八年级数学分式的加法和减法

合集下载

八年级数学上册『分式的运算』计算公式大全

八年级数学上册『分式的运算』计算公式大全
分式的四则运算与乘方
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
式子表示为: · =
分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为: ÷ = · =
分式的乘方:把分子、分母分别乘方。
式子表示为: =
分式的加减法则:同分母分式加减法:分母不变,把分子相加减。
式子表示为: ± =
异分母分式加减法:先通分,化为同分母的分式,然后再加减。
式子表示为: ± =
整数指数幂
①同底数的幂的乘法:am·an=amn=anbn
④同底数的幂的除法:am÷an=am-n(a≠0);
⑤分式(商)的乘方: = (b≠0)
⑥a-n= (a≠0) ⑦a0=1;(a≠0)
(任何不等于零的数的零次幂都等于1)
分式的四则运算与乘方
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
式子表示为: · =
分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为: ÷ = · =
分式的乘方:把分子、分母分别乘方。
式子表示为: =
分式的加减法则:同分母分式加减法:分母不变,把分子相加减。
式子表示为: ± =
异分母分式加减法:先通分,化为同分母的分式,然后再加减。
式子表示为: ± =
整数指数幂
①同底数的幂的乘法:am·an=am+n
②幂的乘方:(am)n=amn③积的乘方:;(ab)n=anbn
④同底数的幂的除法:am÷an=am-n(a≠0);
⑤分式(商)的乘方: = (b≠0)
⑥a-n= (a≠0)⑦a0=1;(a≠0)
(任何不等于零的数的零次幂都等于1)

数学:1.3分式的加减法课件(鲁教版八年级上)(共8张PPT)

数学:1.3分式的加减法课件(鲁教版八年级上)(共8张PPT)

你小对明这 认两为种,做只法要有把何异评分论母?的与分同式伴化交成流同。分母的
根(据1)分当式走的第基二本条性路质时,,异她分从母甲的地分到式乙可地以化为
你对这两种做法有何评论?与同伴交流。
根据分式的基本性质,异分母的分式可以化为
同分母的分式,这一过程称为分式的通分。为了计 算方便,异分母分式通分时,通常取最简公分母作
(根2据)分你式认的为基异本分性母质的,分异式分应母该的如分何式加可减以?化比为如
你小对明这 认两为种,做只法要有把何异评分论母?的与分同式伴化交成流同。分母的
分你式对, 这异两分种母做分法式有的何加评减论问?题与就同变伴成交了流同。分母 =同--分---母---的---分- 式,这一过程称为分式的通分。 分(式1),同异分分母母的分分式数的如加何减加问减题?就变成了同分母
1.3分式的加减法
从甲地到乙地有两条路,每条路都是3km,
其中第一 条是平路,第二条有 1km的上坡
路、2km的下坡路.小丽在上坡路上的骑车 速度为vkm/h,在平路上的骑车速度为2vkm/h, 在下坡路上的骑车速度为3vkm/h,那么
(1)当走第二条路时,她从甲地到乙地 需要多长时间?
(2)她走哪条路花费时间少?少用多长时间?
(1)异分母的分数如何加减? 小根亮据同 分意式小的明基的本看性法质,但异他分母的分式可以化为
根(据1)分当式走的第基二本条性路质时,,异她分从母甲的地分到式乙可地以化为
(你1对)这当两走种第做二法条有路何时评,论她?从与甲同地伴到交乙流地。
你在对下这 坡两路种上做的法骑有车何速评度论为?3v与km同/h伴,交那流么。
你同对分这 母两的种分做式法,有这何一评过论程?称与为同分伴式交的流通。分。

数学131《分式的加减法》教案(北师大版八年级下)

数学131《分式的加减法》教案(北师大版八年级下)

