2020年高考数学 母题题源系列 专题12 直线与圆位置关系 理
2020版高考数学(理科)复习课后练习第44讲直线与圆圆与圆的位置关系

第44讲直线与圆圆与圆的位置关系®I暮础矗身]1. :」kv —”是"直线="乂+1)与圆x2+y2-2x=0有公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件 D .既不充分也不必要条件2. [2018 •珠海模拟]直线一x-y+m=O与圆x2+y2-2x-2=0相切,则实数m等于()A.—或-一B.- 一或 3 —C.-3 —或—D.-3 —或3 -3. [2018 •杭州二模]设圆C i: x2+y2=1 与C2: (x-2)2+(y+2)2=1,则圆C i 与C2 的位置关系是()A.相离B.外切C.相交D.内含4. _______________________ 过点P(3,1)的直线l与圆C:(x-2)2+(y-2)2=9相交于A,B两点,当弦AB的长取得最小值时,直线l的倾斜角等于.5. [2018 •北京交大附中模拟]已知圆C:x2+y2-4x=0与直线y=x+b相交于M,N两点且满足CM丄CN(C为圆心),则实数b的值为_________ .®【能力摄升】6. 若直线Ix sinB+y cos B=与圆C:x2+y2=1相切,则直线I的方程为()A.x=1B.x= ±C.y=1D.y= ±7. [2018 •大同模拟]若PQ是圆x2+y2=9的弦,且PQ的中点是(1,2),则直线PQ的方程是( )A.x+2y-5=0B.x+ 2y-3=0C.2x-y+4=0D.2x-y=08. 若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1 =0截得的弦长为4,则a2+b2的最小值为( )A.- B- C.- D.29. [2018 •湖南十四校二联]已知直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O为坐标原点),且△ AOB为等腰直角三角形,则实数a的值为()A.-或-一B.—或-一C. -D.-10. 若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y=2的距离等于1,则半径r的取值范围是()A.(4,6)B.(4,6]C.[4,6)D.[4,6]11. [2018 •广东茂名模拟]从原点O向圆C:x2+y2-12y+27=0作两条切线,则该圆被两切点所分的劣弧与优弧之比为_________ .12. ___________________________________________ [2018 •安徽淮南一模]过动点P作圆(x-3)2+(y-4)2=1的切线PQ,其中Q为切点,若|PQ|=|PO|(O为坐标原点),则|PQ|的最小值是. 13. [2018 •山东邹平模拟]一个圆的圆心C在直线x-y-1 = 0上,圆C与直线4x+3y+14=0相切,且在直线3x+4y+10=0上截得的弦长为6.(1) 求圆C的方程;(2) 过点(7,7)作圆C的切线,求切线的方程.14. 如图K44-1所示,在平面直角坐标系xOy中,已知圆C:x2+y2-4x=0及点A(-1,0),B(1,2).(1)若直线l平行于AB,与圆C相交于M,N两点,且|MN|=|AB|,求直线I的方程.⑵在圆C上是否存在点P使得|PA|2+|PB|2=12?若存在,求出点P的个数若不存在,说明理由.图K44-1@【难点««]15.[2018 •四川绵阳三诊]已知圆C1:x2+y2=r2(r>0),圆C2:(x-a)2+(y-b)2=r2(r>0)交于不同的A(X1,y1),B(X2,y2)两点,给出下列结论:①a (X1-X2)+b(y1-y2)=0;② 2ax1+2by1=a2+b2;③x1+X2=a,y1+y2=b.其中正确结论的个数是( )A.0B.1C.2D.316.[2018 •安徽合肥二模]为保护环境,建设美丽乡村,某镇政府决定为A,B,C三个自然村建造一座垃圾处理站,集中处理A,B,C三个自然村的垃圾,受当地条件限制,垃圾处理站M只能建在与A村相距5 km,且与C村相距—km的地方.已知B村在A村的正东方向,相距3 km ,C村在B村的正北方向,相距3 ~ km ,则垃圾处理站M与B村相距km.。
高考数学专题《直线与圆的位置关系》习题含答案解析

专题9.2 直线与圆的位置关系1.(福建高考真题(理))直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A 【解析】由1k =时,圆心到直线:1l y x =+的距离d =..所以1122OAB S ∆==.所以充分性成立,由图形的对成性当1k =-时,OAB ∆的面积为12.所以不要性不成立.故选A.2.(2018·北京高考真题(理))在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( )A .1B .2C .3D .4【答案】C 【解析】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.3.(2021·全国高二单元测试)已知直线l 与直线1y x =+垂直,且与圆221x y +=相切,切点位于第一象限,则直线l 的方程是( ).A.0x y +=B .10x y ++=C .10x y +-=D.0x y +=【答案】A 【分析】根据垂直关系,设设直线l 的方程为()00x y c c ++=<,利用直线与圆相切得到参数值即可.【详解】由题意,设直线l 的方程为()00x y c c ++=<.练基础圆心()0,0到直线0x y c ++=1,得c =c =,故直线l 的方程为0x y +=.故选:A4.(2020·北京高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .7【答案】A 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选:A.5.【多选题】(2021·吉林白城市·白城一中高二月考)若直线0x y m ++=上存在点P ,过点P 可作圆O :221x y +=的两条切线PA ,PB ,切点为A ,B ,且60APB ∠=︒,则实数m 的取值可以为( )A .3B .C .1D .-【答案】BCD 【分析】先由题意判断点P 在圆224x y +=上,再联立直线方程使判别式0∆≥解得参数范围,即得结果.【详解】点P 在直线0x y m ++=上,60APB ∠=︒,则30APO OPB ∠=∠=︒,由图可知,Rt OPB V 中,22OP OB ==,即点P 在圆224x y +=上,故联立方程224x y x y m ⎧+=⎨++=⎩,得222240x mx m ++-=,有判别式0∆≥,即()2244240m m -⨯-≥,解得m -≤≤A 错误,BCD 正确.故选:BCD.6.(2022·江苏高三专题练习)已知大圆1O 与小圆2O 相交于(2,1)A ,(1,2)B 两点,且两圆都与两坐标轴相切,则12O O =____【答案】【分析】由题意可知大圆1O 与小圆2O 都在第一象限,进而设圆的圆心为(,)(0)a a a >,待定系数得5a =或1a =,再结合两点间的距离求解即可.【详解】由题知,大圆1O 与小圆2O 都在第一象限,设与两坐标轴都相切的圆的圆心为(,)(0)a a a >,其方程为222()()x a y a a -+-=,将点(1,2)或(2,1)代入,解得5a =或1a =,所以221:(5)(5)25O x y -+-=,222:(1)(1)1O x y -+-=,可得1(5,5)O ,2(1,1)O ,所以12||O O ==故答案为:7.(江苏高考真题)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值为__________.【答案】43【解析】∵圆C 的方程为x 2+y 2-8x+15=0,整理得:(x-4)2+y 2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C ′:(x-4)2+y 2=4与直线y=kx-2有公共点即可.设圆心C (4,0)到直线y=kx-2的距离为d,2d 即3k 2≤4k,∴0≤k≤43,故可知参数k 的最大值为43.8.(2018·全国高考真题(文))直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为22(1)4x y ++=,所以圆的圆心为(0,1)-,且半径是2,根据点到直线的距离公式可以求得d ==,结合圆中的特殊三角形,可知AB ==,故答案为.9.(2021·湖南高考真题)过圆2240x y x +-=的圆心且与直线20x y +=垂直的直线方程为___________【答案】220x y --=【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为1-求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由2240x y x +-=可得()2224x y -+=,所以圆心为()2,0,由20x y +=可得2y x =-,所以直线20x y +=的斜率为2-,所以与直线20x y +=垂直的直线的斜率为12,所以所求直线的方程为:()1022y x -=-,即220x y --=,故答案为:220x y --=.10.(2020·浙江省高考真题)设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______;b =______.【解析】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C到直线的距离等于半径,即1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.1.(2020·全国高考真题(理))若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.练提升故选:D.2.【多选题】(2021·全国高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142xy+=,即240x y +-=,圆心M 到直线AB 4=>,所以,点P 到直线AB 42-<,410<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,=,4MP =CD 选项正确.故选:ACD.3.【多选题】(2021·肥城市教学研究中心高三月考)已知圆22:230A x y x +--=,则下列说法正确的是()A .圆A 的半径为4B .圆A 截y 轴所得的弦长为C .圆A 上的点到直线34120x y -+=的最小距离为1D .圆A 与圆22:88230B x y x y +--+=相离【答案】BC 【分析】将圆的一般方程转化为标准方程即可得半径可判断A ;利用几何法求出弦长可判断B ;求出圆心A 到直线的距离再减去半径可判断C ;求出圆B 的圆心和半径,比较圆心距与半径之和的大小可判断D ,进而可得正确选项.【详解】对于A :由22230x y x +--=可得()2214x y -+=,所以A 的半径为2r =,故选项A 不正确;对于B :圆心为()1,0到y 轴的距离为1d =,所以圆A 截y 轴所得的弦长为==B 正确;对于C :圆心()1,0到直线34120x y -+=3,所以圆A 上的点到直线34120x y -+=的最小距离为3321r -=-=,故选项C 正确;对于D :由2288230x y x y +--+=可得()()22449x y -+-=,所以圆心()4,4B ,半径3R =,因为5AB r R ===+,所以两圆相外切,故选项D 不正确;故选:BC.4.(2021·全国高三专题练习)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是_______.【答案】403k ≤≤【分析】求出圆C 的圆心和半径,由题意可得圆心到直线的距离小于或等于两圆的半径之和即可求解.【详解】由228150x y x +-+=可得22(4)1x y -+=,因此圆C 的圆心为(4,0)C ,半径为1,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需点(4,0)C 到直线2y kx =-的距离112d =≤+=,即22(21)1k k -≤+,所以2340k k -≤,解得403k ≤≤,所以k 的取值范围是403k ≤≤,故答案为:403k ≤≤.5.(2021·富川瑶族自治县高级中学高一期中(理))直线()20y kx k =+>被圆224x y +=截得的弦长为________.【答案】60 【分析】由已知求得圆心到直线的距离,再由点到直线的距离公式列式求得k ,然后利用斜率等于倾斜角的正切值求解.