节电机的输出功率和转矩,实现传动装置的强大性能。
其原理的核心部分主要包括三相脉宽调制、采样环路控制、时域滤波器以及反馈回路控制。
首先,三相spwm脉宽调制原理是将电机驱动器的三路脉冲调制为脉冲宽度调制(PWM)信号,即U,V,W三个相位的输出电压和电流的幅值及相位都可以由控制脉冲的宽度和频率来调节。
由此,可以改变控制环路的控制电压,控制调节电流,达到调制电机的电流和转矩的作用。
其次,采样环路的目的是采样实际的电机转矩和电流,以用于比较和调节。
其原理是将目标电流和实际电流,以及目标转矩和实际转矩,进行采样,然后通过比较得出差值,对比差值来控制脉冲宽度比例(PWM),从而控制电机的实际转矩和电流。
第三,时域滤波器的作用是通过滤波器滤除motor的非稳定性,以实现精确控制。
一般采用有限时域滤波器(FINED),其原理是在采样信号后,通过设置滤波器,以获滤除控制环路中的噪声,从而滤除信号采样和控制中的非稳定性,达到信号放大和精确控制的效果。
最后,反馈回路控制是目前三相spwm中最重要的控制,它根据电机转矩和电流的反馈,通过调节三端口的脉冲宽度来调节电机的输出功率和转矩,实现传动装置的强大性能。
这是由于电机的电流具有可控性,它能够反馈当前的转矩和电流,从而可以更精确地控制电机。
通过以上介绍,可以看出三相spwm原理是一种强大的技术理论,它将脉宽调制、采样环路控制、时域滤波器和反馈回路控制相结合,控制低电压三相异步电动机,调整电机的输出功率和转矩,改善系统性能,更节约能源,为传动机械领域的发展做出贡献。
基于FOC算法的永磁同步电机控制器设计

基于FOC算法的永磁同步电机控制器设计永磁同步电机(Permanent Magnet Synchronous Machine,PMSM)是一种高效、高功率密度的电机,被广泛应用于电力驱动和电动汽车等领域。
对于永磁同步电机的控制,Field Oriented Control(FOC)算法是一种常用的控制策略,可以实现快速、精确的电流和转矩控制。
首先,需要进行电机的模型建立和参数识别。
电机模型包括电气模型和机械模型,其中电气模型描述电机的电流和电压动态特性,机械模型描述电机的转速和转矩特性。
通过实验或仿真方法,可以获取电机的参数,如电阻、电感、永磁体磁链等。
其次,需要进行电机的磁链定向。
FOC算法中的关键步骤是将电机的磁链定向为直流分量和正交分量。
这可以通过电流反馈和转速信息来实现。
通过测量电机的三相电流和转子位置编码器等信号,可以计算得到电机的直流分量和正交分量。
然后,需要进行电机的电流和转矩控制。
在FOC算法中,通过控制电机的直流分量和正交分量,可以实现对电机的电流和转矩的精确控制。
其中,电机的直流分量控制可以通过电流环和比例积分控制实现,而电机的正交分量控制可以通过电流环、速度环和转矩环等控制实现。
最后,需要进行控制器的实现和优化。
控制器可以通过数字信号处理器(Digital Signal Processor,DSP)或嵌入式控制器等进行实现。
控制器可以采用PI控制、模型预测控制等算法,在保证系统稳定性和响应速度的前提下,优化电机的性能指标,如动态响应性能、能耗、抗扰性等。
总结来说,基于FOC算法的永磁同步电机控制器设计是一个涉及多个方面的综合问题。
通过对电机的模型建立和参数识别,磁链定向、电流和转矩控制,以及控制器的实现和优化等步骤,可以实现对永磁同步电机的精确控制。
这种控制方法具有高效、高性能的特点,在电力驱动和电动汽车等领域有着广泛的应用前景。
电动车辆用永磁同步电机设计

第1章引言1.1电动车辆发展背景汽车尾气的排放对人类健康和人们生活构成了严重威胁,再综合能源问题的考虑,于是,具有零排放污染的电动汽车重新被重视起来,各国都制定了相关的鼓励政策。
典型的例子如美国,1993年9月,美国政府提出了10年完成的“新一代汽车合作计划”(PNGV),由政府牵头,组织几十个公司和机构,完成提高燃料经济性和开发电动汽车的规定目标。
各大公司在政府的支持下,也制定了发展电动汽车的长远规划[1],调动社会上各种力量参与电动汽车的研制。
电动汽车经历了关键性技术的突破,样机、样车的研制,区域性试用以及小批量实际应用等探索阶段,现在已接近商业化生产。
电动汽车是以电为动力的汽车,电动机是其主要动力来源。
1.2电动汽车分类目前的电动汽车分类主要有以下两种:1)燃料电池电动汽车初期的电动汽车因电池组体积大、续驶里程短、使用不方便、成本高等缺点,无法与技术已经成熟的内燃机汽车相比。
要想发展电动汽车必须在技术上解决比能量、比功率、寿命、成本以及研发经费等各种难题。