第四课时●课题§3.3.1 分式的加减法(一)●教学目标(一)教学知识点1.同分母的分式的加减法的运算法则及其应用.2.简单的异分母的分式相加减的运算.(二)能力训练要求1.经历用字母表示数量关系的过程,发展符号感.2.会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.(三)情感与价值观要求1.从现实情境中提出问题,提高“用数学”的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气.●教学重点1.同分母的分式加减法.2.简单的异分母的分式加减法.●教学难点当分式的分子是多项式时的分式的减法.●教学方法启发与探究相结合●教具准备投影片四张:第一张:提出问题,(记作§3.3.1 A);第二张:想一想,做一做,(记作§3.3.1 B);第三张:想一想,(记作§3.3.1 C);第四张:议一议,(记作§3.3.1 D);第五张:例1,记作(§3.3.1 E);第六张:补充练习,(记作§3.3.1 F).●教学过程Ⅰ.创设现实情境,提出问题[师]上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面的问题:(出示投影片 §3.3.1 A )问题一:从甲地到乙地有两条路,每条路都是3 km ,其中第一条是平路,第二条有1 km 的上坡路、2 km 的下坡路.小丽在上坡路上的骑车速度为v km/h,在平路上的骑车速度为2 v km/h,在下坡路上的骑车速度为3v km/h,那么(1)当走第二条路时,她从甲地到乙地需多长时间? (2)她走哪条路花费的时间少?少用多长时间?问题二:某人用电脑录入汉字文稿的效率相当于手抄的3倍,设他手抄的速度为a 字/时,那么他录入3000字文稿比手抄少用多少时间?[生]问题一,根据题意可得下列线段图:(1)当走第二条路时,她从甲地到乙地需要的时间为(v 1+v32)h . (2)走第一条路,小丽从甲地到乙地需要的时间为v23h .但要求出小丽走哪条路花费的时间少.就需要比较(v 1+v 32)与v23的大小,少用多少时间,就需要用它们中的较大者减去较小者,便可求出. [生]如果要比较(v 1+v 32)与v23的大小,就比较难了,因为它们的分母中都含有字母.[生]比较两个数的大小,我们可以用作差法.例如有两个数a ,b . 如果a -b >0,则a >b ; 如果a -b =0,则a =b ; 如果a -b <0,则a <b .[师]这位同学想得方法很好,显然(v 1+v 32)和v23中含有字母,但它们也是用来表示数的,所以我认为可以用实数比较大小的方法来做.[生]如果用作差的方法,例如(v 1+v 32)-v23,如何判断它大于零,等于零,小于零呢? [师]我们不妨观察(v 1+v 32)-v23中的每一项都是分式,这是什么样的运算呢?[生]分式的加减法.[师]很好!这正是我们这节课要学习的内容——分式的加减法(板书课题) 我们再来看一下问题二.[生]问题二中这个人用电脑录入3000字的文稿需a 33000小时,利用分式的基本性质化简,即为a1000小时;用手抄3000字文稿则需用a 3000小时,因此这个人录入3000字的文稿比手抄少用(a 3000-a1000)小时.[生]a 3000,a 1000是分式,a 3000-a1000是分式的加减法. [师]但和问题一中加减法比较一下,你会发现什么?[生]问题一中的是异分母的分式相加减,而问题二是同分母的加减法.[师]很好!我们按研究问题的一般思路,从简单的学起即先学习同分母的加减法. Ⅱ.讲授新课 1.同分母的加减法[师]我们接着看下面的问题(出示投影片§3.3.1 B ) 想一想(1)同分母的分数如何加减?你能举例说明吗? (2)你认为分母相同的分式应该如何加减? 做一做 (1)a 1+a2=____________. (2)22-x x -24-x =____________.(3)12++x x -11+-x x +13+-x x =____________. [生]同分母的分数的加减是分母不变,把分子相加减,例如134+133-1317=131734-+=-1310. 我认为分母相同的分式相加减与同分母的分数相加减一样,应该是分母不变,把分子相加减. [师]谁能试着到黑板上板演“做一做”中的三个小题. [生1]解:(1)a 1+a 2=a 21+=a3; [生2]解:(2)22-x x -24-x =242--x x ;[生3]解:12++x x -11+-x x +13+-x x =1312+-+--+x x x x=12+-x x . [师]我们一块来讲评一下上面三位同学的运算过程.[生]第(1)小题是正确的.第(2)小题没有把结果化简.应该为原式=242--x x =2)2)(2(--+x x x =x +2.[师]这位同学很仔细.我们学习分式乘除法时就强调运算结果必须是最简的,如果分子、分母中有公因式,一定要把它约去,使分式最简.[生]第(3)小题,我认为也有错误.同分母的分式相加减,分母不变,把分子相加减,我觉得(x +1)分母不变,做得对,但三个分式的分子x +2、x -1、x -3相加减应为(x +2)-(x -1)+(x -3).[师]的确如此,我们知道列代数式时,(x -1)÷(x +1)要写成分式的形式即11+-x x ,因此分数线既有除号的作用,还有括号的作用,即分子、分母应该是一个整体.[生]老师,是我做错了.第(3)题应为:(3)12++x x -11+-x x +13+-x x =1)3()1()2(+++--+x x x x=1312+-++-+x x x x=1+x x [师]发现问题,及时改正是一种很好的学习习惯,努力发扬,你一定会取得更大进步. 通过前面做一做,想一想,我们可以得出同分母的分式相加减的法则: 同分母的分式相加减,分母不变,把分子相加减,用式子表示是:c a ±c b =cb a ±(其中a 、b 既可以是数,也可以是整式,c 是含有字母的非零的整式). 