【详解】直线()20y kx k =+>被圆224x y +=截得的弦长为所以,圆心()0,0O 到直线20kx y -+=的距离1d ==,1=,解得)0k k =>.设直线的倾斜角为()0180θθ≤<,则tan θ=,则60θ= .因此,直线()20y kx k =+>的倾斜角为60 .故答案为:60 .6.(2021·昆明市·云南师大附中高三月考(文))已知圆O : x 2+y 2=4, 以A (1,为切点作圆O 的切线l 1,点B 是直线l 1上异于点A 的一个动点,过点B 作直线l 1的垂线l 2,若l 2与圆O 交于D , E 两点,则V AED 面积的最大值为_______.【答案】2【分析】由切线性质得2//OA l ,O 到直线2l 的距离等于A 到2l 的距离,因此ADEODE S S =!!,设O 到2l 距离为d ,把面积用d 表示,然后利用导数可得最大值.【详解】根据题意可得图,1OA l ⊥,所以2//OA l ,因此O 到直线2l 的距离等于A 到2l 的距离,ADEODE S S =!!,过点(00)O ,作直线2l 的垂线,垂足为F ,记||(20)OF d d =>>,则弦||DE =角形ADE 的面积为S ,所以12S d =g g ,将S 视为d 的函数,则S '=+ 1(2)2d d -当0d <<时,0S '>,函数()S d 2d <<时,0S '<,函数()S d 单调递减,所以函数()S d 有最大值,当d =max ()2S d =,故AED V 面积的最大值为2.故答案为:2.7.(2021·全国高三专题练习)已知ABC V 的三个顶点的坐标满足如下条件:向量(2,0)OB →=,(2,2)OC →=,,CA α→=)α,则AOB ∠的取值范围是________【答案】5,1212ππ⎡⎤⎢⎥⎣⎦【分析】先求出点A 的轨迹是以(2,2)C . 过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,得到MOB NOB θ∠∠…….所以15BOM ∠=︒,75BON ∠=︒,即得解.【详解】由题得||CA →=所以点A 的轨迹是以(2,2)C .过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,则向量OA →与OB →的夹角θ的范围是MOB NOB θ∠∠…….由图可知45COB ∠=︒.∵||OC →=1||||||2CM CN OC →→→==知30COM CON ∠=∠=︒,∴453015BOM ∠=︒-︒=︒,453075BON ∠=︒+︒=︒.∴1575θ︒︒…….故AOB ∠的取值范围为{}1575θθ︒≤≤︒丨.故答案为:{}π5π15751212θθ⎡⎤︒≤≤︒⎢⎥⎣⎦丨或,8.(2021·全国高三专题练习)已知x 、y R ∈,2223x x y -+=时,求x y +的最大值与最小值.【答案】最小值是1,最大值是1+【分析】根据2223x x y -+=表示圆()2214x y -+=,设x y b +=表示关于原点、x 轴、y 轴均对称的正方形,然后由直线与圆的位置关系求解.【详解】2223x x y -+=的图形是圆()2214x y -+=,既是轴对称图形,又是中心对称图形.设x y b +=,由式子x y +的对称性得知x y b +=的图形是关于原点、x 轴、y 轴均对称的正方形.如图所示:当b 变化时,图形是一个正方形系,每个正方形四个顶点均在坐标轴上,问题转化为正方形系中的正方形与圆有公共点时,求b 的最值问题.当1b <时,正方形与圆没有公共点;当1b =时,正方形与圆相交于点()1,0-,若令直线y x b =-+与圆()2214x y -+=相切,2,解得1b =±所以当1b =+当1b >+故x y +的最小值是1,最大值是1+.9.(2021·黑龙江哈尔滨市·哈尔滨三中)已知ABC V 的内切圆的圆心M 在y 轴正半轴上,半径为1,直线210x y +-=截圆M (1)求圆M 方程;(2)若点C 的坐标为()2,4,求直线AC 和BC 的斜率;(3)若A ,B 两点在x 轴上移动,且AB 4=,求ABC V 面积的最小值.【答案】(1)22(1)1y x +-=;(2)2;(3)163.【分析】(1)设ABC V 的内切圆的圆心()0,M b ,先求得圆心到直线210x y +-=的距离,再根据直线截圆M (2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,易知不成立;当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,然后由圆心到直线的距离等于半径求解; (3)根据AB 4=,设()()(),0,4,040A t B t t +-<<,进而得到直线AC 和直线 BC 的斜率,写出直线AC 和BC 的方程,联立求得点C 的坐标,进而得到坐标系的最小值求解.【详解】(1)设ABC V 的内切圆的圆心()0,,0M b b >,圆心到直线210x y +-=的距离为d又因为直线截圆M21+=,解得1b =,所以圆M 方程()2211x y +-=;(2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,则圆心到直线的距离 0221d r =-=≠=,不成立,当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,即 240kx y k --+=,圆心到直线的距离d ,解得2k =(3)因为AB 4=,设()()(),0,4,040A t B t t +-<<,所以直线AC 的斜率为:2222tan 2111ACt t k MAO t t-=∠==---,同理直线BC 的斜率为: ()()222241411BCt t k t t --+==+-- ,所以直线AC 的方程为:()221ty x t t =---,直线BC 的方程为:()()()224441t y x t t -+=--+- ,由()()()()222124441t y x t t t y x t t ⎧=--⎪-⎪⎨-+⎪=--⎪+-⎩,解得 22224412841t x t t t t y t t +⎧=⎪⎪++⎨+⎪=⎪++⎩,即2222428,4141t t t C t t t t ⎛⎫++ ⎪++++⎝⎭,又 ()2222282222414123t t y t t t t t +==-=-+++++-,当2t =-时,点C 的纵坐标取得最小值83,所以ABC V 面积的最小值.18164233ABC S =⨯⨯=V .10.(2021·新疆乌鲁木齐市·乌市八中高二期末(文))已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方(1)求圆C 的方程;(2)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)存在,()4,0N .【分析】(1)设出圆心坐标(),0C a ,根据直线与圆相切可得圆心到直线的距离等于半径,由此求解出a 的值(注意范围),则圆C 的方程可求;(2)当直线AB 的斜率不存在时,直接根据位置关系分析即可,当直线AB 的斜率存在时,设出直线方程并联立圆的方程,由此可得,A B 坐标的韦达定理形式,根据AN BN k k =-结合韦达定理可求点N 的坐标.【详解】解:(1)设圆心(),0C a ,∵圆心C 在l 的上方,∴4100a +>,即52a >-,∵直线l :43100x y ++=,半径为2的圆C 与l 相切,∴d r =,即41025a +=,解得:0a =或5a =-(舍去),则圆C 方程为224x y +=;(2)当直线AB x ⊥轴,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设AB 的方程为()1y k x =-,(),0N t ,()11,A x y ,()22,B x y ,由224(1)x y y k x ⎧+=⎨=-⎩得,()22221240k x k x k +-+-=,所以212221k x x k +=+,212241k x x k -=+若x 轴平分ANB ∠,则AN BN k k =-,即()()1212110k x k x x tx t--+=--,整理得:()()12122120x x t x x t -+++=,即()()222224212011k k t t k k -+-+=++,解得:4t =,当点()4,0N ,能使得ANM BNM ∠=∠总成立.1.(2021·山东高考真题)“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( )A .充分没必要条件B .必要不充分条件C .充要条件D .既不充分也没必要条件【答案】C 【分析】由直线与圆相切的等价条件,易判断【详解】由于“圆心到直线的距离等于圆的半径”⇒“直线与圆相切”,因此充分性成立;“直线与圆相切”⇒“圆心到直线的距离等于圆的半径”,故必要性成立;可得“圆心到直线的距离等于圆的半径”是“直线与圆相切”的充要条件故选:C2.(2021·北京高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m = A .±1B.C.D .2±【答案】C 【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =则弦长为||MN =则当0k =时,弦长|MN取得最小值为2=,解得m =故选:C.3.(2020·全国高考真题(理))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )练真题A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=【答案】D 【解析】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d >,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAM PM AB S PA AM PA ⋅==⨯⨯⨯=V,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D.4.【多选题】(2021·全国高考真题)已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】ABD 【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心()0,0C 到直线l的距离d =若点(),A a b 在圆C 上,则222a b r +=,所以d =则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以d =则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以d =则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以d =l 与圆C 相切,故D 正确.故选:ABD.5.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解【详解】由于22670x my m +--=是圆,1m ∴=即:圆22670x y x +--=其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】(x -1)2+y 2=4.【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =-1,以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.。
2020届高考数学(理)复习课件:第十二单元单元总结

x0=0,即点M与点P重合时,显然圆上存在点N(±1,0)符合要求;当x0≠0时,过点M作圆的切线,
切点之一为点P,此时对于圆上任意一点N,都有∠OMN≤∠OMP,故要存在∠OMN=45°, 只需∠OMP≥45°.特别地,当∠OMP=45°时,有x0=±1.结合图形可知,符合条件的x0的取 值范围为[-1,1].
答案 解析
B
答案 解析
A
答案 解析
C
答案 解析
真题演练
A
答案 解析
C
答案 解析
A
答案 解析
4
答案 解析
答案 解析
谢 谢观 赏
答案 解析
2.参数的取值范围问题
【例4】(2014年全国Ⅱ卷)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°, 则x0的取值范围是 [-1,1] .
【分析】在坐标系中画出圆O和直线y=1,其中点M(x0,1)在直线y=1上.由圆的切线长相等 及数形结合可求解,这里要注意点M的特殊与一般的分类讨论.
【例3】(2014年江苏卷)在平面直角坐标系xOy中,直线x+2y-3=0被圆(x-2)2+(y+1)2=4
截得的弦长为
.
答案 解析
【拓展训练3】圆M:x2+y2-2x+4y-20=0截直线5x-12y+c=0所得的弦长为8,则c的值
是( B ).