到了20世纪90年代,电动汽车技术有了显著的进步。
如燃料电池的比功率从1997年的0.16kW/kg,提高到2000年的0.47kw/kg,提高了近3倍。
燃料电池,尤其是以氢为原料的质子交换膜燃科电池(PEMFC),成了电动汽车发展的希望[2]。
燃料电池汽车(Fuel Cell—Powered E1ectric Vehicles)实际上是一种使燃料中的化学能转变为电能从而驱动车辆的汽车,排放物只是没有污染并可再利用的水。
燃料电池的发展还有些关键性技术难题,如催化剂、质子交换膜、极板等,这些问题都在研究攻关阶段,但不管如何,“氢能”必将引起汽车工业的革命。
1996年,北京举办的国际电动汽车及代用燃料汽车展览会上,参展的电动汽车有福特的Ranger电动轻卡车,通用的EV1型车,丰田的RAV4L型车,PSA集团的SAXO型车,菲亚特的ZIC等车型,充分展示了电动汽车的发展水平。
基于DSP的永磁同步电动机矢量控制系统研究 电气工程及其自动化专业毕业设计 毕业论文

诚信声明本人声明:1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果;2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料;3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。
作者签名:日期:年月日湖南工程学院毕业设计(论文)任务书————☆————设计(论文)题目:基于DSP的永磁同步电动机矢量控制系统研究姓名周琳系别应用技术学院专业电气工程及其自动化班级0786 学号200713010616指导老师颜渐德教研室主任谢卫才一、基本任务及要求:1)掌握矢量控制的基本原理。
2)掌握永磁同步电动机矢量控制系统。
3)利用MATLAB软件仿真,分析。
4)硬件设计及软件设计二、进度安排及完成时间:2月20日:布置任务,下达设计任务书2月21日——3月10日:查阅相关的资料(总参考文章15篇,其中2篇以上IEEE的相关文章)。
3月13日——3月25日:毕业实习、撰写实习报告3月27日——5月30日:毕业设计、4月中旬毕业设计中期抽查6月1日——6月7日:撰写毕业设计说明书(论文)6月8日——6月10日:修改、装订毕业设计说明书(论文),并将电子文档上传FTP。
6月11日——6月12日:毕业设计答辩目录摘要 (I)ABSTRACT (II)第1章概述 (1)1.1永磁同步电动机的发展概况及应用前景 (1)1.1.1 永磁同步电动机发展概况 (1)1.1.2 永磁同步电动机特点及应用 (2)1.2永磁同步电动机控制系统的发展现状与趋势 (3)1.3课题研究的背景及本文的主要研究内容 (4)1.4本课题的研究意义 (5)第2章永磁同步电动机的结构及其数学模型 (7)2.1永磁同步电动机的结构 (7)2.2永磁同步电动机的数学模型 (8)2.2.1 永磁同步电机在静止坐标系(UVW)上的模型 (8)α-)上的模型方程 (10)2.2.2 永磁同步电机在两相静止坐标系(β2.2.3 永磁同步电机在旋转坐标系(d q-)上的数学模型 (12)第3章永磁同步电机矢量控制及空间矢量脉宽调制 (16)3.1永磁同步电机的控制策略 (16)3.1.1永磁同步电机外同步控制策略 (16)3.1.2 永磁同步电机自同步控制策略 (16)3.1.3 永磁同步电动机的弱磁控制 (19)3.2空间矢量脉宽调制(SVPWM) (19)3.2.1 空间矢量脉宽调制原理 (19)3.2.2 空间矢量脉宽调制实现 (22)3.3PI控制器的设计 (24)3.3.1 电流环PI控制器的设计 (24)3.3.2 速度环PI控制器的设计 (25)第4章系统仿真模型 (26)4.1MATLAB仿真工具箱简介 (26)4.2闭环控制系统仿真 (27)4.3仿真结果及分析 (31)第5章永磁同步电机控制器的硬件设计 (34)5.1功率变换单元的设计 (34)5.1.1 三相桥式主电路 (35)5.1.2 IR2130驱动器 (36)5.1.3 信号隔离电路 (38)5.2检测单元的设计 (38)5.2.1位置检测单元的设计 (38)5.2.2 电流检测电路 (40)5.2.3 电压检测电路 (40)5.3控制器的设计 (41)5.3.1 DSP的特点和资源 (42)5.3.2 系统设计中所用的DSP硬件资源 (43)5.4电平转换 (44)5.5保护电路的设计 (45)5.5.1 过流保护电路 (45)5.5.2 过压保护电路 (46)5.5.3 