前面问题二现在可以完成了吧!大胆地试一试. [生]a 3000-a 1000=a 10003000-=a 2000,所以这个人录入3000字文稿比手抄少用a2000个小时. 2.简单的异分母的分式相加减 [生]问题一还没有解决呢?[师]是的,如果分式的分母不同,那么该如何加减呢?同学们不妨凭借自己的数学经验,合作交流,找到一个可行的方法.出示投影片(§3.3.1 C ) 想一想(1)异分母的分数如何加减?(2)你认为异分母的分式应该如何加减?比如a 3+a41应如何计算. [生 ]异分母的分数加减时,可利用分数的基本性质通分,把异分母的分数加减法化成同分母的分数加减法[生 ]我认为分式有很多地方和分数相类似,异分母的分式加减是否也可以通过像分数那样通分,将异分母的分式加减法化成同分母的分式加减法.[师 ]同学们的想法很好!我这儿就有两位同学将异分母的分式加减化成同分母的分式加减.(出示投影片 §3.3.1 D )小明认为,只要把异分母的分式化成同分母的分式,异分母分式的加减问题就变成了同分母分式的加减问题.小亮同意小明的这种看法,但他俩的具体做法不同:小明:a 3+a 41=a a a 443⋅⋅+a a a ⋅4 =2412a a +24a a =2413a a =a413. 小亮:a 3+a 41=443⋅⨯a +a 41=a 412+a 41=a413. 你对这两种做法有何评论?与同伴交流.[生 ]我觉得这两种做法都有一个共同的目标:把异分母的分式加减法化成同分母的分式加减法.但我觉得小亮的方法更简单.就像分数运算:61+41.如果61+41=464⨯+646⨯=244+246=2410=125,这样计算就比较麻烦;如果找6和4的最小公倍数12,算起来就很方便,即61+41=262⨯+343⨯=122+123=125.[生 ]我认为也是这样,根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.但通分时为了简便,也应该像分数的通分一样,找各个分母的最小公倍数.[师]同学们分析得很有道理,为了计算简便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的公分母.例如a 3+a41,a 和4a 的最简公分母是4a .下面我们再来看几个例子. 出示投影片(§3.3.1 E ) [例1]计算: (1)a 3+a a 515-;(2)12-x +xx --11 [生]老师,我们组还是联系异分母的分数相加减的方法,利用分数的性质,先通分,转化成同分母的就可以完成.[生]我们组也是用了将异分母的分式相加减转化成同分母相加减的分式运算.[例1]中的第(1)题,一个分母是a ,另一个分母是5a ,利用分式的基本性质,只需将第一个分式a3化成a 553⨯=a515即可. 解:(1)a 3+a a 515-=a 515+aa 515-=a a 5)15(15-+=a a 5=51;[生]我们组也已完成了第(2)题.两个分式相加,一个分式的分母是x -1,另一个分式的分母是1-x ,我们注意到了1-x =-(x -1),所以要把xx --11化成分母为x -1的分式,利用分式的基本性质,得x x --11=)1()1()1()1(-⨯--⨯-x x =11--x x.所以第(2)题的解法如下: (2)12-x +x x --11=12-x +11--x x =1)1(2--+x x =13--x x[师]同学们能凭借自己的数学经验,将新出现的数学难题处理的有条有理,很了不起. [生]问题一可以出来结果啦.(1)小丽当走第二条路时,她从甲地到乙地需要的时间为v 1+v 32=v 33+v 32=v 323+=v35h. (2)小丽走第一条路所用的时间为v23h. 作差可知v 35-v 23=v 610-v 69=v 61>0.所以小丽走第一条路花费的时间少,少用v61h. Ⅲ.应用、升华 1.随堂练习第1题 计算:(1)x b 3-x b ; (2)a 1+a 21;(3)b a a --ab a-解:(1)x b 3-x b =x b b -3=x b2;(2)a 1+a 21=a 22+a 21=a 212+=a 23;(3)b a a --a b a -=b a a --b a a--=b a a a ---)(=ba a -2.2.补充练习(出示投影片§3.3.1 F )计算:m n n m -+2+n m n --m n n-2.解:m n n m -+2+m n n ---m n n -2=mn n n n m ---+2)(2=m n n m --=mn m n ---)(=-1 Ⅵ.课时小结[师]这节课我们学习了分式的加减法,同学们课堂上思维非常活跃,想必收获一定很大.[生]我觉得我这节课最大的收获是:“做一做”中犯的错误,在今后做此类题的过程中,一定不会犯同样的错误.[生]我的收获是学会用转化的思想将异分母的分式的加减法转化成同分母分式的加减法. …… Ⅴ.课后作业习题3.4第1、2、3题. Ⅵ.活动与探究 已知x +y 1=z +x 1=1,求y +z1的值. [过程]已知条件实际上是一个方程组,我们可以取其中两个方程x +y 1=1,z +x1=1,由这两个方程把y 、z 都用x 表示后,再求代数式的值.[结果]由x +y 1=1,得y =x-11, 由z +x 1=1,得z =x x 1-. 所以y +z 1=x -11+1-x x =11--x +1-x x =11--x x =1.●板书设计§3.3.1 分式的加减法(一)分数的加减法 分式的加减法同分母 分母不变,分子相加减 分母不变,分子相加减. 异分母转化为同分母转化为同分母做一做:(学生板演) (1)a 1+a2(2)22-x x -24-x(3)12++x x -11+-x x +12+-x x [例1]计算:(1)a 3+a a 515- (2)12-x +xx --11注意:1°分数线的括号作用,突出分子是整体. 2°计算结果要化成最简形式.。