A.10
B.10或-68
C.5或-34 D.-68
【分析】求圆的标准方程需要确定圆的圆心和半径,而半径已知,只要根据条件找出圆 的圆心即可.
专题12直线和圆(新高考地区专用)-2021届高三《新题速递·数学》(适用于高考复习)(解析版)

专题12直线和圆姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)1.(2020·河北省尚义县第一中学高二期中)直线)12y x +=-的倾斜角为( )A .30°B .120°C .60°D .150°2.(2020·福建高二期中)已知直线MN 的斜率为4,其中点()1,1N -,点M 在直线1y x =+上,则点M 的坐标为( )A .(2,3)B .(4,5)C .(2,1)D .(5,7)3.(2020·吕梁市贺昌中学高二期中)已知直线(2)a x -+1ay -=0与直线2x +3y +5=0平行,a 的值为( )A .-6B .6C .45-D .454.(2020·福建高二期中)两直线1:3260l x y --=,2:3280l x y -+=,则直线1l 关于直线2l 对称的直线方程为( )A .32240x y -+=B .32100x y --=C .32200x y --=D .32220x y -+=5.(2020·安徽宣城·高二期中(文))已知圆C 的方程为222610x y x y +-++=,点P 在圆C 上,O 是坐标原点,则||OP 的最小值为( )A .3B 3C .3-D .26.(2020·湖南高二期中)直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是( )A .9B .4C .12D .147.(2020·安徽宿州·高二期中(理))若P 是直线l :3490x y +-=上一动点,过P 作圆C :2240x y x ++=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( )A B .C D .8.(2018·安庆市第七中学高二期中(理))设点(3,4)M 在圆222(0)x y r r +=>外,若圆O 上存在点N ,使得3OMN π∠=,则实数r 的取值范围是( )A .5[,)2+∞ B .[,)2+∞ C .[2 D .5[,5)2二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.(2020·重庆市万州第二高级中学高二月考)下列说法正确的有( )A .若直线y kx b =+经过第一、二、四象限,则()k b ,在第二象限B .直线32y ax a =-+过定点()32,C .过点()21-,斜率为的点斜式方程为)12y x +=-D .斜率为2-,在y 轴截距为3的直线方程为23y x =-±.10.(2020·湖南湘潭一中高二期末)已知直线l :(2)10mx m y m --+-=,圆C :22(1)1x y -+=,则下列结论中正确的是( )A .存在m 的一个值,使直线l 经过圆心CB .无论m 为何值时,直线l 与圆C 一定有两个公共点C .圆心C 到直线l 的最大距离是22D .当1m =时,圆C 关于直线l 对称的圆的方程为22(1)1y x +-=.11.(2020·河北承德第一中学高二月考)圆221:(2cos )(2sin )1C x y θθ-+-=与圆222:1C x y +=,下列说法正确的是( )A .对于任意的θ,圆1C 与圆2C 始终相切B .对于任意的θ,圆1C 与圆2C 始终有四条公切线C .当6πθ=时,圆1C 被直线310l x y --=3D .P ,Q 分别为圆1C 与圆2C 上的动点,则PQ 的最大值为412.(2020·山东高二期中)古希腊著名数学家阿波罗尼斯发现:平面内到两个定点A ,B 的距离之比为定值λ(1λ≠)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,已知()4,2A -,()2,2B ,点P 满足2PAPB =,设点P 的轨迹为圆C ,下列结论正确的是( )A .圆C 的方程是()()224216x y -+-=B .过点A 向圆C 引切线,两条切线的夹角为3π C .过点A 作直线l ,若圆C 上恰有三个点到直线l 距离为2,该直线斜率为155±D .在直线2y =上存在异于A ,B 的两点D ,E ,使得2PD PE= 三、填空题(本大题共4小题,每小题5分,共20分)13.(2020·上海黄浦·格致中学高三期中)如果直线l 将圆:22240x y x y +--=平分,且不经过第四象限,则l 的斜率取值范围是_________.14.(2020·内蒙古包头一中高二期中(文))已知M ,N 是圆22:20A x y x +-=与圆22:240B x y x y ++-=的公共点,则线段MN 的长度为______.15.(2020·淮南第一中学高二期中(理))已知直线1:220l x by ++=与直线2:210l x y -+=平行,则直线1l ,2l 之间的距离为__________.16.(2020·浙江诸暨中学高二期中)已知直线:l 10mx y m -+-=,则此直线必过定点_________;设直线l 与圆22:(1)5C x y +-=交于,A B 两点,则弦AB 的中点M 的轨迹方程为____________四、解答题(本大题共6小题,共70分)17.(2020·上海徐汇·南洋中学高二期中)已知圆C 的圆心在直线2x -y -3=0上,且圆C 过点(1,6),(5,2). (1)求圆C 的标准方程;(2)过点P (3,2)的直线l 与圆C 交于A 、B 两点,当|AB |=6时,求直线l 的方程.18.(2020·重庆市江津中学校高二月考)已知圆C :()2234x y -+=,直线l :()()13130+--+-=m x m y m .(1)求直线l 所过定点A 的坐标及当直线l 被圆C 所截得的弦长最短时m 的值;(2)已知点()3,3M ,在直线MC 上存在定点N (异于点M ),满足对圆C 上任一点P 都有PM PN为常数,试求所有满足条件的点N 坐标及该常数. 19.(2020·福建高二期中)已知一个动点M 在圆2216x y +=上运动,它与定点()8,0Q 所连线段的中点为P .(1)求点P 的轨迹方程;(2)若点P 的轨迹的切线在两坐标轴上有相等的截距,求此切线方程.20.(2020·浙江台州·高二期中)已知直线20x y -+=和圆22:8120C x y x +-+=,过直线上的一点()00,P x y 作两条直线PA ,PB 与圆C 相切于A ,B 两点.(1)当P 点坐标为()2,4时,求以PC 为直径的圆的方程,并求直线AB 的方程;(2)设切线PA 与PB 的斜率分别为1k ,2k ,且127k k ⋅=-时,求点P 的坐标.21.(2020·山东高二期中)已知点A ,B 关于原点O 对称,点A 在直线0x y +=上,2AB =,圆M 过点A ,B 且与直线10x +=相切,设圆心M 的横坐标为a .(1)求圆M 的半径;(2)已知点()0,1P ,当2a <时,作直线l 与圆M 相交于不同的两点M ,N ,已知直线l 不经过点P ,且直线PM ,PN 斜率之和为1-,求证:直线l 恒过定点.22.(2020·四川高二期中(理))已知圆C :22(3)(4)16x y ++-=,直线l :(21)(2)340()m x m y m m R ++---=∈.(1)若圆C 截直线l 所得弦AB 的长为m 的值;(2)若0m >,直线l 与圆C 相离,在直线l 上有一动点P ,过P 作圆C 的两条切线PM ,PN ,切点分别13 45.求m的值,并证明直线MN经过定点.为M,N,且cos MPN的最小值为。
专题06 直线与圆的位置关系-2020年高考数学(文)母题题源解密(全国Ⅰ专版)(原卷版)

专题06 直线与圆的位置关系【母题来源一】【2020年高考全国Ⅰ卷文数】已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为 A .1 B .2C .3D .4【答案】B【解析】圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3,设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,此时||CP ==根据弦长公式得最小值为2==. 故选:B .【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.【命题意图】通过考查直线与圆、圆与圆的位置关系以及圆的几何性质,考查转化思想和运算求解能力. 【命题规律】直线与圆的位置关系常结合其他知识点进行综合考查,求解时重点应用圆的几何性质,一般为选择题、填空题,难度中等,解题时应认真体会数形结合思想,培养充分利用圆的简单几何性质简化运算的能力. 【方法总结】1.判断直线与圆的位置关系时,通常用几何法,其步骤是:(1)明确圆心C 的坐标(a ,b )和半径长r ,将直线方程化为一般式; (2)利用点到直线的距离公式求出圆心到直线的距离d ;(3)比较d 与r 的大小,写出结论.2.判断圆与圆的位置关系时,一般用几何法,其步骤是: (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求1212||r r r r +,-; (3)比较1212,,||d r r r r +-的大小,写出结论. 3.涉及直线被圆截得的弦长问题,一般有两种求解方法:一是利用半径长r 、弦心距d 、弦长l 的一半构成直角三角形,结合勾股定理222()2ld r +=求解;二是若斜率为k 的直线l 与圆C 交于1122,,()()A x y B x y ,两点,则12|||AB x x =-. 4.求两圆公共弦长一般有两种方法:一是联立两圆的方程求出交点坐标,再利用两点间的距离公式求解; 二是求出两圆公共弦所在直线的方程,转化为直线被圆截得的弦长问题. 5.求过圆上的一点00(,)x y 的切线方程:先求切点与圆心连线的斜率k ,若k 不存在,则由图形可写出切线方程为0y y =;若0k =,则由图形可写出切线方程为0x x =;若k 存在且k ≠0,则由垂直关系知切线的斜率为1k-,由点斜式方程可求切线方程. 6.求过圆外一点00(,)x y 的圆的切线方程: (1)几何方法当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即000kx y y kx -+-=.由圆心到直线的距离等于半径长,即可得出切线方程. (2)代数方法当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即00y kx kx y =-+,代入圆的方程,得到一个关于x 的一元二次方程,由0∆=,求得k ,切线方程即可求出.7.在求过一定点的圆的切线方程时,应首先判断定点与圆的位置关系,若点在圆上,则该点为切点,切线只有一条;若点在圆外,切线有两条;若点在圆内,则切线不存在. 8.解决直线与圆、圆与圆位置关系问题的方法(1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.(2)圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题. 9.(1)圆的三个性质①圆心在过切点且垂直于切线的直线上; ②圆心在任一弦的中垂线上;③两圆相切时,切点与两圆心三点共线. (2)圆的对称性①圆的轴对称性:圆关于直径所在的直线对称. ②圆关于点对称:求已知圆关于某点对称的圆,只需确定所求圆的圆心位置; 两圆关于点对称,则此点为两圆圆心连线的中点. ③圆关于直线对称:求已知圆关于某条直线对称的圆,只需确定所求圆的圆心位置;两圆关于直线对称,则此直线为两圆圆心连线的垂直平分线. (3)两个圆系方程具有某些共同性质的圆的集合称为圆系,它们的方程叫圆系方程.