上电保护电路 (46)5.5.4 系统保护电路 (47)第6章永磁同步电机控制器的软件设计 (48)6.1DSP软件一般设计特点 (48)6.1.1 公共文件目标格式 (48)6.1.2 Q格式表示方法 (49)6.2控制系统软件的总体结构 (50)6.3控制系统子程序设计 (53)6.3.1 位置和速度计算 (53)6.3.2 速度、电流PI控制 (55)6.3.3 电流的采样与滤波 (56)6.3.4 坐标变换软件实现 (58)6.3.5 正余弦值的产生 (58)6.3.6 空间矢量PWM程序 (59)结束语 (60)参考文献 (61)致谢 (62)附录 (63)基于DSP永磁同步电动机矢量控制系统研究摘要:本论文在分析了PMSM的结构、数学模型的基础上采用弧公司专用于电机控制的TMS320F2407A型数字信号处理器作为核心,开发了全数字化的永磁同步电机矢量控制调速系统,主要完成了以下几个方面的工作:(1)本文查阅大量的文献资料,阐述了永磁同步电机的发展概况及应用以及其控制系统的发展现状,讨论了此课题的研究意义。
无刷直流电机SPWM控制策略的实现

无刷直流电机SPWM控制策略的实现摘要:设计了一款基于SPWM控制策略的无刷直流电机控制系统,给出了SPWM波生成的具体方法,利用具有霍尔位置传感器的无刷直流电机,通过实时采集三相霍尔信息,得到正弦调制波的幅值和频率,再通过软件算法生成六路SPWM信号驱动无刷直流电机;实验结果表明,此控制策略可以实现无刷直流电机正弦波驱动。
关键词:无刷直流电机;SPWM;霍尔位置传感器Implementation of SPWM control strategy for brushless DC MotorZHANG Min DUAN Jiuyang(Qingdao Technological University, Qingdao 266033)Abstract:Designing a brushless DC motor control system based on SPWM control strategy, And giving the method of SPWM wave generation, using the brushless DC motor with hall position sensor, through real-time collection of three phase hall information, the amplitude and frequency of sine modulated waves are obtained, and the software algorithm is used to generate six SPWM signals to drive brushless DC motor; The experimental results show that this control strategy can realize the sine wave drive of brushless DC motor.Key words:brushless DC motor; SPWM; Hall position sensor1 引言无刷直流电机根据驱动波形的不同分为方波驱动和正弦波驱动两种,其中方波驱动方式最为常用,因为此种方式对应的电路结构简单且成本低便于实现,这也是非常成熟的一种驱动方式;但是如果实际系统对噪声、转矩脉动[1-2]及平稳性参数提出一定要求时,方波驱动将很难满足要求,因为方波驱动会产生大量的谐波,增加电磁转矩脉动,致使电机不能稳定运行噪声也比较大,而正弦波驱动BLDCM时,可以满足此类要求较高的场合[3]。
SPWM与SVPWM之比较 (2)
一、 原理比较
(1)、SPWM 正弦 PWM 的信号波为正弦波,就是正弦波等效成一系列等幅不等宽的矩形脉 冲波形,其脉冲宽度是由正弦波和三角波自然相交生成的 .正弦波波形产生的方 法有很多种,但较典型的主要有:对称规则采样法、 不对称规则采样法和平均对称 规则采样法三种.第一种方法由于生成的 PWM 脉宽偏小,所以变频器的输出电压 达不到直流侧电压的倍;第二种方法在一个载波周期里要采样两次正弦波 ,显然 输出电压高于前者,但对于微处理器来说,增加了数据处理量当载波频率较高时, 对微机的要求较高 ; 第三种方法应用最为广泛的 , 它兼顾了前两种方法的优点 . SPWM 虽然可以得到三相正弦电压 ,但直流侧的电压利用率较低 , 最大是直流侧 电压的倍,这是此方法的最大的缺点. (2)SVPWM 电压空间矢量 PWM(SVPWM)的出发点与 SPWM 不同,SPWM 调制是从三相交流电 源出发,其着眼点是如何生成一个可以调压调频的三相对称正弦电源 .