专题01 导数的应用-高考数学(理)母题题源系列(江苏专版)
专题05 函数概念与性质-2018年高考数学(理)母题题源系列(江苏专版)(解析版)

【母题原题1】【2018江苏,理5】函数()f x =的定义域为 ▲ . 分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞. 点睛:求给定函数的定义域往往需转化为解不等式(组)的问题. 【母题原题2】【2017江苏,理11】已知函数31()2e e x xf x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 ▲ .【答案】1[1,]2-【考点】利用函数性质解不等式【名师点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内【母题原题3】【2016江苏,理5】函数y 的定义域是 . 【答案】[]3,1-【解析】试题分析:要使函数式有意义,必有2320x x --≥,即2230x x +-≤,解得31x -≤≤.故答案应填:[]3,1-【考点】函数定义域【名师点睛】函数定义域的考查,一般是多知识点综合考查,先“列”后“解”是常规思路.列式主要从分母不为零、偶次根式下被开方数非负、对数中真数大于零等出发,而解则与一元二次不等式、指(对)数不等式、三角不等式等联系在一起.【命题意图】高考对本部分内容的考查以能力为主,重点考查函数的图象与性质.【命题规律】1. 函数的图象与性质是历年高考的重要内容,也是热点内容,对图象的考查主要利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合在一起考查,既有具体函数也有抽象函数.2. 函数的图象与性质会涉及如下题型:(1) 函数“二域三性”的考查;(2) 函数性质在解决不等式问题中的应用;(3) 函数与方程问题;(4) 函数性质在数列等问题中的应用;(5) 利用导数来刻画函数的性质.【答题模板】解答本类题目,以2018年试题为例,一般考虑如下两步:第一步:确定考查的函数性质.第二步:根据函数图像与性质列式,解参数或范围.【方法总结】函数单调性的应用(1)含“f”不等式的解法:首先根据函数的性质把不等式转化为f(g(x))>f(h(x))的形式,然后根据函数的单调性去掉“f”,转化为具体的不等式(组),此时要注意g(x)与h(x)的取值应在外层函数的定义域内.(2)比较函数值大小的思路:比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.(3)求参数的值或取值范围的思路:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.1.【江苏省苏州市2018届高三调研测试(三)数学试题】如果函数在其定义域内总存在三个不同实数,满足,则称函数具有性质.已知函数具有性质,则实数的取值范围为__________.【答案】点睛:(1)零点问题可转化为函数图象的交点问题进行求解,体现了数形结合的思想.(2)求零点范围时用数形结合求解可减少思维量,作图时要尽量准确.2.【2018年全国普通高等学校招生统一考试数学(江苏卷)】函数满足,且在区间上,则的值为____.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.3.【江苏省南京师大附中2018届高三高考考前模拟考试数学试题】已知函数f(x)=x3-3x2+1,g(x)=,若方程g[f(x)]-a=0(a>0)有6个实数根(互不相同),则实数a的取值范围是______.【答案】,,由g[f(x)]-a=0(a>0)得g[f(x)]=a,(a>0)设t=f(x),则g(t)=a,(a>0)由y=g(t)的图象知,①当0<a<1时,方程g(t)=a有两个根-4<t1<-3,或-4<t2<-2,由t=f(x)的图象知,当-4<t1<-3时,t=f(x)有0个根,当-4<t2<-2时,t=f(x)有0个根,此时方程g[f(x)]-a=0(a>0)有0个根,②当a=1时,方程g(t)=a有两个根t1=-3,或t2=,由t=f(x)的图象知,当t1=-3时,t=f(x)有0个根,当t2=时,t=f(x)有3个根,此时方程g[f(x)]-a=0(a>0)有3个根,③当1<a<时,方程g(t)=a有两个根0<t1<,或<t2<1,由t=f(x)的图象知,当0<t1<时,t=f(x)有3个根,当<t2<1时,t=f(x)有3个根,此时方程g[f(x)]-a=0(a>0)有3+3=6个根,当a=由图可得同理只有5解,综合的故若方程g[f(x)]-a=0(a>0)有6个实数根(互不相同),则实数a的取值范围是点睛:本题主要考查根的个数的判断,利用换元法转化为两个函数的交点个数问题,利用分类讨论和数形结合是解决本题的关键.综合性较强,难度较大.4.【江苏省海门中学2018届高三5月考试(最后一卷)数学试题】已知函数,则不等式的解集为______.【答案】(0,2).点睛:对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题,若f(x)为偶函数,则f(-x)=f(x)=f(|x|).5.【江苏省扬州树人学校2018届高三模拟考试(四)数学试题】已知函数的最小值为,则实数的取值集合为__________.【答案】.【解析】分析:通过讨论与0,1的大小关系化简函数解析式,判断出函数在两区间和上的最小值,然后根据题意得到关于的方程,求解可得结果.详解:①若,即时,则,∴在上单调递减,最小值为;在上的最小值为.∵函数最小值为,∴.②当,即时,则,∴在上上先减后增,最小值为;在上的最小值为.点睛:本题考查分段函数的最值,解题的关键是根据与0,1的大小关系进行分类讨论,然后通过讨论函数的单调性得到最小值,再根据函数的最小值为可得所求.6.【江苏省苏州市第五中学校2018届高三上学期期初考试数学(文)试题】已知,则不等式的解集为________.【答案】【解析】【分析】根据分段函数的表达式,判断函数的单调性和取值范围,结合一元二次不等式的解法进行求解即可.【详解】当时,,则函数在上为增函数;当时,,则函数在上为增函数.作出函数图象,如图:【点睛】本题主要考查不等式的求解,根据分段函数的表达式判断函数的单调性的性质,结合一元二次不等式的解法进行求解是解决本题的关键.7.【江苏省苏州市第五中学校2018届高三上学期期初考试数学(文)试题】函数的定义域为______.【答案】【解析】【分析】直接由根式内部的代数式大于等于0,然后求解对数不等式得答案.【详解】由,得,函数的定义域为.故答案为:.【点睛】本题考查了函数的定义域及其求法,考查对数不等式的解法,是基础题.8.【江苏省南京市2018届高三第三次模拟考试数学试题】若是定义在上的周期为3的函数,且,则的值为_________.【答案】点睛:本题主要考查函数的周期性和分段函数求值,意在考查对这些基础知识的掌握能力和基本的运算能力.9.【江苏省苏锡常镇四市2017-2018学年度高三教学情况调研(二)数学试题】已知函数若存在实数,满足,则的最大值是____.【答案】.【解析】分析: 根据函数f(x)图象判断a,b,c关系即范围,用c表示出af(a)+bf(b)+cf(c),根据函数单调性求出最大值.详解: 作出f(x)的函数图象如图所示:点睛: (1)本题有三个关键点,其一是能够很熟练准确地画出函数的图像;其二是从图像里能发现a+b=-6,<c <e 2;其三是能够想到构造函数g (c )=(c ﹣6)lnc ,利用导数求函数的最大值.(2)本题要求函数的图像和性质掌握的比较好,属于中档题.10.【江苏省南京师范大学附属中学、天一、海门、淮阴四校2018届高三联考数学调研测试试题】设()f x 是定义在R 上且周期为4的函数,在区间(]2,2-上,其函数解析式是(),20{1,02x a x f x x x +-<≤=-<≤,其中a R ∈.若()()55f f -=,则()2f a 的值是__________.【答案】1【解析】∵()f x 是周期为4的函数, ()()55f f -=, ∴()()11f f -=, ∴10a -+=, ∴1a =. ∴()1,20{1,02x x f x x x +-<≤=-<≤,∴()()221f a f ==. 答案:1。