分式的加减运算

分式的加减运算

分式的加减运算分式是数学中常见的一种运算形式,它由两个整数之间用横线分隔的表示方式构成。

分式的加减运算是指对两个分式进行相加或相减的操作。

在进行分式的加减运算时,需要注意分母的处理以及通分的方法。

下面将详细介绍分式的加减运算。

1. 分式的加法分式的加法是指在两个分式之间进行加法运算。

当两个分式的分母相同时,可以直接对分子进行相加,分母保持不变。

例如:a/b + c/b = (a + c)/b如果两个分式的分母不相同,需要进行通分处理,将分母转化为相同的值,再进行加法运算。

通分的方法一般是求两个分母的最小公倍数,然后将分子和分母同时乘以相应的倍数,使得两个分数的分母相同。

例如:a/b + c/d = (ad + bc)/(bd)2. 分式的减法分式的减法是指在两个分式之间进行减法运算。

与加法类似,当两个分式的分母相同时,可以直接对分子进行相减,分母保持不变。

例如:a/b - c/b = (a - c)/b如果两个分式的分母不相同,同样需要进行通分处理,将分母转化为相同的值,再进行减法运算。

例如:a/b - c/d = (ad - bc)/(bd)需要注意的是,通分后得到的分子可能还需要进行化简,即将分式中的分子和分母同时除以它们的最大公约数,使得分子和分母互质。