而 SVPWM 是将逆变器和电动机看成一个整体 ,用八个基本电压矢量合成期望的电压矢量 , 建立逆变器功率器件的开关状态 ,并依据电机磁链和电压的关系 ,从而实现对电 动机恒磁通变压变频调速 .若忽略定子电阻压降,当定子绕组施加理想的正弦电 压时,由于电压空间矢量为等幅的旋转矢量,故气隙磁通以恒定的角速度旋转,轨 迹为圆形. SVPWM 比 SPWM 的电压利用率高 15%,这是两者最大的区别,但两者并不 是孤立的调制方式,典型的 SVPWM 是一种在 SPWM 的相调制波中加入了零序分量后 进行规则采样得到的结果,因此 SVPWM 有对应 SPWM 的形式.反之,一些性能优越的 SPWM 方式也可以找到对应的 SVPWM 算法,所以两者在谐波的大致方向上是一致的, 只不过 SPWM 易于硬件电路实现,而 SVPWM 更适合于数字化控制系统.
基于DSP的永磁同步电机控制系统硬件设计
基于DSP的永磁同步电机控制系统硬件设计胡宇;张兴华【摘要】以小功率永磁同步电机(PMSM)为研究对象,结合数字信号处理器TMS320F2812功能特点,给出了一套PMSM驱动控制系统硬件设计方案.详细阐述了功率驱动主电路、反馈信号检测电路以及供电电路的设计,介绍了主要元器件选型和参数计算方法.基于设计的硬件平台,对PMSM调速控制系统进行了测试.试验结果表明,所设计的控制系统硬件设计可靠、性能稳定、控制精度高.%Based on the controlled object of small power permanent magnet synchronous motor (PMSM),combined with the main features of digital signal processor TMS320F2812,an overall hardware design scheme had been put forward for the PMSM drive control system.Design of the power driven main circuit had illustrated,signal detection circuit and power supply circuit in detail,meanwhile introduced the main components selection and parameters calculation method.Based on the designed hardware platform,the control system of PMSM had been performed a functional test.Experimental results showed that the hareware design of control system had good reliability with stable performance and high control precision.【期刊名称】《电机与控制应用》【年(卷),期】2017(044)012【总页数】7页(P19-24,80)【关键词】永磁同步电机;功率驱动主电路;信号检测电路【作者】胡宇;张兴华【作者单位】南京工业大学电气工程与控制科学学院,江苏南京211816;南京工业大学电气工程与控制科学学院,江苏南京211816【正文语种】中文【中图分类】TM351永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)因其体积小、损耗低、功率密度高和效率高等优点,在机械制造、工业控制、航空航天等领域得到广泛应用[1]。
基于单片机的SPWM逆变电源设计
06 结论与展望
研究成果总结
成功实现了基于单片机的SPWM逆变电源设计, 具有高效率、高稳定性、低成本等优点。
采用了先进的控制算法,实现了对输出电压和电 流的精确控制,提高了电源的性能。
实验结果表明,该设计在各种负载条件下均能保 持稳定的输出,满足实际应用需求。
未来研究方向与展望
进一步优化控制算法,提高电源的动态响应和稳定性。
选择一款具有高速处理能力和丰富外 设接口的单片机,如STM32F103系 列。
硬件配置
根据设计需求,配置单片机所需的件设计
电源电路
设计电源电路,为单片机和其他电路提供稳定的 电源。
驱动电路