①同心圆系方程:2220()()()x a y b r r =->+-,其中a ,b 为定值,r 是参数; ②半径相等的圆系方程:2220()()()x a y b r r -->+=,其中r 为定值,a ,b 为参数.1.【2020届福建省莆田第二十五中学高三上学期期末数学试题】直线3y kx =+被圆()()22234x y -+-=截得的弦长为A B .C .3D .3±2.【河南省洛阳市2020届高三第三次统一考试数学试题】已知圆C :()()22+42x a y a -=≥与直线20x y -+=相切,则圆C 与直线40x y --=相交所得弦长为A .1 BC .2D .3.【山东省2020届高三新高考模拟猜想卷(三)数学试题】设曲线x =20x y --=的距离的最大值为a ,最小值为b ,则a b -的值为A .2BC .12+ D .24.【浙江省衢州二中2020届高三(下)适应性数学试卷题】已知直线x y t +=与圆()2222x y t t t R +=-∈有公共点,则()4t t -的最大值为 A .4B .289 C .329D .3275.【吉林省吉化第一高级中学校2020届高三下学期适应性测试数学试题】过点(2,1)P 作直线l 与圆22:240C x y x y a +--+=交于A ,B 两点,若P 为A ,B 中点,则直线l 的方程为A .3y x =-+B .23y x =-C .23y x =-+D .1y x =-6.【湖南省长沙市长郡中学2020届高三下学期高考模拟卷(二)数学试题】直线2sin 0x y θ⋅+=被圆2220x y +-+=截得最大弦长为A .B .C .3D .7.【黑龙江省大庆市铁人中学2020届高三考前模拟训练(二)数学试题】过原点O 作圆22:4450C x y x y ++++=的两条切线,设切点分别为,A B ,则直线AB 的方程为A .2250x y +-=B .4450x y +-=C .2250x y ++=D .4450x y ++=8.【2020届江西省南城县第一中学高三上学期期末考试数学试题】已知圆C 的方程为2220x x y -+=,直线:220l kx y k -+-=与圆C 交于A ,B 两点,则当ABC ∆面积最大时,直线l 的斜率k = A .1 B .6 C .1或7D .2或69.【安徽省淮北市第一中学2020届高三下学期最后一卷数学试题】在平面直角坐标系xOy 中,圆22:3,(2,)O x y T m +=,若圆O 上存在以M 为中点的弦AB ,且2AB MT =,则实数m 的取值范围是A .[B .C .[D .(10.【2020届山西省运城市高中联合体高三模拟(二)数学试题】过直线20x y ++=上一点P ,作圆()()223116x y -++=的两条切线,切点分别为()11,A x y ,()22,B x y ,若()()222112122y y x x x x -=-+-,则PA =A .8B .C .D .1011.【2020届吉林省延边州高三下学期4月教学质量检测数学试题】已知圆()()22:122C x y -++=,若直线4y kx =-上总存在点P ,使得过点P 的圆C 的两条切线互相垂直,则实数k 的取值范围是A .43k ≤-或0k ≥ B .34k ≤- C .34k ≤-或1kD .1k12.【贵州省贵阳市第一中学2020届高三高考适应性月考卷(八)数学试题】在平面直角坐标系xOy 中,已知A ,B 两点在圆221x y +=上,若直线0x y +-=存在点C ,使ABC 是边长为1的等边三角形,则点C 的横坐标是A B .2C D 13.【山东省烟台市2020届高三适应性练习数学试题(一)】已知O 为坐标原点,点P 在单位圆上,过点P 作圆C :22(4)(3)4x y -+-=的切线,切点为Q ,则||PQ 的最小值为( )A B .C .2D .414.【2020年山东省聊城市高考模拟考试(三模)数学试题】已知线段AB 是圆22:4C x y +=的一条动弦,且AB =P 为直线40x y +-=上的任意一点,则PA PB +的最小值为( )A .1B .1C .2D .215.【2020年普通高等学校招生伯乐马押题考试(二)数学试题】已知圆C :221x y +=,点M 为直线260x y --=上一动点,过点M 向圆C 作切线MA ,MB ,A ,B 为切点,则直线AB 经过定点A .11,36⎛⎫-⎪⎝⎭B .11,36⎛⎫- ⎪⎝⎭C .11,63⎛⎫- ⎪⎝⎭ D .11,63⎛⎫-⎪⎝⎭。
(江苏专版)201X年高考数学 母题题源系列 专题12 直线与圆位置关系 理

专题12 直线与圆位置关系【母题原题1】【2018江苏,理12】在平面直角坐标系中,A 为直线上在第一象限内的点,,以AB 为直径的圆C 与直线l 交于另一点D .若,则点A 的横坐标为________.【答案】3点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.【母题原题2】【2017江苏,理13】在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,PA PB ⋅≤则点P 的横坐标的取值范围是 ▲ . 【答案】[52,1]-【考点】直线与圆,线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.【母题原题3】【2016江苏,理18】如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC=OA ,求直线l 的方程;(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=,求实数t 的取值范围.【答案】(1)22(6)(1)1x y -+-=(2):25215l y x y x =+=-或(3)22212221t -≤+【解析】(3)设()()1122,,,.P x y Q x y【考点】直线方程、圆的方程、直线与直线、直线与圆、圆与圆的位置关系、平面向量的运算【名师点睛】直线与圆中的三个定理:切线的性质定理,切线长定理,垂径定理;两个公式:点到直线距离公式及弦长公式,其核心都是转化到与圆心、半径的关系上,这是解决直线与圆的根本思路.对于多元问题,也可先确定主元,如本题以P为主元,揭示P在两个圆上运动,从而转化为两个圆有交点这一位置关系,这也是解决直线与圆问题的一个思路,即将问题转化为直线与圆、圆与圆的位置关系问题.【命题意图】直线与圆是高中数学的C级知识点,是高中数学中数形结合思想的典型体现.【命题规律】近年来,高考对直线与圆的命题,既充分体现自身知识结构体系的命题形式多样化,又保持与函数或不等式或轨迹相结合的命题思路,呈现出“综合应用,融会贯通”的特色,充分彰显直线与圆的交汇价值.【答题模板】解答本类题目,以2016年试题为例,一般考虑如下三步:第一步:利用待定系数法求圆标准方程第二步:根据圆中垂径定理揭示等量关系第三步:利用圆与圆位置关系、坐标表示逐层揭示刻画多元关系【方法总结】1.以动点轨迹为圆考查直线与圆、圆与圆位置关系,突出考查方程思想和解析法2.以圆中直角三角形建立函数关系式或方程或不等式, 注重考查圆相关几何性质.3.利用数形结合揭示与刻画直线与圆、圆与圆位置关系,重点考查直线与圆的综合应用以及数形结合的数学思想.1.【江苏省南京师大附中2018届高三高考考前模拟考试数学试题】已知直线x-y+b=0与圆交于不同的两点A,B.若O是坐标原点,且,则实数b的取值范围是______.【答案】点睛:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生的计算能力,能正确的转化向量的不等式是解题关键,属于中档题.2.【江苏省苏州市第五中学校2018届高三上学期期初考试数学(文)试题】已知,若直线上总存在点,使得过点的的两条切线互相垂直,则实数的取值范围是_____.【答案】【解析】【分析】设两个切点分别为A、B,则由题意可得四边形PAOB为正方形,根据圆心O到直线的距离,进行求解即可得的范围.【详解】圆心为,半径,设两个切点分别为A、B,则由题意可得四边形PAOB为正方形,故有,圆心O到直线的距离,即,即,解得或.故答案为:.【点睛】本题主要考查直线和圆相交的性质,点到直线的距离公式的应用,体现了转化的数学思想,属于中档题. 3.【江苏省南京市2018届高三第三次模拟考试数学试题】在平面直角坐标系中,圆与轴的两个交点分别为,其中在的右侧,以为直径的圆记为圆,过点作直线与圆,圆分别交于两点.若为线段的中点,则直线的方程为_________.【答案】点睛:(1)本题主要考查直线的方程,直线与圆的位置关系,要在考查学生对这些基础知识的掌握能力、基本的运算能力和分析推理能力. (2)涉及直线与曲线的问题,经常要联立直线与曲线的方程得到韦达定理,这是一个常规的方法技巧,大家要理解掌握并灵活运用.4.【江苏省苏锡常镇四市2017-2018学年度高三教学情况调研(二)数学试题】在平面直角坐标系中,已知圆,点,若圆上存在点,满足,则点的纵坐标的取值范围是____.【答案】.点睛:本题主要考查圆的基础知识,考查函数的思想,意在考查学生圆的基础知识的掌握能力和基本运算能力.5.【江苏省苏锡常镇四市2017-2018学年度高三教学情况调研(二)数学试题】如图,扇形的圆心角为90°,半径为1,点是圆弧上的动点,作点关于弦的对称点,则的取值范围为____.【答案】.【解析】分析:先建立直角坐标系,再设出点P,Q的坐标,利用已知条件求出P, Q的坐标,再求出的函数表达式,求其最值,即得其取值范围.详解:以点O为坐标原点,以OA所在直线作x轴,以OB所在直线作y轴,建立直角坐标系.则A(1,0),B(0,1),直线AB的方程为x+y-1=0,设P,,点睛:(1)本题的难点有三,其一是要联想到建立直角坐标系;其二是要能利用已知求出点P,Q的坐标,其三是能够利用三角函数的知识求出函数的值域. (2)本题主要考查利用坐标法解答数学问题,考查直线、圆的方程和三角恒等变换,考查三角函数的图像和性质,意在考查学生基础知识的掌握能力及推理分析转化能力,考查学生的基本运算能力.6.【江苏省姜堰、溧阳、前黄中学2018届高三4月联考数学试题】已知点()()3,0,1,2A B ---,若圆()()22220x y r r -+=>上恰有两点,M N ,使得MAB ∆和NAB ∆的面积均为4,则r 的取值范围是____. 【答案】292,22⎛⎫⎪ ⎪⎝⎭【解析】由题意可得|AB|=()()221320-++--=22,根据△MAB 和△NAB 的面积均为4, 可得两点M ,N 到直线AB 的距离为22; 由于AB 的方程为020y ---=313x +-+,即x+y+3=0;若圆上只有一个点到直线AB 的距离为22, 则有圆心(2,0)到直线AB 的距离为2032++=r+22,解得r=22;7.【江苏省无锡市2018届高三第一学期期末检测数学试卷】过圆内一点作两条相互垂直的弦和,且,则四边形的面积为__________.【答案】19.【解析】根据题意画出上图,连接,过作,,为的中点,为的中点,又,,∴四边形为正方形,由圆的方程得到圆心,半径,【点睛】本题的关键点有以下:1.利用数形结合法作辅助线构造正方形;2.利用勾股定理求解.8.【江苏省淮安市等四市2018届高三上学期第一次模拟数学试题】在平面直角坐标系中,若圆上存在点,且点关于直线的对称点在圆上,则的取值范围是____.【答案】【解析】关于直线的对称圆,由题意,圆与圆有交点,所以,所以的范围是。
2020衡水名师理科数学专题卷:专题12《直线与圆的方程》 Word版含答案