专题21 导数的综合运用-2018年高考数学(文)母题题源系列(全国1专版)(原卷版)

母题二十一导数的综合运用【母题原题1】【2018新课标1,文21】已知函数.(1)设是的极值点.求,并求的单调区间;(2)证明:当时,.【母题原题2】【2017新课标1,文21】已知函数f(x)=e x(e x-a)-a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.【母题原题3】【2016新课标1,文21】已知函数f(x)=(x-2)e x+a(x-1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【命题意图】考查导数的概念、导数公式求导法则导数的几何意义及导数的应用,考查数学式子变形能力、运算求解能力、分类讨论思想、函数与方程思想、化归与转化思想及分析问题与解决问题的能力.【命题规律】从全国看,高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一般有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,如零点、证明不等式、恒成立问题、求参数等,包括解决应用问题,将导数内容和传统内容中有关不等式、数列及函数单调性有机结合,设计综合题.【答题模板】求解应用导数研究函数的性质问题的一般思路:第一步:牢记求导法则,正确求导.在函数与导数类解答题中,通常都会涉及求导,正确的求导是解题关键,因此要牢记求导公式,做到正确求导,解题时应先写出函数定义域.学-科网第二步:研究(1)(2)问的关系,注意利用第(1)问的结果.在题设条件下,如果第(1)问的结果第(2)问能用得上,可以直接用,有些题目不用第(1)问的结果甚至无法解决.第三步:根据条件,寻找或构造目标函数,注意分类讨论.高考函数与导数解答题,一般都会涉及分类讨论,并且讨论的步骤也是得分点,所以一定要重视分类讨论.第四步:选择恰当的方法求解,注意写全得分关键:在函数与导数问题中,求导的结果、分类讨论的条件、单调区间、零点等一些关键式子和结果都是得分点,在解答时一定要写清楚. 【方法总结】1.导数法证明函数()f x 在(,)a b 内的单调性的步骤 (1)求'()f x ;(2)确认'()f x 在(,)a b 内的符号;(3)作出结论:'()0f x ≥时为增函数;'()0f x ≤时为减函数.2.图象法确定函数()f x 在(,)a b 内的单调性:导函数的图象在哪个区间位于x 轴上方(下方),说明导函数在该区间大于0(小于0),那么它对应的原函数在那个区间就单调递增(单调递减).3.已知函数单调性,求参数范围的两个方法:(1)利用集合间的包含关系处理:y =f(x)在(a ,b)上单调,则区间(a ,b)是相应单调区间的子集. (2)转化为不等式的恒成立问题:即“若函数单调递增,则f′(x)≥0;若函数单调递减,则f′(x)≤0”来求解. 4.求函数f(x)极值的步骤: (1)确定函数的定义域; (2)求导数f′(x);(3)解方程f′(x)=0,求出函数定义域内的所有根;(4)列表检验f′(x)在f′(x)=0的根x 0左右两侧值的符号,如果左正右负,那么f(x)在x 0处取极大值,如果左负右正,那么f(x)在x 0处取极小值.【温馨提醒】导数值为0的点不一定是函数的极值点,“函数在某点的导数值为0”是“函数在该点取得极值”的必要不充分条件.找函数的极值点,即先找导数的零点,但并不是说导数的零点就是极值点(如y =x 3),还要保证该零点为变号零点.6.求函数f(x)在[a ,b]上的最大值和最小值的步骤 (1)求函数在(a ,b)内的极值;(2)求函数在区间端点的函数值f(a),f(b);(3)将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.【温馨提醒】函数在限定区间内最多只有一个最大值和一个最小值,如果存在最大或最小值,最大值一般是在端点或极大值点取得,最小值一般是在端点或极小值点取得.极值与最值的区别(1)“极值”反映函数在某一点附近的大小情况,刻画的是函数的局部性质;“最值”是个整体概念,是整个区间上的最大值或最小值,具有绝对性.(2)从个数上看,最值若存在,则必定是惟一的,而极值可以同时存在若干个或不存在,且极大(小)值并不一定比极小(大)值大(小).(3)从位置上看,极值只能在定义域内部取得,而最值却可以在区间的端点处取得;有极值未必有最值,有最值未必有极值.7. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理. 8.关于最值问题:①对求函数在某一闭区间上,先用导数求出极值点的值和区间端点的值,最大者为最大值,最小者为最小值,对求函数定义域上最值问题或值域,先利用导数研究函数的单调性和极值,从而弄清函数的图像,结合函数图像求出极值;②对已知最值或不等式恒成立求参数范围问题,通过参变分离转化为不等式()f x ≤(≥)()g a (x 是自变量,a 是参数)恒成立问题,()g a ≥max ()f x (≤min ()f x ),转化为求函数的最值问题,注意函数最值与极值的区别与联系.1.【黑龙江省哈尔滨师范大学附属中学2018届高三第三次模拟考试】已知函数在点处的切线方程是.(1)求的值及函数的最大值;(2)若实数满足. (i)证明:;(ii)若,证明:.2.【山东、湖北部分重点中学2018年高考冲刺模拟试卷】已知函数.(Ⅰ)若函数为单调函数,求的取值范围;(Ⅱ)当时,证明:.3.【山东省潍坊市青州市2018届高三第三次高考模拟考试】已知(1)求的单调区间; (2)设,为函数的两个零点,求证:.4.【福建省三明市第一中学2018届高三模拟卷】已知函数.(1)当时,讨论函数的单调性;(2)求函数在区间上零点的个数.5.【重庆市西南大学附中高2018级第四次月考】函数,.(1)求函数的单调区间及极值;(2)若,是函数的两个不同零点,求证:①;②.6.【广东省中山市第一中学2019届高三入门考试】设函数,,.(1)若函数有两个零点,试求的取值范围;(2)证明.7.【四川省双流中学2018届高三考前第二次模拟考试】已知函数,.(1)讨论函数的零点个数;(2)求证:.8.【河南省巩义市市直高中2018届高三下学期模拟考试】已知函数,(为实数).(1)当时,求函数的图象在处的切线方程;(2)求在区间上的最小值;(3)若存在两个不等实数,使方程成立,求实数的取值范围.9.【四川省成都市第七中学2018届高三下学期三诊模拟考试】已知函数,其中;(Ⅰ)若函数在处取得极值,求实数的值,(Ⅱ)在(Ⅰ)的结论下,若关于的不等式,当时恒成立,求的值.(Ⅲ)令,若关于的方程在内至少有两个解,求出实数的取值范围.10.【山东省实验中学2015级第二次模拟考试】已知函数.(1)求函数的单调区间;(2)若关于的方程有实数解,求实数的取值范围;(3)求证:.11.【河北省石家庄二中2018届高三三模】设函数,其中.(Ⅰ)讨论函数极值点的个数,并说明理由;(Ⅱ)若,成立,求的取值范围.12.【吉林省吉大附中2018届高三第四次模拟考试】已知函数,. (I)若恒成立,求实数的取值范围;(Ⅱ)当取(I)中的最小值时,求证:.13.【辽宁省凌源二中2018届高考三模】已知函数.(1)若,曲线在点处的切线在两坐标轴上的截距之和为2,求的值(2)若对于任意的及任意的总有成立.求的取值范围.14.【河南省2017-2018学年高三最后一次模拟考试】已知函数.(1)若,曲线在点处的切线在两坐标轴上的截距之和为,求的值;(2)若对于任意的及任意的,总有成立,求的取值范围.15.【安徽省淮南市2018届高三第二次模拟考试】已知函数.(1)若函数在内有极值,求实数的取值范围;(2)在(1)的条件下,对任意,,求证:.。