设计驱动电路,用于驱动逆变器开关管。
采样电路
设计采样电路,用于采集逆变器输出电压和电流 等信号。
单片机技术的普及
单片机作为一种集控制、运算、存储 等功能于一体的微处理器,被广泛应 用于各种电子设备中。
SPWM逆变电源概述
SPWM逆变电源的基本原理
01
通过控制开关的占空比,使得输出电压或电流的脉冲宽度按正
弦规律分布,从而得到类似正弦波的输出波形。
SPWM逆变电源的特点
02
输出波形质量高、谐波含量低、动态响应快、易于数字化实现
等。
SPWM逆变电源的应用
03
在电机控制、不间断电源、有源滤波器等领域具有广泛的应用。
02 SPWM逆变电源原理
SPWM技术原理
SPWM(Sinusoidal Pulse Width Modulation)技术是一种模拟正弦波的脉冲宽 度调制技术,通过改变脉冲宽度来模拟正弦波 的幅值。
SPWM技术广泛应用于逆变电源、电 机控制等领域,具有高精度、高效率、 低谐波等优点。
基于MATLABSimulinkSimPowerSystems的永磁同步电机矢量控制系统建模与仿真
基于MATLABSimulinkSimPowerSystems的永磁同步电机矢量控制系统建模与仿真一、本文概述随着电力电子技术和控制理论的快速发展,永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)因其高效率、高功率密度和优良的调速性能,在电动汽车、风力发电、机器人和工业自动化等领域得到了广泛应用。
然而,PMSM的高性能运行依赖于先进的控制系统,其中矢量控制(Vector Control, VC)是最常用的控制策略之一。
矢量控制,也称为场向量控制,其基本思想是通过坐标变换将电机的定子电流分解为与磁场方向正交的两个分量——转矩分量和励磁分量,并分别进行控制,从而实现电机的高性能运行。
这种控制策略需要对电机的动态行为和电磁关系有深入的理解,并且要求控制系统能够快速、准确地响应各种工况变化。
MATLAB/Simulink/SimPowerSystems是MathWorks公司开发的一套强大的电力系统和电机控制系统仿真工具。
通过Simulink的图形化建模环境和SimPowerSystems的电机及电力电子元件库,用户可以方便地进行电机控制系统的建模、仿真和分析。
本文旨在介绍基于MATLAB/Simulink/SimPowerSystems的永磁同步电机矢量控制系统的建模与仿真方法。
将简要概述永磁同步电机的基本结构和运行原理,然后详细介绍矢量控制的基本原理和坐标变换方法。
接着,将通过一个具体的案例,展示如何使用Simulink和SimPowerSystems进行永磁同步电机矢量控制系统的建模和仿真,并分析仿真结果,验证控制策略的有效性。
将讨论在实际应用中可能遇到的挑战和问题,并提出相应的解决方案。
通过本文的阅读,读者可以对永磁同步电机矢量控制系统有更深入的理解,并掌握使用MATLAB/Simulink/SimPowerSystems进行电机控制系统仿真的基本方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要本文主要介绍了利用正弦脉宽调制技术对永磁同步电动机进行恒压频比开环调速的控制器功率设计。
正弦脉宽调制技术是常用的一种脉宽调制技术,用一系列脉冲宽度按正弦规律变化的脉冲代替正弦波。
本文介绍了基于面积等效原理,采用查表法,利用MSP430单片机生成正弦脉宽调制(SPWM)波的方法。
在功率电路中,以半桥驱动器IR2103s为驱动芯片,驱动N沟道场效应晶体管IRF540N构成逆变桥,将直流电逆变为交流电通入三相正弦永磁同步电动机。
在调速中,采用分段同步调制技术对电机进行调速。
在调试过程中,应用直流电动机H型主电路可逆脉宽调速的原理对原有的控制器功率电路的性能进行调试测试。
关键词:正弦脉宽调制;永磁同步电动机;MSP430单片机;分段同步调制IABSTRACTThis paper described the open-loop power controller design for permanent magnet synchronous motor by using sinusoidal pulse width modulation technique.Sinusoidal pulse width modulation technique is commonly used as a kind of pulse width modulation technology, with a series