2020衡水名师原创理科数学专题卷专题十二 直线与圆的方程考点38:直线方程与两直线的的位置关系(1-5题,13题)考点39:圆的方程及点,线,圆的位置关系(6-12题,14-16题,17-22题)考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1、考点38 易直线30x y -+=的倾斜角为( ) A.π4 B.3π4 C.π3 D.π62、考点38 易直线过点()3,2--且在两坐标轴上的截距相等,则这条直线方程为( ) A. 230x y -= B. 50x y ++=C. 230x y -=或50x y ++=D. 5x y ++或50x y -+= 3、考点38 易若直线1:240l ax y +-=与2:(1)20l x a y +++=平行,则实数a 的值为( ) A.2a =-或1a = B.1a = C.2a =-D.23a =-4、考点38 中难若点(4,)a 到直线431x y -=的距离不大于3,则a 的取值范围是( ) A. (,0][10,)-∞+ B. [0,10] C. 131[,]33D. [0,)+∞ 5、考点38 中难如图所示,已知两点()4,0A ,()0,4B ,从点()2,0P 射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A. B.6 C. D.6、考点39 易若(2,1)P -为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x B. 032=-+y x C. 01=-+y x D. 052=--y x7、考点39 易从[6,9]-中任取一个m ,则直线340x y m ++=被圆222x y +=截得的弦长大于2的概率为( ) A .23B .25C .13D .158、考点39 易已知圆221:2880C x y x y +++-=与圆222:4420C x y x y +---=相交,则圆1C 与圆2C 的公共弦长为( )B. C. D.9、考点39 中难直线20x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是( )A .[]2,6B .[]4,8C .D .⎡⎣10、考点39 中难曲线1|2)y x =≤与直线(2)4y k x =-+有两个交点时,实数k 的取值范围是( )A .53(,]124 B .5(,)12+∞ C .13(,)34 D .5(0,)1211、考点39 中难若直线y x b =+与曲线3y =,则b 的取值范围是( )A.1,1⎡-+⎣B.1⎡-+⎣C.1⎡⎤-⎣⎦D.1⎡⎤⎣⎦12、考点39 难已知圆22:1C x y +=,点P 为直线240x y +-=上一动点,过点P 向圆C 引两条切线,,,PA PB A B 为切点,则直线AB 经过定点( )A . 11(,)24 B . 11(,)42 C . D . 第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分。
2020年高考数学二轮复习小题押题(12+4)专题精讲特训12-直线与圆(求准度,提速度)
2020年高考数学二轮复习小题押题(12+4)专题精讲特训12(求准度,提速度)小题押题16—(12)⎪⎪直线与圆考查点一 直线方程及应用1.(2013·全国卷Ⅱ)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫1-22,12 C.⎝⎛⎦⎤1-22,13 D.⎣⎡⎭⎫13,12解析:选B 由题意知直线AB 的方程为x +y =1,联立⎩⎪⎨⎪⎧x +y =1,y =ax +b 消去x ,得y =a +ba +1,当a >0时,直线y=ax +b 与x 轴交于点⎝⎛⎭⎫-b a ,0,结合图形知12×a +b a +1×⎝⎛⎭⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b .∵a >0,∴b 21-2b>0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故选B. 考查点二 圆的方程2.(2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A .-43B .-34C. 3D .2解析:选A 圆x 2+y 2-2x -8y +13=0的标准方程为(x -1)2+(y -4)2=4,由圆心到直线ax +y -1=0的距离为1可知|a +4-1|a 2+12=1,解得a =-43.3.(2015·全国卷Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213C.253D.43解析:选B 在坐标系中画出△ABC (如图),利用两点间的距离公式可得|AB |=|AC |=|BC |=2(也可以借助图形直接观察得出),所以△ABC 为等边三角形.设BC 的中点为D ,点E 为外心,同时也是重心.所以|AE |=23|AD |=233,从而|OE |=|OA |2+|AE |2=1+43=213. 4.(2015·全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析:由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,(4-m )2=r 2,解得⎩⎨⎧m =32,r 2=254.所以圆的标准方程为⎝⎛⎭⎫x -322+y 2=254. 答案:⎝⎛⎭⎫x -322+y 2=254考查点三 直线与圆的位置关系5.(2015·全国卷Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( ) A .2 6 B .8 C .4 6D .10解析:选C 设圆的方程为x 2+y 2+Dx +Ey +F =0, 则⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0.解得⎩⎪⎨⎪⎧D =-2,E =4,F =-20.∴圆的方程为x 2+y 2-2x +4y -20=0. 令x =0,得y 2+4y -20=0, 设M (0,y 1),N (0,y 2), 则y 1+y 2=-4,y 1y 2=-20, 所以|MN |=|y 1-y 2| =(y 1+y 2)2-4y 1y 2=4 6.6.(2016·全国卷Ⅰ)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.解析:圆C :x 2+y 2-2ay -2=0化为标准方程为x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2,因为|AB |=23,点C 到直线y =x +2a ,即x -y +2a =0的距离d =|0-a +2a |2=|a |2,由勾股定理得⎝⎛⎭⎫2322+⎝⎛⎭⎫|a |22=a 2+2,解得a 2=2,所以r =2,所以圆C 的面积S =π×22=4π. 答案:4π7.(2014·全国卷Ⅱ)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.解析:由题意可知M 在直线y =1上运动,设直线y =1与圆x 2+y 2=1相切于点P (0,1).当x 0=0即点M 与点P 重合时,显然圆上存在点N (±1,0)符合要求;当x 0≠0时,过M 作圆的切线,切点之一为点P ,此时对于圆上任意一点N ,都有∠OMN ≤∠OMP ,故要存在∠OMN =45°,只需∠OMP ≥45°.特别地,当∠OMP =45°时,有x 0=±1.结合图形可知,符合条件的x 0的取值范围为[-1,1].答案:[-1,1]速解——圆的方程圆的3种方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).(3)圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(圆的直径的两端点是A (x 1,y 1),B (x 2,y 2)).[题组突破]1.(2017·长沙模拟)与圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4解析:选D 法一:圆与圆关于直线对称,则圆的半径相同,只需圆心关于直线对称即可.由题意知已知圆的圆心坐标为(2,0),半径为2,设所求圆的圆心坐标为(a ,b ),则⎩⎪⎨⎪⎧b -0a -2×33=-1,b +02=33×a +22,解得⎩⎨⎧a =1,b =3,所以所求圆的圆心坐标为(1,3),半径为2. 从而所求圆的方程为(x -1)2+(y -3)2=4.法二:由于两圆关于直线对称,因此两圆心的连线必与该直线垂直,则两圆心连线的斜率为-3,备选项中只有选项D 中的圆心与已知圆的圆心连线的斜率为-3,故选D.2.圆心在直线x +2y =0上的圆C 与y 轴的负半轴相切,圆C 截x 轴所得的弦长为26,则圆C 的标准方程为( )A .(x -22)2+(y +2)2=8B .(x -2)2+(y +22)2=8C .(x -2)2+(y +2)2=8D .(x -2)2+(y +2)2=8解析:选A 法一:由题意,可设圆C 的半径为r ,则圆心为⎝⎛⎭⎫r ,-r 2(r >0),由勾股定理,得(6)2+⎝⎛⎭⎫r22=r 2, 解得r =22,∴圆心为(22,-2), ∴圆C 的标准方程为(x -22)2+(y +2)2=8.法二:四个圆的圆心分别为(22,-2),(2,-22),(2,-2),(2,-2),将它们逐一代入x +2y =0,只有A 选项满足,故选A.3.(2017·广州模拟)若一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,则该圆的标准方程是________.解析:抛物线x 2=4y 的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3相切,所以r =|-1+3|2=2,故该圆的标准方程是x 2+(y -1)2=2. 答案:x 2+(y -1)2=2 [解题方略]稳解——直线与圆的位置关系考法(一) 直线与圆的位置关系1.判定直线与圆位置关系的2种方法 (1)代数法.将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来讨论位置关系:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.(2)几何法.把圆心到直线的距离d 和半径r 的大小加以比较:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.A .0 B. 3 C.33或0 D.3或0[解析] 因为直线l 与圆C 相切,所以圆心C (0,1)到直线l 的距离d =|-1+3k |1+k 2=1,解得k =0或k = 3.[答案] D(2)(2017·广州一模)已知直线y =x +m 和圆x 2+y 2=1交于A ,B 两点,O 为坐标原点,若AB ―→·AB ―→=32,则实数m 的值为( )A .±1B .±32C .±22D .±12[解析] 设A (x 1,y 1),B (x 2,y 2),则AB ―→=(-x 1,-y 1),AB ―→=(x 2-x 1,y 2-y 1),由⎩⎪⎨⎪⎧y =x +m ,x 2+y 2=1得2x 2+2mx +m 2-1=0, 故Δ=4m 2-8(m 2-1)=8-4m 2>0,即-2<m <2, 由根与系数的关系得x 1+x 2=-m ,x 1x 2=m 2-12,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2. 又AB ―→·AB ―→=-x 1x 2-y 1y 2+x 21+y 21=32, 故x 1x 2+y 1y 2=-12,故2x 1x 2+m (x 1+x 2)+m 2=-12,即m 2-1-m 2+m 2=-12,解得m =±22.[答案] C [解题方略]1.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210解析:选C 由题意得,圆C 的标准方程为(x -2)2+(y -1)2=4,所以圆C 的圆心为(2,1),半径为2. 因为直线l 为圆C 的对称轴, 所以圆心在直线l 上, 则2+a -1=0,解得a =-1,所以|AB |2=|AC |2-|BC |2=(-4-2)2+(-1-1)2-4=36,所以|AB |=6.2.