这一步是为了保证分式的最简形式。

综上所述,分式的加减运算需要根据分母是否相同来分情况进行处理。

如果分母相同,则直接对分子进行加减运算;如果分母不同,则需要进行通分处理后再进行运算。

同时,在运算过程中还需要注意对结果进行化简,使得分式保持最简形式。

通过掌握分式的加减运算规则和通分的方法,我们可以更加灵活地处理分式计算,解决实际问题中的运算需求。

在实际应用中,我们经常会遇到需要对分式进行加减运算的场景,如比例题、分数题等。

因此,熟练掌握分式的加减运算对于数学学习和日常生活都具有重要意义。

(以上为参考内容,具体表达可以根据实际情况进行修改)。

分式的加减法

分式的加减法

分式的加减法分式是数学中常见的一种表达形式,它由分子和分母组成,用于表示两个数的比值或者部分与整体的关系。

分式的加减法就是对两个或多个分式进行相加或相减的运算。

本文将介绍分式的加减法的基本原理和具体操作方法。

一、分式的加法分式的加法就是将两个分式相加,要求它们的分母相同。

具体的操作步骤如下:1. 找出需要进行加法运算的分式,保持分子和分母的不变;2. 确保这些分式的分母相同,如果分母不同,需要通过通分将它们的分母转化为相同的值;3. 将这些分式的分子相加,保持分母不变,得到加法结果;4. 对加法结果进行约分,如果可以约分的话;5. 最后得到的结果即为加法的答案。

例如,计算1/3 + 1/4的结果。

首先,分母不同,需要进行通分,得到4/12 + 3/12 = 7/12。

最后,7/12为所求的答案。

二、分式的减法分式的减法与加法类似,也需要求出相同的分母。

具体的操作步骤如下:1. 找出需要进行减法运算的分式,保持分子和分母的不变;2. 确保这些分式的分母相同,如果分母不同,需要通过通分将它们的分母转化为相同的值;3. 将这些分式的分子相减,保持分母不变,得到减法结果;4. 对减法结果进行约分,如果可以约分的话;5. 最后得到的结果即为减法的答案。

例如,计算3/4 - 1/3的结果。

分母不同,需要进行通分,得到9/12 - 4/12 = 5/12。

最后,5/12为所求的答案。

三、分式的加减混合运算对于分式的加减混合运算,按照运算顺序逐步进行。

先进行加法,再进行减法。

具体操作如下:1. 找出需要进行加减混合运算的分式,保持分子和分母的不变;2. 对这些分式进行加法运算,得到加法结果;3. 再对加法结果进行减法运算,得到减法结果;4. 对减法结果进行约分,如果可以约分的话;5. 最后得到的结果即为加减混合运算的答案。

例如,计算2/3 + 1/4 - 5/6的结果。

首先,需要进行通分,得到8/12 + 3/12 - 10/12 = 1/12。

初二数学分式的加减法试题

初二数学分式的加减法试题

初二数学分式的加减法试题1.已知x,则等于()A.B.C.D.【答案】D【解析】先通分,再根据同分母分式的加减法法则化简即可.,故选D.【考点】本题考查的是分式的加减法点评:解答本题的关键是熟练掌握最简公分母的确定方法:系数取各分母系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.2.化简可得到()A.零B.零次多项式C.一次多项式D.不为零的分式【答案】A【解析】先通分,再根据同分母分式的加减法法则化简即可.故选B.【考点】本题考查的是分式的加减法点评:解答本题的关键是熟练掌握最简公分母的确定方法:系数取各分母系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.3.分式的最简公分母是()A.5abx B.15ab C.15abx D.15ab【答案】D【解析】根据最简公分母的确定方法即可得到结果.分式的最简公分母是,故选D.【考点】本题考查的是最简公分母点评:解答本题的关键是熟练掌握最简公分母的确定方法:系数取各分母系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.4. x克盐溶解在a克水中,取这种盐水m克,其中含盐()A.克B.克C.克D.克【答案】D【解析】先由x克盐溶解在a克水中得到盐水的浓度,即可得到结果.由题意得,取这种盐水m克,其中含盐克,故选D.【考点】本题考查的是列代数式点评:解答本题的关键是读懂题意,正确表示出盐水的浓度.5. ;【答案】【解析】先对分子部分整理,得到,即可得到结果.【考点】本题考查的是分式的化简点评:解答本题的关键是熟练掌握分式的基本性质:分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。