of pulses instead of the sine wave and the width of the pulses are changing as sinusoidal. Introduction was made to the method of sine pulse width modulation (SPWM) wave generated by table searching, which is based on area equivalence principle.In the power circuit, the half-bridge driver chip IR2103s was used to drive N-channel field effect transistor IRF540N which constituted the inverter bridge so that the current fed three-phase sinusoidal permanent magnet synchronous motor. The sub-synchronous modulation technique was used to regulate the motor speed.During the commissioning process, the performance test of the original controller power circuit was with H-type main circuit DC motor reversible PWM speed control principle.KEY WORDS: Sine pulse width modulation; Permanent magnet synchronous motor; MSP430 single chip; Sub-synchronous modulation techniqueII目录1 绪论 (1)1.1 课题的研究背景和意义 (1)1.2 课题对象的特点及控制要求 (2)1.3 课题任务和要求 (3)1.3.1 课题的主要任务 (3)1.3.2 课题的基本要求 (3)1.4 设计思路 (3)2 控制器硬件设计 (5)2.1 概述 (5)2.2 硬件电路的设计 (5)2.3 元器件的参数和功能 (6)2.3.1 电力场效应晶体管 (6)2.3.2 半桥驱动器IR2103s (7)2.3.3 光电耦合器6N137 (8)2.4 印制电路板的设计及注意事项 (9)2.5 本章小结 (10)3 控制器软件设计 (11)3.1 正弦脉宽调制技术 (11)3.2 SPWM波的生成方法 (12)3.2.1 计算法和调制法 (12)3.2.2 异步调制和同步调制 (12)3.2.3 自然采样法和规则采样法 (13)3.3 SPWM波生成的软硬件环境及实现方法 (14)3.3.1 SPWM波生成的硬件环境 (14)3.3.2 SPWM波生成的软件环境IAR (15)3.3.3 MSP430的编程方法和SPWM波的生成 (16)3.4 本章小结 (18)4 控制器的调试及运行结果 (19)4.1 控制器的软硬件完成情况 (19)4.2 调试中出现的问题 (20)4.3 直流电动机可逆脉宽调速H桥主电路 (21)III4.4 直流电动机H桥主电路可逆脉宽调速调试及运行结果 (21)4.5 本章小结 (23)5 结论与展望 (24)参考文献 (25)附录1 英语文献原文 (26)附录2 英文文献翻译 (34)附录3 控制器硬件电路原理图 (47)附录4 印制板PCB设计图 (48)附录5 SPWM波生成程序 (49)致谢....................................................................................................... 错误!未定义书签。
IV1 绪论1.1课题的研究背景和意义直流和交流异步伺服电动机的转速是随电机轴上所带的负载阻转矩或者加在控制绕组上的信号电压的改变而变化的[1]。
但是在有些控制设备和自动装置中,往往要求电动机具有恒定不变的转速,即要求电动机的转速不随负载和电压的变化而变化。
同步电动机就是具有这种特性的电动机。
目前,功率从零点几瓦到数百瓦的各种同步电动机,在需要恒速运转的自动控制装置中得到了广泛的应用。
例如它们用于自动和遥控装置,无线电通讯设备,同步联络系统,磁带录音和钟表工业等。