已知过点A (0,1)且斜率为k 的直线l 与圆C :x 2+y 2-4x -6y +12=0交于M ,N 两点.若OM ―→·ON ―→=12,其中O 为坐标原点,则|MN |=( )A .2B .4 C. 3D .2 3解析:选A 设M (x 1,y 1),N (x 2,y 2),圆C 的方程可化为(x -2)2+(y -3)2=1,其圆心为(2,3),将y =kx +1代入方程x 2+y 2-4x -6y +12=0,整理得(1+k 2)x 2-4(k +1)x +7=0,所以x 1+x 2=4(k +1)1+k 2,x 1x 2=71+k2.OM ―→·ON ―→=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8,由题设可得4k (1+k )1+k 2+8=12,得k =1,所以直线l 的方程为y =x +1.故圆心(2,3)恰在直线l 上,所以|MN |=2.考法(二) 与圆有关的最值、范围问题(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.[典例] (1)(2017·天津模拟)设M 是圆(x -5)2+(y -3)2=9上的点,直线l :3x +4y -2=0,则点M 到直线l 距离的最大值为( )A .8B .6C .5D .2[解析] 圆心(5,3)到直线l 的距离为d =|3×5+4×3-2|32+42=5,所以点M 到直线l 的距离的最大值为d +r =5+3=8.[答案] A(2)(2017·兰州模拟)已知圆C :(x -3)2+(y -1)2=1和两点A (-t,0),B (t,0)(t >0),若圆C 上存在点P ,使得∠APB =90°,则t 的取值范围是( )A .(0,2]B .[1,2]C .[2,3]D .[1,3][解析] 依题意,设点P (3+cos θ,1+sin θ), ∵∠APB =90°,∴AP ―→·BP ―→=0,∴(3+cos θ+t )(3+cos θ-t )+(1+sin θ)2=0, 得t 2=5+23cos θ+2sin θ=5+4sin ⎝⎛⎭⎫θ+π3, ∵sin ⎝⎛⎭⎫θ+π3∈[-1,1],∴t 2∈[1,9], ∵t >0,∴t ∈[1,3]. [答案] D [解题方略]1.(2018届高三·惠州调研)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且直线l 与圆x 2+y 2=4相交所得的弦长为2,O 为坐标原点,则△AOB 面积的最小值为( )A .5B .4C .3D .2解析:选C 由直线与圆相交所得的弦长为2,得圆心到直线的距离d =1m 2+n 2=3,所以m 2+n 2=13≥2|mn |,当且仅当m =n 时等号成立.所以|mn |≤16,又A ⎝⎛⎭⎫1m ,0,B ⎝⎛⎭⎫0,1n ,所以△AOB 的面积S =12|mn |≥3,故△AOB 面积的最小值为3.2.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得∠APB =60°,则实数a 的取值范围为( )A.⎣⎡⎦⎤2-22,2+22 B.⎝⎛⎭⎫2-22,2+22 C .[2-2,2+2]D.()2-2,2+2解析:选A 圆O 的半径为1,圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得∠APB =60°,则∠APO =30°.在Rt △PAO 中,|PO |=2,又圆M 的半径为1,圆心坐标为M (a ,a -4), ∴|MO |-1≤|PO |≤|MO |+1, ∵|MO |=a 2+(a -4)2, ∴a 2+(a -4)2-1≤2≤ a 2+(a -4)2+1,解得2-22≤a ≤2+22. ∴实数a 的取值范围为⎣⎡⎦⎤2-22,2+22.1.已知直线l 1:x +2ay -1=0,l 2:(a +1)x -ay =0,若l 1∥l 2,则实数a 的值为( ) A .-32B .0C .-32或0D .2解析:选C 若a ≠0,则由l 1∥l 2,得a +11=-a 2a ,所以2a +2=-1,即a =-32;若a =0,则l 1∥l 2.所以a 的值为-32或0.2.在平面直角坐标系xOy 中,若圆x 2+(y -1)2=4上存在A ,B 两点关于点P (1,2)成中心对称,则直线AB 的方程为( )A .x -y -3=0B .x +y -3=0C .x +y -1=0D .x -y +1=0解析:选B 由题意得圆心(0,1)与点P (1,2)的连线垂直于直线AB ,所以k AB ·2-11-0=-1,解得k AB =-1.而直线AB 过点P ,所以直线AB 的方程为y -2=-(x -1),即x +y -3=0.3.(2017·沈阳一模)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则直线l 的方程为( ) A .x +y -2=0 B .x -y +2=0 C .x +y -3=0D .x -y +3=0解析:选D 圆x 2+(y -3)2=4的圆心为(0,3),又直线l 与直线x +y +1=0垂直,则其斜率为1,故直线l 的方程为x -y +3=0.4.(2017·菏泽一模)已知圆(x -1)2+y 2=1被直线x -3y =0分成两段圆弧,则较短弧长与较长弧长之比为( ) A .1∶2B .1∶3C .1∶4D .1∶5解析:选A 圆(x -1)2+y 2=1的圆心为(1,0),半径为1.圆心到直线的距离d =112+(-3)2=12,所以较短弧所对的圆心角为2π3,较长弧所对的圆心角为4π3,故两弧长之比为1∶2.5.(2017·惠州三调)已知圆O :x 2+y 2=4上到直线l :x +y =a 的距离等于1的点至少有2个,则a 的取值范围为( )A .(-32,32)B .(-∞,-32)∪(32,+∞)C .(-22,22)D .(-∞,-22)∪(22,+∞)解析:选A 由圆的方程可知圆心为(0,0),半径为2.因为圆上到直线l :x +y =a 的距离等于1的点至少有2个,所以圆心到直线l 的距离d <r +1=3,即d =|-a |2<3,解得-32<a <3 2.6.(2018届高三·湖北八校联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值为( )A.52 B .4 C.92D .9解析:选C 圆x 2+y 2-2x -4y =0化成标准方程为(x -1)2+(y -2)2=5,因为直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,故直线ax +by -6=0(a >0,b >0)经过圆心(1,2),即a +2b =6.又6=a +2b ≥22ab ,即ab ≤92,当且仅当a =2b =3时取等号,故ab 的最大值为92.7.(2017·西安模拟)圆:x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( ) A .1+ 2 B .2 C .1+22D .2+2 2解析:选A 将圆的方程化为(x -1)2+(y -1)2=1,即圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2距离的最大值为d +1=2+1.8.在平面直角坐标系xOy 中,已知A (-1,0),B (0,1),则满足|PA |2-|PB |2=4且在圆x 2+y 2=4上的点P 的个数为( )A .0B .1C .2D .3解析:选C 设P (x ,y ),则由|PA |2-|PB |2=4,得(x +1)2+y 2-x 2-(y -1)2=4,所以x +y -2=0.求满足条件的点P 的个数即为求直线与圆的交点个数,圆心到直线的距离d =|0+0-2|2=2<2=r ,所以直线与圆相交,交点个数为2.故满足条件的点P 有2个.9.(2016·河南焦作一模)著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(x -a )2+(y -b )2可以转化为平面上点M (x ,y )与点N (a ,b )的距离.结合上述观点,可得f (x )=x 2+4x +20+x 2+2x +10的最小值为( )A .2 5B .5 2C .4D .8解析:选B ∵f (x )=x 2+4x +20+x 2+2x +10=(x +2)2+(0-4)2+(x +1)2+(0-3)2,∴f (x )的几何意义为点M (x,0)到两定点A (-2,4)与B (-1,3)的距离之和,设点A (-2,4)关于x 轴的对称点为A ′,则A ′为(-2,-4).要求f (x )的最小值,可转化为|MA |+|MB |的最小值,利用对称思想可知|MA |+|MB |≥|A ′B |=(-1+2)2+(3+4)2=52,即f (x )=x 2+4x +20+x 2+2x +10的最小值为5 2.10.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点,O 为坐标原点,若圆上一点C 满足OC ―→=54OA ―→+34OB ―→,则r =( )A .210 B.10 C .2 5D.5解析:选B 已知OC ―→=54OA ―→+34OB ―→,两边平方化简得OA ―→·OB ―→=-35r 2,所以cos ∠AOB =-35,所以cos ∠AOB 2=55,又圆心O (0,0)到直线的距离为|2|2=2, 所以2r =55,解得r =10. 11.已知圆O :x 2+y 2=4,若不过原点O 的直线l 与圆O 交于P ,Q 两点,且满足直线OP ,PQ ,OQ 的斜率依次成等比数列,则直线l 的斜率为( )A .-1或1B .0或-43C .1D .-1解析:选A 设直线l :y =kx +b (b ≠0),代入圆的方程,化简得(1+k 2)x 2+2kbx +b 2-4=0, 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-2kb1+k 2,x 1x 2=b 2-41+k 2,k OP ·k OQ =y 1x 1·y 2x 2=⎝⎛⎭⎫k +b x 1⎝⎛⎭⎫k +b x 2 =k 2+kb ⎝⎛⎭⎫x 1+x 2x 1x 2+b2x 1x 2=k 2+kb ⎝⎛⎭⎫-2kb b 2-4+b 2(1+k 2)b 2-4=b 2-4k 2b 2-4, 由k OP ·k OQ =k 2,得b 2-4k 2b 2-4=k 2,解得k =±1.12.已知AC ,BD 为圆O :x 2+y 2=4的两条互相垂直的弦,且垂足为M (1,2),则四边形ABCD 面积的最大值为( )A .5B .10C .15D .20解析:选A 如图,作OP ⊥AC 于P ,OQ ⊥BD 于Q ,则|OP |2+|OQ |2=|OM |2=3,∴|AC |2+|BD |2=4(4-|OP |2)+4(4-|OQ |2)=20.又|AC |2+|BD |2≥2|AC |·|BD |,则|AC |·|BD |≤10,∴S 四边形ABCD =12|AC |·|BD |≤12×10=5, 当且仅当|AC |=|BD |=10时等号成立,∴四边形ABCD 面积的最大值为5.故选A.13.已知点A (4,-3)与B (2,-1)关于直线l 对称,在l 上有一点P ,使点P 到直线4x +3y -2=0的距离等于2,则点P 的坐标是________.解析:由题意知线段AB 的中点C (3,-2),k AB =-1,故直线l 的方程为y +2=x -3,即x -y -5=0.设P (x ,x -5),则2=|4x +3x -17|42+32, 解得x =1或x =277. 即点P 的坐标是(1,-4)或⎝⎛⎭⎫277,-87. 答案:(1,-4)或⎝⎛⎭⎫277,-87 14.(2017·南京学情调研)在平面直角坐标系xOy 中,若直线ax +y -2=0与圆C :(x -1)2+(y -a )2=16相交于A ,B 两点,且△ABC 为直角三角形,则实数a 的值是________.