6.若ab=2,a+b=-1,则的值为 ;【答案】-【解析】先通分,再整体代入求值即可得到结果.当ab=2,a+b=-1时,【考点】本题考查的是代数式求值点评:解答本题的关键是熟练掌握最简公分母的确定方法:系数取各分母系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.7.化简分式的结果是 ;【答案】【解析】对两个括号部分分别通分化简即可得到结果.【考点】本题考查的是分式的混合运算点评:解答本题的关键是熟练掌握完全平方公式的规律:,8.计算:;【答案】【解析】先对第一个分母因式分解,再通分,最后根据同分母分式的加减法法则化简即可.原式=【考点】本题考查的是分式的加减法点评:解答本题的关键是熟练掌握最简公分母的确定方法:系数取各分母系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.9.计算:;【答案】2【解析】先对各个分子、分母部分因式分解,再约分,最后根据同分母分式的加减法法则化简即可.原式=.【考点】本题考查的是分式的加减法点评:解答本题的关键是注意在通分前,若分式的分子分母部分可以约分的要先约分.10.化简;【答案】【解析】先对各个分子、分母部分因式分解,同时把除化为乘,再约分即可得到结果.原式=.【考点】本题考查的是分式的混合运算点评:解答本题的关键是熟练掌握分式的基本性质:分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。