专题07 三角函数图像与应用-2018年高考数学(理)母题题源系列(江苏专版)(原卷版)

精品高考数学2018年全揭秘《高考母题题源》系列母题七 三角函数图像与应用【母题原题1】【2018江苏,理7】已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ .【母题原题2】【2017江苏,理5】若π1tan(),46α-=则tan α= ▲ .【母题原题3】【2016江苏,理9】定义在区间[0,3π]上的函数sin 2y x =的图象与cos y x =的图象的交点个数是 ▲ .【母题原题4】【2016江苏,理14】在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是 ▲ .【命题意图】 高考对本部分内容的考查以能力为主,重点考查三角函数的性质(周期性、奇偶性、对称性、单调性、最值等),体现数形结合的思想,函数与方程的思想等的应用,均可能出现填空题与解答题中,难度中低档为主,主要有两种考查题型:(1)根据三角函数的解析式确定其性质;(2)根据三角函数的性质求相关的参数值(或取值范围).【命题规律】1. 高考对三角函数的图象与性质的考查往往集中于正弦函数、余弦函数、正切函数的图象与性质;函数y =Asin(ωx +φ)的图象及性质,主要考查三角函数图象的识别及其简单的性质(周期、单调性、奇偶性、最值、对称性、图象平移及变换等).2. 高考中主要涉及如下题型:(1) 考查周期、单调性、极值等简单性质;(2) 考查与三角函数有关的零点问题;(3) 考查图象的识别. 【方法总结】1.根据函数的图象确定函数()sin()(0,0)f x A x B A ωϕω=++>>中的参数主要方法:(1)A ,B 主要是根据图象的最高点或最低点的纵坐标确定,即2A -=最大值最小值,2B +=最大值最小值;(2)ω的值主要由周期T 的值确定,而T 的值的确定主要是根据图象的零点与最值点的横坐标确定;(3)ϕ值的确定主要是由图象的特殊点(通常优先取非零点)的坐标确定.2.在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.“先平移,后伸缩”主要体现为由函数sin y x =平移得到函数()sin y x ϕ=+的图象时,平移ϕ个长度单位;“先伸缩,后平移” 主要体现为由函数()sin y x ω=平移得到函数()sin y x ωϕ=+的图象时,平移ϕω个长度单位. 3. 利用函数图象处理函数的零点(方程根)主要有两种策略:(1)确定函数零点的个数:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数定性判断;(2)已知函数有零点(方程有根)求参数取值范围:通常也转化为两个新函数的交点,即在同一坐标系中作出两个函数的图象,通过观察它们交点的位置特征建立关于参数的不等式来求解. 4. 求解三角函数的周期性的方法:(1)求三角函数的周期,通常应将函数式化为只有一个函数名,且角度唯一,最高次数为一次的形式,然后借助于常见三角函数的周期来求解.(2)三角函数的最小正周期的求法有:①由定义出发去探求;②公式法:化成sin()y A x ωϕ=+,或tan()y A x ωϕ=+等类型后,用基本结论2||T πω=或||T πω=来确定;③根据图象来判断. 5. 求解三角函数的单调性的方法:(1)三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.(2)已知三角函数的单调区间求参数的取值范围的三种方法:①子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解; ②反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.6. 求解三角函数的奇偶性的策略:(1)判断函数的奇偶性,应先判定函数定义域的对称性,注意偶函数的和、差、积、商仍为偶函数;复合函数在复合过程中,对每个函数而言,“同奇才奇、一偶则偶”.一般情况下,需先对函数式进行化简,再判断其奇偶性;(2)两个常见结论:①若函数()()sin f x A x ωϕ=+为奇函数,则()k k Z ϕπ=∈;若函数()()sin f x A x ωϕ=+为偶函数,则()2k k Z πϕπ=+∈;②若函数()()cos f x A x ωϕ=+为奇函数,则()2k k Z πϕπ=+∈;若函数()()cos f x A x ωϕ=+为偶函数,则()k k Z ϕπ=∈.7. 求解三角函数对称性的方法:(1)求函数sin()y A x ωϕ=+的对称中心、对称轴问题往往转化为解方程问题:①由sin y x =的对称中心是(0)k π,,k ∈Z ,所以sin()y A x ωϕ=+的中心,由方程x k ωϕπ+=解出x 即可;②因为sin y x =的对称轴是2x k ππ=+,k ∈Z ,所以可由2x k πωϕπ+=+解出x ,即为函数sin()y A x ωϕ=+的对称轴;注意tan y x =的对称中心为1(,0)()2k k Z π∈;(2)对于函数sin()y A x ωϕ=+,其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线0x x =或点()0,0x 是否是函数的对称轴或对称中心时,可通过检验()0f x 的值进行判断. 8. 求解三角函数的值域(最值)常见的题目类型及求解策略:(1)形如sin cos y a x b x k =++的三角函数化为sin()y A x k ωϕ=++的形式,再利用正弦曲线的知识求最值(值域);(2)形如2sin sin y a x b x k =++的三角函数,可先设sin x t =,化为关于t 的二次函数求值域(最值); (3)形如()sin cos sin cos y a x x b x x c =+±+的三角函数,可先设sin cos t x x =±,化为关于t 的二次函数求值域(最值).1.【江苏省南通市2018届高三最后一卷 --- 备用题数学试题】函数在上的部分图象如图所示,则的值为__________.2.【江苏省扬州树人学校2018届高三模拟考试(四)数学试题】若将函数()的图象向左平移个单位所得到的图象关于原点对称,则__________.3.【江苏省苏锡常镇四市2017-2018学年度高三教学情况调研(二)数学试题】已知函数在时取得最大值,则____.4.【江苏省2018年高考冲刺预测卷一数学】已知函数的部分图象如图所示,若,,则__________.5.【江苏省姜堰、溧阳、前黄中学2018届高三4月联考数学试题】已知函数()()cos f x A x ωφ=+的图象如图所示, 223f π⎛⎫=- ⎪⎝⎭,则()0f =____.6.【江苏省淮安市等四市2018届高三上学期第一次模拟数学试题】若函数的图象与直线的三个相邻交点的横坐标分别是,,,则实数的值为____.7.【江苏省常州2018届高三上学期期末数学(理)】如图,在平面直角坐标系xOy 中,函数()sin y x ωϕ=+(0,0)ωϕπ><<的图像与x 轴的交点A , B , C 满足2OA OC OB +=,则ϕ=________.8.【2016届江苏省苏北三市高三最后一次模拟考试数学试卷(带解析)】已知函数()[]()sin 0,f x x x π=∈和函数()1tan 3g x x =的图像相交于,,A B C 三点,则ABC ∆的面积为__________. 9.【2015年全国普通高等学校招生统一考试理科数学(上海卷)】已知函数,若存在满足,且(,),则的最小值为__________.10.【江苏省启东中学高三上学期期中模拟数学试卷】将函数2sin 3y x πω⎛⎫=-⎪⎝⎭(0ω>)的图象,向左平移3πω个单位,得到()y g x =函数的图象,若()y g x =在0,4π⎡⎤⎢⎥⎣⎦上为增函数,则ω的最大值为__________.。