解析:由题意得圆的半径为4,因为△ABC 是直角三角形,所以圆心C 到直线AB 的距离为22,即|a +a -2|a 2+1=22,解得a =-1.答案:-115.在平面直角坐标系xOy 中,已知过原点O 的动直线l 与圆C :x 2+y 2-6x +5=0相交于不同的两点A ,B ,若点A 恰为线段OB 的中点,则圆心C 到直线l 的距离为________.解析:圆C 的标准方程为(x -3)2+y 2=4,圆心C (3,0),半径r =2,设过原点O 的动直线l 的方程为y =kx ,由题意,设A (a ,ka ),B (2a ,2ka ),将A 点坐标代入圆C 的方程得(1+k 2)a 2-6a +5=0.①记AB 中点为D ,则D ⎝⎛⎭⎫32a ,32ka , 所以CD ⊥AB ,所以32ka32a -3=-1k .②联立①②,解得⎩⎨⎧ a =54,k =±155, 可得点D 坐标为⎝⎛⎭⎫158,±3158, 所以圆心C 到直线l 的距离为|CD |= ⎝⎛⎭⎫158-32+⎝⎛⎭⎫31582=364. 答案:36416.(2017·云南模拟)已知动圆C 过A (4,0),B (0,-2)两点,圆心C 关于直线x +y =0的对称点为M ,过点M 的直线交圆C 于E ,F 两点,当圆C 的面积最小时,|EF |的最小值为________.解析:依题意知,动圆C 的半径不小于12|AB |=5,即当圆C 的面积最小时,AB 是圆C 的一条直径,此时点C 是线段AB 的中点,即点C (2,-1),点M 的坐标为(1,-2),且|CM |=(2-1)2+(-1+2)2=2<5,所以点M 位于圆C 内,当点M 为线段EF 的中点(过定圆内一定点作圆的弦,以该定点为中点的弦最短)时,|EF |最小,其最小值等于2(5)2-(2)2=2 3.答案:2 3。
2019-2020年高三数学一轮复习第十三篇几何证明选讲第2节直线与圆的位置关系课件理
解析:由切割线定理得 PA2=PC·PD,
得 PD= PA 2 = 6 2 =12,
PC
3
所以 CD=PD-PC=12-3=9,即 CE+ED=9,
因为 CE∶ED=2∶1,所以 CE=6,ED=3.
由相交弦定理得 AE·EB=CE·ED,
即 9EB=6×3,得 EB=2.
所以 CH⊥AD.又 AB 为圆的直径,
所以∠ACB=90°,
所以 CB2=BH·BA. 因为∠BCF=∠CAB=∠D,
所以△BCF∽△BDC,所以 BC = BF
BD
BC
,
所以 BC2=BF·BD,所以 BH·BA=BF·BD.
审题点拨
关键点
所获信息
AC 是☉O1 的切线,割线 DE 与 AC 交于点 P
定义、定理 及推论
内容
定义 判定定理
如果一条直线与一个圆有唯一公共点,则这条直线叫做这 个圆的切线,公共点叫做切点 经过半径的外端并且 垂直于 这条半径的直线是圆的切线
性质定理
性质定理 的推论
圆的切线 垂直于 经过切点的半径 经过圆心且垂直于切线的直线必经过 切点 . 经过切点且垂直于切线的直线必经过 圆心 .
(2)若AB=4,AE=2,求CD的长.
【例 2】 (2015 沈阳一模)如图,已知 AB 是圆 O 的直径,C,D 是圆 O 上的两 个点,CE⊥AB 于 E,BD 交 AC 于 G,交 CE 于 F,CF=FG. (1)求证:C 是劣弧 BD的中点;
证明:(2)因为∠GBC= π -∠CGB,∠FCB= π -∠GCF, 22
(B)①②④
(C)③⑤
(D)①③⑤
解析:①错误,若弧不一样,则圆心角与圆周角的关系不确定;②错误,只有在同 圆或等圆中,相等的圆周角所对的弧才相等;③正确,可以推出等腰梯形的对角 互补,所以有外接圆;④错误,弦切角等于它所夹的弧所对的圆周角,所夹的弧 的度数等于该弧所对圆心角的度数,所以弦切角所夹弧的度数等于弦切角度 数的2倍;⑤正确,圆内接四边形ABCD的对角互补.
专题12 直线与圆的位置关系-2019年高考理数母题题源系列(天津专版)(原卷版)
【母题原题1】【2019年高考天津卷理数】设a ∈R ,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为___________.【答案】34【解析】圆22cos ,12sin x y θθ=+⎧⎨=+⎩化为直角坐标方程为22(2)(1)4x y -+-=,圆心坐标为(2,1),圆的半径为2,2=,解得34a =. 【名师点睛】直线与圆的位置关系可以使用判别式法,但一般是根据圆心到直线的距离与圆的半径的大小作出判断.【母题原题2】【2018年高考天津卷理数】已知圆2220x y x +-=的圆心为C,直线1,232⎧=-+⎪⎪⎨⎪=-⎪⎩x y t (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为___________. 【答案】12【解析】由题意可得圆的标准方程为:()2211x y -+=,圆心为(1,0),半径为1, 直线的直角坐标方程为:()31y x -=-+,即20x y +-=,则圆心到直线的距离为:d ==,专题12 直线与圆的位置关系由弦长公式可得:2AB==则11222ABCS==△.【名师点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.【母题原题3】【2017年高考天津卷理数】在极坐标系中,直线4cos()106ρθπ-+=与圆2sinρθ=的公共点的个数为___________.【答案】2【解析】直线为210y++=,圆为22(1)1x y+-=,因为314d=<,所以有两个交点.【名师点睛】先利用公式222cos,sin,x y x yρθρθρ===+把极坐标方程化为直角坐标方程,再联立方程组根据判别式判断出交点的个数,或利用几何法进行判断.坐标系与参数方程为选修课程,要求灵活使用公式进行坐标变换及方程变换.【命题意图】考查极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,直线与圆的位置关系.【命题规律】在高考中往往考查直线与圆的位置关系与极坐标方程或参数方程相结合,通常以填空题的形式呈现,难度不大.【知识总结】1.极坐标和直角坐标的互化(1)互化的前提:①直角坐标系的原点与极点重合;②x轴的正半轴与极轴重合;③在两种坐标系中取相同的长度单位.(2)互化公式:设M是平面内任一点,它的直角坐标是(x,y),极坐标是(ρ,θ),则极坐标与直角坐标的互化公式为cossinxyρθρθ=⎧⎨=⎩,,可得222tan0x yyxxρθ⎧=+⎪⎨=≠⎪⎩,().2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,将参数方程化为普通方程需消去参数. (2)如果知道变量x ,y 中的一个与参数t 的关系,例如,x=f (t ),把它代入普通方程,求出另一个变量与参数t 的关系y=g (t ),那么x f t y gt =⎧⎨=⎩(),()就是曲线的参数方程.注意:(1)在参数方程与普通方程的互化中,一定要注意变量的范围以及转化的等价性.(2)普通方程化为参数方程,参数方程的形式不唯一,即如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同. 3.直线和圆的参数方程与普通方程4.直线与圆的位置关系设圆O 的半径为r ,圆心O 到直线l 的距离为d ,则【方法总结】1.极坐标与直角坐标互化的方法(1)将点的直角坐标(x ,y )化为极坐标(ρ,θ)时,运用公式,tan θ=yx(x ≠0)即可.在[0,2π]范围内,由tan θ=yx(x ≠0)求θ时,要根据直角坐标的符号特征判断出点所在的象限.如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π(k ∈Z )即可.(2)将点的极坐标(ρ,θ)化为直角坐标(x ,y )时,运用公式x=ρcos θ,y=ρsin θ即可.2.极坐标方程与直角坐标方程互化的方法 直角坐标方程极坐标方程.3.判断直线与圆的位置关系的方法(1)几何法:由圆心到直线的距离d 与半径r 的大小关系来判断.(2)代数法:联立直线与圆的方程,消元后得到关于x (或y )的一元二次方程,根据一元二次方程的解的个数(也就是方程组解的个数)来判断. 如果Δ<0,那么直线与圆相离; 如果Δ=0,那么直线与圆相切; 如果Δ>0,那么直线与圆相交.(3)点与圆的位置关系法:若直线过定点且定点在圆内,可判断直线与圆相交.1.【天津市新华中学2019届高三下学期第八次统练(一模)数学】在直角坐标系xOy 中,直线l 的参数方程为13,22x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,C的极坐标方程为ρθ=.P 为直线l 上一动点,当P 到圆心C 的距离最小时,则P 的直角坐标为___________.2.【天津市河北区2019届高三二模数学】在平面直角坐标系中,直线l 的参数方程为12x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为22sin 3ρρθ+=,若直线与圆交于M ,N 两点,则线段MN 的长度为___________.3.【天津市南开区南开中学2019届高三第五次月考数学】已知直线()600,0ax by a b +-=>>被圆22240x y x y +--=截得的弦长为ab 的最大值为___________.4.【天津市河东区2019届高三二模数学】已知直线l 的参数方程为34x ty t m =⎧⎨=+⎩(t 为参数),圆C 的极坐标方程为2cos ρθ=若直线l 与圆Cm 的值为___________.5.【天津市红桥区2019届高三一模数学】圆C :()2211x y -+=的圆心到直线l :()00x y a a -+=>的a 的值为___________.6.【天津市部分区2019届高三联考一模数学】已知直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),若l 与圆22430x y x +-+=交于,A B 两点,且AB =,则直线l 的斜率为___________.7.【天津市北辰区2019届高考模拟考试数学】直线:0l x m +=与圆22:410C x y x +-+=交于,A B 两点,若ABC △为等边三角形,则m =___________.8.【天津市和平区2018–2019学年度第二学期高三年级第三次质量调查数学】过点()3,1-的直线l 被曲线22240x y x y +--=截得的弦长为2,则直线l 的方程为___________.9.【天津市和平区2018–2019学年第二学期高三年级第二次质量调查数学】若直线2y x =-+与曲线12cos 22sin x y θθ=-+⎧⎨=+⎩(θ为参数)交于两点,A B ,则AB =___________. 10.【天津市河北区2019届高三二模数学】已知直线l 的方程为10x y -+=,圆C 的方程为22230x y y ++-=,则直线被圆所截得的弦长为___________.11.【天津市和平区2019届高三下学期第一次质量调查数学】已知,a b 为正数,若直线220ax by +-=被圆224x y +=截得的弦长为___________.12.【天津市和平区2019届高三下学期第一次质量调查数学】在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴且单位长度相同建立极坐标系,若直线1,x t y a t=+⎧⎨=-⎩(t 为参数)被曲线4cos ρθ=-截得的弦长为a 的值为___________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典 专题12 直线与圆位置关系
【母题原题1】【2018江苏,理12】在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.