小功率同步电动机是交流电动机,在结构上主要是定子和转子两部分组成。
各种同步电动机的定子与一般异步电动机的定子没有什么不同,定子铁心通常也是由带有齿和槽的冲片叠成,在槽中嵌入三相或两相绕组。
当三相电流通入三相绕组或两相电流通入两相绕组时,在定子中就会产生旋转磁场。
旋转磁场的转速即为同步转速,以下式表示:60 s fnp(1-1)式中:n s——同步转速/ r·min-1;f——电源频率/Hz;p——电机极对数。
各种小功率同步电动机的定子都是相同的,或者是三相绕组通入三相电流,或者是两相绕组通入两相电流,其主要作用都是为了产生一个旋转磁场。
但是转子的结构型式和材料却又很大差别,因而其运行原理也就不同。
根据转子型式的不同,小功率同步电动机主要可分为永磁式电动机、反应式电动机、磁滞式电动机等。
永磁式同步电动机的转子由永久磁钢做成。
它可以做成两极的,也可以做成多极的。
其作用原理相当简单,这里以两极电动机简单加以说明。
当同步电动机的定子通上交流电源后,就能产生一个旋转磁场。
当定子旋转磁场以同步速n s旋转时,根据N 极与S极相互吸引的道理,定子旋转磁极就要与转子永久磁极紧紧吸住,并带着转子一起旋转。
由于转子是由旋转磁场带着转的,因而转子的转速应该与旋转磁场转速相等。
[1][2]随着永磁材料性能的不断提高,高性能低价格永磁材料(如钕铁硼)的出现,使永磁式同步电动机的应用范围更加扩大。
与其它型式同步电动机相比,它出力大,体积小,耗电小,结构简单、可靠,因而已成为同步电动机中最主要的品种。
目前功率1从几瓦到几百瓦,甚至是几个千瓦的永磁同步电动机在各种控制系统中得到广泛的应用。
在高性能的控制系统中,同步电动机的同步速调节主要采用矢量控制和直接转矩控制。
而在一般情况下,同步速的调节主要是通过变频来实现。
近十几年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,电气传动技术面临着一场历史革命,交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。
交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。
变频调速以其有意的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。
[3]而在变频调速中,脉宽调制(PWM)技术具有优良的调压和调频性能, 使得其在变频调速系统中得到了广泛的应用。
脉冲宽度调制的方式很多, 其中应用最广, 也是最成熟的是正弦脉宽调制技术,即SPWM。
目前,正弦脉宽调制技术已经在变频电源领域、直流输电领域、交流调速领域等许多领域得到了广泛应用。
为了提高整个系统的控制效果,生成高性能的SPWM脉冲一直是人们不懈探索努力的目标。
[4][5]一直以来生成SPWM 波的方法有很多种。
其中采用模拟电路和数字电路等硬件电路来产生SPWM 波形是一种有效的方法,但是这种实现方法的有控制电路复杂、抗干扰能力差、实时调节比较困难等缺点,性能不高,常常不能令人满意。
而随着微控制器( 如单片机)的高速发展,其内部集成了许多控制电路,如定时器、PWM 电路、可编程计数器阵列等,而且这些内部控制电路的性能越来越高,所以就产生了一种利用微控制器来生成SPWM 波形的数字控制方法,这种实现方法具有控制电路简单、运算速度快、控制精度高、抗干扰能力强等优点。
本课题应用一种基于面积等效原理,采用查表法,利用MSP430F149单片机的定时器模块产生SPWM波。
1.2课题对象的特点及控制要求本课题“基于单片机的永磁同步电动机控制器功率电路设计”,控制对象是正弦波三相永磁同步电动机,该电机额定电压U N=24V DC,额定功率P N=100W,额定电流3.94A,额定转速n N=6000r/min,电机极数8,额定效率88%,空载电流1.5A。
开发系统包括TI公司MSP430F149最小开发板,TI公司MSP系列单片机仿真器和MSP系列单片机软件编写环境。
永磁同步电动机工作原理前面已经简单说明,下面说明恒压频比开环控制原理。
同步电动机定子绕组是三相对称交流绕组,当通入三相电流时产生旋转磁场,转子的永久磁极也会同向同速旋转,定子导体则反向切割转子永久磁极的磁场,会在定子每相绕组中分别感应出大小和方向按周期性变化的交变电势,由电机学知识可知,每相感应电势的有效值为04.44f wE fN k=Φ(1-2)2式中:E0——主电势/V;f——频率/Hz;N——每相绕组总的串联匝数;Φ——每极基波磁通/Wb;fk——定子绕组系数。