专题07 函数与方程-2021年高考数学(理)母题题源系列(江苏专版)(解析版)

【母题原题1】【2017江苏,理14】设()f x是定义在R且周期为1的函数,在区间[0,1)上,2,,(),,x x Df xx x D⎧∈⎪=⎨∉⎪⎩其中集合1,*nD x x nn-⎧⎫==∈⎨⎬⎩⎭N,则方程()lg0f x x-=的解的个数是▲ . 【答案】8【考点】函数与方程【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.【母题原题2】【2016江苏,理9】定义在区间[0,3π]上的函数sin 2y x =的图象与cos y x =的图象的交点个数是 ▲ .【答案】7 【考点】三角函数图象【名师点睛】求函数图象的交点个数,有两种方法:一是直接求解,如本题,解一个简单的三角方程,此方法立足于易于求解;二是数形结合,分别画出函数图象,数出交点个数,此法直观,但对画图要求较高,必须准确,尤其是要明确函数的增长幅度. 学科*网【母题原题3】【2015江苏,理13】已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为【答案】4【解析】由题意得:求函数()y f x =与1()y g x =-交点个数以及函数()y f x =与1()y g x =--交点个数之和,因为221,011()7,21,12x y g x x x x x <≤⎧⎪=-=-≥⎨⎪-<<⎩,所以函数()y f x =与1()y g x =-有两个交点,又221,011()5,23,12x y g x x x x x -<≤⎧⎪=--=-≥⎨⎪-<<⎩,所以函数()y f x =与1()y g x =--有两个交点,因此共有4个交点 【考点定位】函数与方程【名师点晴】一些对数型方程不能直接求出其零点,常通过平移、对称变换转化为相应的函数图像问题,利用数形结合法将方程根的个数转化为对应函数零点个数,而函数零点个数的判断通常转化为两函数图像交点的个数.这时函数图像是解题关键,不仅要研究其走势(单调性,极值点、渐近线等),而且要明确其变化速度快慢.【命题意图】高考对本部分内容的考查以能力为主,重点考查函数的零点、方程的根和两函数图象交点之间的等价转化思想和数形结合思想.【命题规律】高考试题对该部分内容考查的主要角度有两种:一种是找函数零点个数;一种是判断零点的范围.重点对该部分内容的考查仍将以能力考查为主,运用导数来研究函数零点,这是备考中应该注意的方面.【答题模板】解答本类题目,以2017年试题为例,一般考虑如下两步:第二步:借助函数图像,确定方程根的个数画出并分析两个函数图象的位置关系,研究交点个数,确定结果.【方法总结】(1)直接法:解方程f(x)=0,方程有几个解,函数f(x)就有几个零点;(2)图象法:画出函数f(x)的图象,函数f(x)的图象与x轴的交点个数即为函数f(x)的零点个数;(3)将函数f(x)拆成两个常见函数h(x)和g(x)的差,从而f(x)=0⇔h(x)-g(x)=0⇔h(x)=g(x),则函数f(x)的零点个数即为函数y=h(x)与函数y=g(x)的图象的交点个数;(4)二次函数的零点问题,通过相应的二次方程的判别式Δ来判断.(1)解方程,当对应方程易解时,可通过解方程,看方程是否有根落在给定区间上.(2)利用零点存在性定理进行判断;(3)画出函数图象,通过观察图象与x轴在给定区间上是否有交点来判断.3.已知函数有零点(方程有根)求参数值(取值范围)常用的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.2、函数的零点,方程的根,两函数的交点在零点问题中的作用(1)函数的零点:工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内.缺点:方法单一,只能判定零点存在而无法判断个数,且能否得到结论与代入的特殊值有关(2)方程的根:工具:方程的等价变形作用:当所给函数不易于分析性质和图像时,可将函数转化为方程,从而利用等式的性质可对方程进行变形,构造出便于分析的函数缺点:能够直接求解的方程种类较少,很多转化后的方程无法用传统方法求出根,也无法判断根的个数(3)两函数的交点:工具:数形结合作用:前两个主要是代数运算与变形,而将方程转化为函数交点,是将抽象的代数运算转变为图形特征,是数形结合的体现.通过图像可清楚的数出交点的个数(即零点,根的个数)或者确定参数的取值范围. 缺点:数形结合能否解题,一方面受制于利用方程所构造的函数(故当方程含参时,通常进行参变分离,其目的在于若含x的函数可作出图像,那么因为另外一个只含参数的图像为直线,所以便于观察),另一方面取决于作图的精确度,所以会涉及到一个构造函数的技巧,以及作图时速度与精度的平衡.在高中阶段主要考察三个方面:(1)零点所在区间——零点存在性定理,(2)二次方程根分布问题,(3)数形结合解决根的个数问题或求参数的值.其中第(3)个类型常要用到函数零点,方程,与图像交点的转化,请通过例题体会如何利用方程构造出函数,进而通过图像解决问题的.3、双变量函数方程的赋值方法:(1)对,x y均赋特殊值,以得到某些点的函数值,其中有些函数值会对性质的推导起到关键作用,比如()()()0,1,1f f f-,在赋特殊值的过程中要注意所赋的值要符合函数定义域.(2)其中某一个变量不变,另一个赋特殊值,可得到单变量的恒等式,通常用于推断函数的性质4、常见函数所符合的函数方程:在填空选择题时可作为特殊的例子辅助处理,但是在解答题中不能用这些特殊的函数代表函数方程(1)()()()f x y f x f y+=+:()f x kx=(2)()()()f x y f x f y+=⋅:()()0,1xf x a a a=>≠(3)①当()0,x∈+∞时,()()()f x y f x f y⋅=+:()logaf x x=②当{}|0x x x∈≠时,()()()f x y f x f y⋅=+:()logaf x x=【答案】2. 【镇江市2017届高三年级第一次模拟】已知函数1221+=+x x y 与函数xx y 1+=的图象共有k (*∈N k )个公共点:),(111y x A , ),(222y x A ,… ,),(k k k y x A ,则=+∑=k i i i y x 1)( .【答案】2学科*网【答案】]1,1()1,21(--e e4. 【2017年高考原创押题预测卷01(江苏卷)】已知函数22|log |,0()2,0x x f x x x x >⎧=⎨--≤⎩,关于x 的方程()f x m=(m ∈R )有四个不同的实数解1x ,2x ,3x ,4x 则1234x x x x 的取值范围为 .【答案】(0,1)【解析】函数22|log |,0()2,0x x f x x x x >⎧=⎨--≤⎩的图象如图所示,关于x 的方程()f x m =恰有四个互不相等的实根1234,,,x x x x ,即函数()y f x =的图象与直线m y =有四个不同的交点,则10<<m ,不妨设从左向右的交点的横坐标分别为1234x x x x <<<.