【答案】3
点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法. 【母题原题2】【2017江苏,理13】在平面直角坐标系xOy中,(12,0),(0,6),AB点P在圆2250Oxy:上,若20,PAPBuuuruuur≤则点P的横坐标的取值范围是 ▲ .
【答案】[52,1]
【考点】直线与圆,线性规划 【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围. 【母题原题3】【2016江苏,理18】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:221214600xyxy及其上一点A(2,4). 经典 (1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程; (3)设点T(t,0)满足:存在圆M上的两点P和Q,使得,TATPTQuuruuruuur,求实数t的取值范围.
【答案】(1)22(6)(1)1xy(2):25215lyxyx或(3)22212221t 【解析】
(3)设1122,,,.PxyQxy 经典 【考点】直线方程、圆的方程、直线与直线、直线与圆、圆与圆的位置关系、平面向量的运算 【名师点睛】直线与圆中的三个定理:切线的性质定理,切线长定理,垂径定理;两个公式:点到直线距离公式及弦长公式,其核心都是转化到与圆心、半径的关系上,这是解决直线与圆的根本思路.对于多元问题,也可先确
定主元,如本题以P为主元,揭示P在两个圆上运动,从而转化为两个圆有交点这一位置关系,这也是解决直线与圆问题的一个思路,即将问题转化为直线与圆、圆与圆的位置关系问题.
【命题意图】直线与圆是高中数学的C级知识点,是高中数学中数形结合思想的典型体现. 【命题规律】 近年来,高考对直线与圆的命题,既充分体现自身知识结构体系的命题形式多样化,又保持与函数或不等式或轨迹相结合的命题思路,呈现出“综合应用,融会贯通”的特色,充分彰显直线与圆的交汇价值. 【答题模板】解答本类题目,以2016年试题为例,一般考虑如下三步:
第一步:利用待定系数法求圆标准方程 第二步:根据圆中垂径定理揭示等量关系 第三步:利用圆与圆位置关系、坐标表示逐层揭示刻画多元关系 【方法总结】 1.以动点轨迹为圆考查直线与圆、圆与圆位置关系,突出考查方程思想和解析法 2.以圆中直角三角形建立函数关系式或方程或不等式, 注重考查圆相关几何性质. 3.利用数形结合揭示与刻画直线与圆、圆与圆位置关系,重点考查直线与圆的综合应用以及数形结合的数学思经典 想.
1.【江苏省南京师大附中2018届高三高考考前模拟考试数学试题】已知直线x-y+b=0与圆交于不同的两点A,B.若O是坐标原点,且,则实数b的取值范围是______. 【答案】
点睛:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生的计算能力,能正确的转化向量的不等式是解题关键,属于中档题.
2.【江苏省苏州市第五中学校2018届高三上学期期初考试数学(文)试题】已知,若直线上总存在点,使得过点的的两条切线互相垂直,则实数的取值范围是_____. 【答案】 【解析】 【分析】 设两个切点分别为A、B,则由题意可得四边形PAOB为正方形,根据圆心O到直线的距离,进行求解即可得的范围. 【详解】 圆心为,半径, 设两个切点分别为A、B,则由题意可得四边形PAOB为正方形, 故有, 圆心O到直线的距离, 经典 即, 即,解得或. 故答案为:. 【点睛】 本题主要考查直线和圆相交的性质,点到直线的距离公式的应用,体现了转化的数学思想,属于中档题.
3.【江苏省南京市2018届高三第三次模拟考试数学试题】在平面直角坐标系中,圆与轴的两个交点分别为 ,其中在的右侧,以为直径的圆记为圆,过点作直线与圆,圆分别交于两点.若为线段的中点,则直线的方程为_________. 【答案】
点睛:(1)本题主要考查直线的方程,直线与圆的位置关系,要在考查学生对这些基础知识的掌握能力、基本的运算能力和分析推理能力. (2)涉及直线与曲线的问题,经常要联立直线与曲线的方程得到韦达定理,经典 这是一个常规的方法技巧,大家要理解掌握并灵活运用.
4.【江苏省苏锡常镇四市2017-2018学年度高三教学情况调研(二)数学试题】在平面直角坐标系中,已知
圆,点,若圆上存在点,满足,则点的纵坐标的取值范围是____.
【答案】.
点睛:本题主要考查圆的基础知识,考查函数的思想,意在考查学生圆的基础知识的掌握能力和基本运算能力. 5.【江苏省苏锡常镇四市2017-2018学年度高三教学情况调研(二)数学试题】如图,扇形的圆心角为90°,半径为1,点是圆弧上的动点,作点关于弦的对称点,则的取值范围为____.
【答案】. 【解析】分析:先建立直角坐标系,再设出点P,Q的坐标,利用已知条件求出P, Q的坐标,再求出 的函数表达式,求其最值,即得其取值范围. 详解:以点O为坐标原点,以OA所在直线作x轴,以OB所在直线作y轴,建立直角坐标系.则A(1,0),B(0,1),直线AB的方程为x+y-1=0,
设P ,, 经典 点睛:(1)本题的难点有三,其一是要联想到建立直角坐标系;其二是要能利用已知求出点P,Q的坐标,其三是能够利用三角函数的知识求出函数的值域. (2)本题主要考查利用坐标法解答数学问题,考查直线、圆的方程和三角恒等变换,考查三角函数的图像和性质,意在考查学生基础知识的掌握能力及推理分析转化能力,考查学生的基本运算能力. 6.【江苏省姜堰、溧阳、前黄中学2018届高三4月联考数学试题】已知点3,0,1,2AB,若圆22220xyrr>上恰有两点,MN,使得MAB和NAB的面积均为4,则r的取值范围是____.
【答案】292,22 【解析】由题意可得|AB|=221320=22, 根据△MAB和△NAB的面积均为4, 可得两点M,N到直线AB的距离为22; 由于AB的方程为020y=313x, 即x+y+3=0; 若圆上只有一个点到直线AB的距离为22,
则有圆心(2,0)到直线AB的距离为2032=r+22,解得r=22; 经典 7.【江苏省无锡市2018届高三第一学期期末检测数学试卷】过圆内一点作两条相互垂直的弦和,且,则四边形的面积为__________. 【答案】19.
【解析】 根据题意画出上图,连接 ,过 作 , , 为 的中点, 为 的中点,又 , ,∴四边形 为正方形,
由圆的方程得到圆心,半径 ,
【点睛】
本题的关键点有以下: 1.利用数形结合法作辅助线构造正方形; 2.利用勾股定理求解.
8.【江苏省淮安市等四市2018届高三上学期第一次模拟数学试题】在平面直角坐标系中,若圆 经典 上存在点,且点关于直线的对称点在圆 上,则的取值范围是____. 【答案】 【解析】关于直线的对称圆,由题意,圆与圆有交点,所以,所以的范围是。 点睛:本题考查直线和圆的位置关系。由题意,得到关于直线的对称圆,存在点满足条件,即圆与圆有交点,由图象特点得,求得的范围。直线和圆的题型充分利用图象辅助解题。
9.【2018年4月2018届高三第二次全国大联考(江苏卷)-数学】在平面直角坐标系中,若直线上存在一点,圆上存在一点,满足,则实数的取值范围为___________. 【答案】
10.【江苏省南通市2018届高三上学期第一次调研测试数学试题】在平面直角坐标系xOy中,已知点4,0A, 0,4B,从直线AB上一点P向圆224xy引两条切线PC, PD,切点分别为C, D.设线段CD的中
点为M,则线段AM长的最大值为_________. 【答案】32 【解析】由射影定理得2224ODOMOPOMOP
设222222222111111121,,,4,4yyyMxyPxyxyxyxyxxxxxQ 2214xyxx
因为11144xy ,所以11x1,44xyx 14xxyx 经典 点睛:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: ①直接法:直接根据题目提供的条件列出方程. ②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程. ④代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.