15 2 2 1 分式的加减教案(表格式)人教版数学八年级上册

15.2.2分式的加减第1课时分式的加减(2)m3+2m2-3mm2-9-m-1=m3+2m2-3mm2-9-(m+1) =m(m2+2m-3)(m+3)(m-3)-(m+1) =m(m+3)(m-1)(m+3)(m-3)-(m+1) =m(m-1)m-3-(m+1) =m2-mm-3-(m+1)(m-3)m-3=m2-m-(m2-2m-3)m-3=m2-m-m2+2m+3m-3=m+3m-3.【对应训练】教材P141练习第2题(4).教师还需强调在计算时,各分子都应用括号括起来,若分子是系数为正的单项式,括号可以省略,若分子是多项式且分子相减时,括号不能省略,否则容易出现符号错误.活动四:随堂训练,课堂总结【随堂训练】相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.同分母分式的加减法法则是什么?用式子如何表示?2.异分母分式的加减法法则是什么?用式子如何表示?【知识结构】【作业布置】1.教材P146习题15.2第4,5题.2.相应课时训练.板书设计15.2.2分式的加减第1课时分式的加减教学反思本节课从分数加减法引入,类比得出分式的加减法,最关键的是法则的探究,重点是法则的运用,易错点是同分母分式的减法中减式的分子为多项式时减之前忘记添括号.教师宜让学生先进行独立的思考,完成练习,再进行适当的指导,让学生体验自主完成类比探究学习的过程,从而获得学习的成就感和乐趣解题大招一与分式加减法有关的纠错题的解法遇到与分式加减法有关的纠错题可从以下常见的几个错误方向来考虑:①计算过程中漏掉了分母;②分式的运算中当分式前面是减号时,忽视分数线的括号作用;③分式的基本性质用错等.例1下列是某学生化简分式1x+1+2x2-1的解答过程,他只知道结果错了,却找不出原因,请你帮助他,并完成以下问题.1x+1+2x2-1=1(x+1)(x-1)+2(x+1)(x-1)(第一步)=1+2(x+1)(x-1)(第二步)=3x2-1.(第三步)(1)该学生的解答过程是从第一步开始出错的,出错的原因是分式的基本性质用错.(2)请写出此题正确的解答过程.解:1x+1+2x2-1=x-1(x+1)(x-1)+2(x+1)(x-1)=x+1(x+1)(x-1)=1x-1.解题大招二与分式加减有关的化简求值先观察式子看是同分母加减还是异分母加减,然后按照相应的法则化简,最后代值计算即可.例2(1)(2023·鄂州中考)先化简,再求值:aa2-1-1a2-1,其中a=2.解:原式=a-1a2-1=a-1(a+1)(a-1)=1a+1.当a=2时,原式=12+1=13.(2)(2023·衡阳中考)已知x=5,求3x-4-24x2-16的值.解:原式=3x+12(x+4)(x-4)-24(x+4)(x-4)=3x-12(x+4)(x-4)=3(x-4)(x+4)(x-4)=3x+4.当x=5时,原式=35+4=13.解题大招三与分式加减有关的运算技巧1.逐项通分通过观察可发现前两个分式的分母之积符合平方差公式,计算后与第三个分式的分母之积又符合平方差公式,依此类推可解此类题.例311-m+11+m+21+m2+41+m4.解:原式=1+m+1-m1-m2+21+m2+41+m4=2(1+m2)+2(1-m2)1-m4+41+m4=41-m4+4 1+m4=81-m8.2.分组计算多个分式相加减时,要先观察其特征,如果有同分母的,可以把同分母分式先加减,没有同分母的,若分母可组成平方差公式,则可考虑将它们组合起来计算.例4计算:1x-2-2x-1+2x+1-1x+2.解:原式=(1x-2-1x+2)+(2x+1-2x-1)=x+2-x+2(x+2)(x-2)+2x-2-2x-2(x+1)(x-1)=4(x+2)(x-2)-4(x+1)(x-1)=4(x+1)(x-1)-4(x+2)(x-2)(x+2)(x-2)(x+1)(x-1)=4x2-4-4x2+16(x+2)(x-2)(x+1)(x-1)=12(x+2)(x-2)(x+1)(x-1).3.“裂项”求和当分式的分子等于分母中两个因式的差时,可将分式拆成两个式子的差,如利用1n(n+1)=1n-1n+1拆分计算;当分式的分子等于分母中两个因式的和时,可将分式拆成两个式子的和,如利用m+nmn=1m+1n拆分计算.例5【阅读并计算】例:计算:1x(x+1)+1(x+1)(x+2)+1(x+2)(x+3).原式=1x-1x+1+1x+1-1x+2+1x+2-1x+3=1x-1x+3=3x(x+3).仿照上例计算:2x(x+2)+2(x+2)(x+4)+2(x+4)(x+6).解:原式=1x-1x+2+1x+2-1x+4+1x+4-1x+6=1x-1x+6=6x(x+6).培优点利用分式的加减求字母或式子的值例(2023·济宁期末)仿照例子解题:若Mx+1+Nx-1=1-3xx2-1恒成立,求M,N的值.解:∵Mx+1+Nx-1=1-3xx2-1,∴M(x-1)+N(x+1)(x+1)(x-1)=1-3xx2-1,则Mx-M+Nx+N(x+1)(x-1)=1-3xx2-1,即(M+N)x-M+N(x+1)(x-1)=-3x+1x2-1,故⎩⎨⎧M+N=-3,-M+N=1,解得⎩⎨⎧M=-2,N=-1.请你按照上面的方法解题:若M x +2-Nx -2=x -8x 2-4恒成立,求M ,N 的值. 分析:将等号左边的字母当成已知数先进行运算,将等号左边化为与等号右边分母相同的分式,再利用等号左右两边相等建立关于未知字母的方程(组).解:∵M x +2-Nx -2=x -8x 2-4,∴M (x -2)-N (x +2)(x +2)(x -2)=x -8x 2-4,∴(M -N )x -2M -2N x 2-4=x -8x 2-4, ∴⎩⎨⎧M -N =1,-2M -2N =-8,解得⎩⎨⎧M =2.5,N =1.5,即M =2.5,N =1.5.。