当0>x 时,由对数函数的性质知2324log log x x =-,341x x =,当0<x 时,由22y x x =--的对称性知122x x +=-,又120x x <<,则120x x ->->,12()()2x x -+-=,所以2121212()()0()()[]12x x x x x x -+-<=--<=,所以,123401x x x x <<,故答案为(0,1).【答案】33 [,]22-6. 【 2016年第二次全国大联考(江苏卷)】已知函数1,0,()2,0xx a xf x xa x⎧++>⎪=⎨⎪+≤⎩,若方程()f x x=-有且仅有一解,则实数a的取值范围为_______.【答案】[1,){22}-+∞-【解析】因为当0x≤时()21xf x a a=+≤+,且单调递增,因此当10,1a a+≥≥-时方程()f x x=-有且仅有一解,当0x>时,1()=f x x ax++在(1,)+∞上单调递增,(0,1)上单调递减,因此当y x=-与1()=(0)f x x a xx++>相切时,方程()f x x=-有且仅有一解,由21()=11f xx'-=-得2x=(负舍),因此2222222a a+=-⇒=-,综上实数a的取值范围为[1,){22}-+∞-.学科*网【答案】97913a≤<学科*网形为922a x a x --=,其中[]3,5x ∈,分别作出222a y x a x =-=-,92ay x-=的图象,显然当902a -≤即9a ≥时两图像无公共点,所以09a <<,如图所示,由题知92232392255a a a a -⎧⎪⎛⎫-≥⎪ ⎪⎪⎝⎭⎨-⎪⎪⨯-≥⎪⎩,解得4597a ≤<①,若()254a f x -=在[]3,5x ∈上有两个不同的根,同理可解的971751319a ≤≤②,综合①②可得97913a ≤<,故答案填97913a ≤<. 12345-1-2-1123xyO 【答案】]2,49(--【解析】由题意,方程2()()54f x g x x x m -=-+-0=在[0,3]上有两不等实根,设2()54h x x x m =-+-,则254(4)0(0)40(3)205032m h m h m ∆=-->⎧⎪=-≥⎪⎪⎨=--≥⎪⎪<<⎪⎩,解得924m -<≤-.【答案】11综合以上分析,将区间(1,2015)分成11段,每段恰有一个交点,所以共有11个交点,即有11个零点. 故答案为:11.学科*网10. 【2017湖南衡阳三次联考】函数()()[]12sin ,2,41f x x x xπ=-∈--的所有零点之和为( ) 【答案】8。
(江苏专用)高考数学一轮复习 第四章 导数及其应用 热点探究课2 函数、导数与不等式教师用书-人教版

热点探究课(二) 函数、导数与不等式[命题解读] 函数是中学数学的核心内容,导数是研究函数的重要工具,因此,导数的应用是历年高考的重点与热点,常涉及的问题有:讨论函数的单调性(求函数的单调区间)、求极值、求最值、求切线方程、求函数的零点或方程的根、求参数的X 围、证明不等式等,涉及的数学思想有:函数与方程、分类讨论、数形结合、转化与化归思想等,中、高档难度均有.热点1 利用导数研究函数的单调性、极值与最值(答题模板)函数的单调性、极值是局部概念,函数的最值是整体概念,研究函数的性质必须在定义域内进行,因此,务必遵循定义域优先的原则,本热点主要有三种考查方式:(1)讨论函数的单调性或求单调区间;(2)求函数的极值或最值;(3)利用函数的单调性、极值、最值,求参数的X 围.(本小题满分14分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值X 围.【导学号:62172114】[思路点拨] (1)求出导数后对a 分类讨论,然后判断单调性;(2)运用(1)的结论分析函数的最大值,对得到的不等式进行等价转化,通过构造函数并分析该函数的单调性求a 的X 围.[规X 解答] (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .2分若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.3分若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0.5分所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.6分 (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.11分 因此f ⎝ ⎛⎭⎪⎫1a>2a -2等价于ln a +a -1<0.12分令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值X 围是(0,1).14分[答题模板] 讨论含参函数f (x )的单调性的一般步骤 第一步:求函数f (x )的定义域(根据已知函数解析式确定). 第二步:求函数f (x )的导数f ′(x ).第三步:根据f ′(x )=0的零点是否存在或零点的大小对参数分类讨论. 第四步:求解(令f ′(x )>0或令f ′(x )<0). 第五步:下结论.第六步:反思回顾,查看关键点、易错点、注意解题规X .温馨提示:1.讨论函数的单调性,求函数的单调区间、极值问题,最终归结到判断f ′(x )的符号问题上,而f ′(x )>0或f ′(x )<0,最终可转化为一个一元一次不等式或一元二次不等式问题.2.若已知f (x )的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题求解.[对点训练1] 已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎫23.(1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x,若函数g (x )在x ∈[-3,2]上单调递增,某某数c 的取值X 围.[解] (1)由f (x )=x 3+ax 2-x +c , 得f ′(x )=3x 2+2ax -1.2分当x =23时,得a =f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2a ×23-1,解得a =-1.4分(2)由(1)可知f (x )=x 3-x 2-x +c ,则f ′(x )=3x 2-2x -1=3⎝ ⎛⎭⎪⎫x +13(x -1),列表如下:所以f (x )的单调递增区间是⎝⎛⎭⎪⎫-∞,-3和(1,+∞); f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,1.8分(3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x, 有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x=(-x 2-3x +c -1)e x,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成立, 只要h (2)≥0,解得c ≥11,所以c 的取值X 围是[11,+∞).14分热点2 利用导数研究函数的零点或曲线交点问题研究函数零点的本质就是研究函数的极值的正负,为此,我们可以通过讨论函数的单调性来解决,求解时应注重等价转化与数形结合思想的应用,其主要考查方式有:(1)确定函数的零点、图象交点的个数;(2)由函数的零点、图象交点的情况求参数的取值X 围.(2016·高考节选)设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值X 围. [解] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .2分 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .4分 (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.6分令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.8分f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:x (-∞,-2)-2 ⎝⎛⎭⎪⎫-2,-23 -23 ⎝ ⎛⎭⎪⎫-23,+∞ f ′(x ) +-+f (x )c c -3227所以,当c >0且c -27<0时,存在x 1∈(-4,-2),x 2∈⎝ ⎛⎭⎪⎫-2,-3,x 3∈⎝ ⎛⎭⎪⎫-3,0,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝ ⎛⎭⎪⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.14分[规律方法] 用导数研究函数的零点,常用两种方法:一是用导数判断函数的单调性,借助零点存在性定理判断;二是将零点问题转化为函数图象的交点问题,利用数形结合来解决.[对点训练2] 设函数f (x )=ln x +m x,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x3零点的个数. 【导学号:62172115】[解] (1)由题设,当m =e 时,f (x )=ln x +ex,则f ′(x )=x -ex 2,由f ′(x )=0,得x =e.2分 ∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减; 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.4分(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).6分设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减,∴x =1是φ(x )唯一的极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.10分又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.14分热点3 利用导数研究不等式问题导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中高档题.归纳起来常见的命题角度有:(1)证明不等式;(2)不等式恒成立问题;(3)存在型不等式成立问题. ☞角度1 证明不等式设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x>x 2-2ax +1.[解] (1)由f (x )=e x-2x +2a ,x ∈R ,f ′(x )=e x-2,x ∈R .令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,ln 2)ln 2 (ln 2,+∞)f ′(x ) - 0 + f (x )单调递减2(1-ln 2+a )单调递增故f (x )的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞),f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2(1-ln 2+a ).6分(2)设g (x )=e x -x 2+2ax -1,x ∈R .于是g ′(x )=e x-2x +2a ,x ∈R .由(1)知当a >ln 2-1时,g ′(x )最小值为g ′(ln 2)=2(1-ln 2+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 又g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x-x 2+2ax -1>0,故e x >x 2-2ax +1.14分 ☞角度2 不等式恒成立问题(2016·全国卷Ⅱ)已知函数f (x )=(x +1)ln x -a (x -1).(1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值X 围. [解] (1)f (x )的定义域为(0,+∞).1分 当a =4时,f (x )=(x +1)ln x -4(x -1),f (1)=0,f ′(x )=ln x +1x-3,f ′(1)=-2.3分故曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0.6分 (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a x -1x +1>0.设g (x )=ln x -a x -1x +1,则g ′(x )=1x-2a x +12=x 2+21-a x +1x x +12,g (1)=0.9分 ①当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)单调递增,因此g (x )>0;②当a >2时,令g ′(x )=0得x 1=a -1-a -12-1,x 2=a -1+a -12-1.由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)单调递减,因此g (x )<0.综上,a 的取值X 围是(-∞,2].14分 ☞角度3 存在型不等式成立问题设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值X 围.[解] (1)f ′(x )=a x+(1-a )x -b . 由题设知f ′(1)=0,解得b =1.3分 (2)f (x )的定义域为(0,+∞), 由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=a x +(1-a )x -1=1-a x ⎝ ⎛⎭⎪⎫x -a 1-a (x -1).5分①若a ≤12,则a1-a ≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)单调递增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f (1)<a a -1,即1-a 2-1<aa -1,解得-2-1<a <2-1.7分②若12<a <1,则a 1-a >1,故当x ∈⎝ ⎛⎭⎪⎫1,a 1-a 时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫a 1-a ,+∞时,f ′(x )>0,f (x )在⎝⎛⎭⎪⎫1,a 1-a 上单调递减,在⎝ ⎛⎭⎪⎫a 1-a ,+∞上单调递增.10分所以存在x 0≥1,使得f (x 0)<aa -1的充要条件为f ⎝ ⎛⎭⎪⎫a 1-a <aa -1. 而f ⎝ ⎛⎭⎪⎫a 1-a =a ln a 1-a +a 221-a +a a -1>a a -1,所以不合题意. ③若a >1,则f (1)=1-a 2-1=-a -12<a a -1恒成立,所以a >1.综上,a 的取值X 围是(-2-1,2-1)∪(1,+∞).14分 [规律方法] 1.运用导数证明不等式,常转化为求函数的最值问题.2.