八年级数学北师大版初二下册--第五单元5.3《分式的加减法:第二课时--通分》课件


知1-练
1
分式
2 ,a - 1 ,2 3a - 2a2 4a3
的最简公分母是(
C)
A.24a2
B.24a3
C.12a3
D.6a3
知1-练
2
分式
1 , 1 ,1 a+1 a2-2a+1 a-1
的最简公分母是
( B)
A.(a+1)2(a-1)
B.(a-1)2(a+1)
C.(a-1)2(a2-1)
D.(a-1)(a+1)
知1-练
3 下列说法错误的是( D )
A.
1与 a 3x 6x2
的最简公分母是6x2
B. 1 与 1 的最简公分母是m2-n2 m+ n m- n
C.
1 3ab
与1 3bc
的最简公分母是3abc
D.
1
a(x -
与1
y) b(y-
x) 的最简公分母是ab(x-y)(y-x)
知识点 2 通 分
知2-讲
分式
x
1 2-
, 1
xx2 -
1 x
,
x2
+
1 2x +
1
的最简公分母是
__x__(x_+__1_)_2_(x_-__1_)__.
导引:找最简公分母,需要将每一个分式的分母分解因 式,按照找最简公分母的方法求解. ∵x2-1=(x+1)(x-1),x2-x=x(x-1), x2+2x+1=(x+1) 2. ∴此三个分式的最简公分母是x (x+1)2(x-1).
中系数都取正数).
请完成《典中点》 Ⅱ 、 Ⅲ板块 对应习题!
第五章 分式与分式方程
5.3 分式的加减法
第2课时 通分

分式的加减教学反思范文(精选3篇)

分式的加减教学反思范文(精选3篇)分式的加减教学反思范文作为一名人民老师,我们要在课堂教学中快速成长,通过教学反思可以有效提升自己的教学能力,那么写教学反思需要注意哪些问题呢?以下是整理的分式的加减教学反思范文,希望对大家有所帮助。

分式的加减教学反思1经过一节课的教学,我个人认为有可取之处,但也存在不足。

一、优点本节课初步达到了教学目标,突出了重点,层层推进,突破难点。

通过与学生情感交流和互动式复习,放手让学生去猜想分式混合运算的顺序,通过例题讲解,使同学牢记分式混合运算的顺序,并且通过大量的练习来巩固,同时引导学生独立完成分式混合运算的题目,顺应着学生的认知过程,递进式的设置不同层次的练习,在法则的重点环节上,无论是例题的分析还是练习题的落实,都以学生为中心,为重心,给足充分的时间让学生去演算,去暴露问题,也为后一步的教学提供了较好的对比分析的材料,让他们留下深刻的印象。

是以师生之间的情感为基础,通过活跃的课堂气氛,及时的对学生给予肯定和鼓励,使学生对数学产生浓厚的兴趣。

每一个层次的练习完成之后都给予赞扬,在此基础上委婉的提出他们的缺点和不足,把学生的认知提升了一个高的层面上,同时把时间和空间留给学生,让他们多一些练习,多一些巩固。

是体会到一节课的科学设计不仅对一节课的成败取着决定作用,更重要的是对学生数学思想的建立和数学方法的掌握欲为重要,科学的设计,有利于充分的挖掘学生的数学潜能,突破难点,事半而功倍,有利于数学学习的深化。

二、不足之处:讲解的还不够充分,大部分同学能够掌握本节课的`内容,但相对基础较差的同学还是很难理解,应该针对他们出一些难度小的题目给他们做,并给与详细的讲解。

学生与老师比较熟悉,有时课堂气氛过于活跃,使得在管理的过程中浪费了宝贵的时间。

忽略了例题的示范性和板书的清晰、条理性。

课堂准备还可以再充分一些。

分式的加减教学反思2本节是学习了分式的基本性质后的内容,是分式的基本运算内容之一。

八年级数学教案示例:分式的加减法

八年级数学教案示例:分式的加减法教学目标:(1)理解通分的意义,理解最简公分母的意义;(2)掌握分式的通分法则,能熟练掌握通分运算。

教学重点:分式通分的理解和掌握。

教学难点:分式通分中最简公分母的确定。

教学工具:投影仪教学方法:启发式、讨论式教学过程:(一)引入(1)如何计算:由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

(2)如何计算:(3)何计算:引导学生思考,猜想如何求解?(二)新课1、类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.注意:通分保证(1)各分式与原分式相等;(2)各分式分母相等。

2.通分的依据:分式的基本性质.3.通分的关键:确定几个分式的最简公分母.通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.根据分式通分和最简公分母的定义,将分式,,通分:最简公分母为:,然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为。

通分如下:通过本例使学生对于分式的通分大致过程和思路有所了解。

让学生归纳通分的思路过程。

例1 通分:(1),,;分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

解:∵ 最简公分母是12xy2,小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.解:∵最简公分母是10a2b2c2,要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。

在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档