不等式恒成立通常可以利用函数的单调性求出最值解决.解答相应的参数不等式,如果易分离参数,可先分离变量,构造函数,直接转化为函数的最值问题,避免参数的讨论.3.“恒成立”与“存在性”问题的求解是“互补”关系,即f (x )≥g (a )对于x ∈D 恒成立,应求f (x )的最小值;若存在x ∈D ,使得f (x )≥g (a )成立,应求f (x )的最大值.应特别关注等号是否成立问题.热点探究训练(二)1.设函数f (x )=3x 2+axex(a ∈R ). (1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值X 围. 【导学号:62172116】 [解] (1)对f (x )求导得f ′(x )= 6x +a e x -3x 2+ax exe x 2=-3x 2+6-a x +aex.3分 因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e(x -1),化简得3x -e y =0.7分(2)由(1)知f ′(x )=-3x 2+6-a x +aex, 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.9分当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数; 当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.11分由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92.故a 的取值X 围为⎣⎢⎡⎭⎪⎫-92,+∞.14分2.(2017·某某模拟)设函数f (x )=e xx2-k ⎝ ⎛⎭⎪⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值X 围. [解] (1)函数y =f (x )的定义域为(0,+∞).f ′(x )=x 2e x -2x e x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x=x e x -2e x x 3-k x -2x 2=x -2e x-kx x 3.由k ≤0可得e x-kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减,当x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).6分 (2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减, 故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x-kx ,x ∈[0,+∞). 因为g ′(x )=e x-k =e x-e ln k,当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x-k >0,y =g (x )单调递增, 故f (x )在(0,2)内不存在两个极值点; 当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减,x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增.所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点,当且仅当⎩⎪⎨⎪⎧g 0>0,g ln k <0,g 2>0,0<ln k <2,解得e<k <e22.13分综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值X 围为⎝ ⎛⎭⎪⎫e ,e 22. 14分3.(2016·全国卷Ⅰ)已知函数f (x )=(x -2)e x+a (x -1)2. (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值X 围.[解] (1)f ′(x )=(x -1)e x+2a (x -1)=(x -1)(e x+2a ).1分 (ⅰ)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.3分 (ⅱ)设a <0,由f ′(x )=0得x =1或x =ln(-2a ). ①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增. ②若a >-e2,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0; 当x ∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a )),(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减.5分③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0; 当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1),(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.7分(2)(ⅰ)设a >0,则由(1)知,f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝ ⎛⎭⎪⎫b 2-32b >0,所以f (x )有两个零点.9分(ⅱ)设a =0,则f (x )=(x -2)e x,所以f (x )只有一个零点.(ⅲ)设a <0,若a ≥-e2,则由(1)知,f (x )在(1,+∞)上单调递增.又当x ≤1时f (x )<0,故f (x )不存在两个零点;若a <-e2,则由(1)知,f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增.又当x ≤1时,f (x )<0,故f (x )不存在两个零点.综上,a 的取值X 围为(0,+∞).14分4.(2017·某某模拟)已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2]函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤f ′x +m 2在区间(t,3)上总不是单调函数,求m 的取值X 围;(3)求证:ln 22×ln 33×ln 44×…×ln n n <1n (n ≥2,n ∈N +). 【导学号:62172117】[解] (1)f ′(x )=a 1-xx(x >0). 当a >0时,f (x )的单调增区间为(0,1],减区间为[1,+∞); 当a <0时,f (x )的单调增区间为[1,+∞),减区间为(0,1]; 当a =0时,f (x )不是单调函数.4分(2)由f ′(2)=-a 2=1得a =-2,∴f ′(x )=2x -2x.∴g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数,且g ′(0)=-2, ∴⎩⎪⎨⎪⎧g ′t <0,g ′3>0.由题意知:对于任意的t ∈[1,2],g ′(t )<0恒成立,所以有:⎩⎪⎨⎪⎧g ′1<0,g ′2<0,g ′3>0,∴-373<m <-9.8分(3)证明:令a =-1,此时f (x )=-ln x +x -3,所以f (1)=-2,由(1)知f (x )=-ln x +x -3在(1,+∞)上单调递增,∴当x ∈(1,+∞)时f (x )>f (1),即-ln x +x -1>0,∴ln x <x -1对一切x ∈(1,+∞)成立,∵n ≥2,n ∈N +,则有0<ln n <n -1,∴0<ln n n <n -1n.word11 / 11 ∴ln 22×ln 33×ln 44×ln n n <12×23×34×…×n -1n =1n(n ≥2,n ∈N +).16分。
专题05 平面向量应用-2021年高考数学(理)母题题源系列(江苏专版)(原卷版)

【母题原题2】【2016江苏,理20】如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅的值是 ▲ .【母题原题3】【2015江苏,理14】设向量a k (cos ,sin cos )(0,1,2,,12)666k k k k πππ=+=,则110k =∑(a k a k+1)的值为【命题规律】平面向量既有“数”的特征又有“形”的特征,是“数”与“形”的完美结合.高考中对向量知识的考查主要是以两种形式出现:一是单纯考查向量知识,二是以向量为载体,综合考查不等式、三角、解析几何等知识.就向量知识而言,主要考查平面向量的模、相等、平行和垂直等概念,加法、减法、数乘和数量积等基本运算,还有就是向量的几何意义.【答题模板】解答本类题目,以2017年试题为例,主要考虑一步:解决向量问题,关键在于确定是用坐标表示还是用基底表示,然后根据向量有关性质或公式求解.α A CBO(第12题)【方法总结】1.在解决平面向量的数量积问题中,要注意:(1)两个向量的夹角的定义;(2)两个向量的夹角的范围;(3)平面向量的数量积的几何意义;(4)向量的数量积的运算及其性质等.2.平面向量的数量积的运算有两种形式:(2)利用坐标来计算,向量的平行和垂直都可以转化为坐标满足的等式,从而应用方程思想解决问题,化形为数,使向量问题数量化.3.根据平行四边形法则,对于非零向量a ,b ,当|a +b|=|a -b|时,平行四边形的两条对角线长度相等,此时平行四边形是矩形,条件|a +b|=|a -b|等价于向量a ,b 互相垂直.4.两个向量夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线.5.求解几何图形中的数量积问题,通过对向量的分解转化成已知向量的数量积计算是基本方法,但是如果建立合理的平面直角坐标系,把数量积的计算转化成坐标运算也是一种较为简捷的方法.6. 研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来. 对于涉及中线向量问题,利用向量加法与减法的平行四边形法则,可以得到一个很实用的结论:2244AO BCBA CA -⋅=7. 由向量数量积的定义θcos ||||⋅⋅=⋅b a b a (θ为a ,b 的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近年高考中出现的频率很高,应熟练掌握其解法.8. (1)平面向量a 与b 的数量积为·cos a b a b θ=,其中θ是a 与b 的夹角,要注意夹角的定义和它的取值范围:0180θ︒≤≤︒;(2)由向量的数量积的性质有||=a a a ·,·cos a ba bθ=,·0a b a b ⇔⊥=,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.9. 不含坐标的向量综合问题,解答时,按向量有关概念、性质、法则等通过运算解决,若条件方便建立坐标系,用坐标表示时,建立坐标系用坐标运算解决,给出坐标的向量综合问题,直接按向量各概念、法则的坐标表示将向量问题转化为代数问题处理.向量与其他知识交汇的题目,先按向量的概念、性质、法则脱去向量外衣,转化为相应的三角、数列、不等式、函数、解析几何等问题,再按相应的知识选取解答方法.10. 警示:①两向量夹角的取值范围是]0[π,,②0>•b a 与><b a ,为锐不等价,0<•b a 与><b a ,为钝角也不等价;③点共线和向量共线,直线平行与向量平行既有联系又有区别;④a 在b 方向上的投影为bb a •,而不是ab a •;⑤若a 与b 都是非零向量,则⇔=+0b a μλa 与b 共线.若a 与b 不共线,则00==⇔=+μλμλb a .⑥向量的数量积不满足结合律和消去律,即()()c b a c b a ••≠••,0,≠•=•a c a b a “不能”推出c b =.11. 平面向量的平行与垂直是高考命题的主要方向之一,此类题常见命题形式是:①考查坐标表示;②与三角函数、三角形、数列、解析几何等结合,解题时直接运用向量有关知识列出表达式,再依据相关知识及运用相关方法加以解决.12. 熟记平面向量的数量积、夹角、模的定义及性质是解答求模与夹角问题的基础.充分利用平面向量的几何运算法则、共线向量定理、平面向量数量积的运算法则、平面向量基本定理,探究解题思路是解决平面向量问题的保证.1. 【苏北三市(连云港、徐州、宿迁)2017届高三年级第三次调研考试】已知三个内角,,的对应边分别为,,,且,,当取得最大值时,的值为__________.2. 【2016-2017学年度苏锡常镇四市高三教学情况调研(二)】在ABC 中,AB AC ⊥,1AB t=,AC t =,P 是ABC 所在平面内一点,若4AB AC AP ABAC=+,则PBC 面积的最小值为 .3. 【2017课标3,理12】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为4. 【2017北京,理6】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 条件5. 【2017课标II ,理12】已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )7. 【2017山东,理12】已知12,e e是互相垂直的单位向量,若123-e e 与12λ+e e 的夹角为60,则实数λ的值是 .8. 【2017浙江,15】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是_______.9. 【2017课标1,理13】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b|= .10. 【2017年第三次全国大联考江苏卷】四边形ABCD 中,O 为对角线,AC BD 的交点,若||4,12,,2AC BA BC AO OC BO OD =⋅===,则DA DC ⋅=_____________.。
专题13 基本不等式应用-2018年高考数学(理)母题题源系列(江苏专版)(原卷版)

精品高考数学2018年全揭秘《高考母题题源》系列母题十三 基本不等式应用【母题原题1】【2018江苏,理13】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 与点D ,且1BD =,则4a c +的最小值为 ▲ .【母题原题2】【2017江苏,理10】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 ▲ .【母题原题3】【2016江苏,理12】已知实数,x y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,,, 则22x y +的取值范围是 ▲.【命题意图】高考在这部分既考查能力又考查思想,是中档题,甚至为难题.【命题规律】线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透.常见的命题角度有:(1)求线性目标函数的最值;(2)求非线性目标函数的最值;(3)线性规划中的参数问题.【方法总结】1.求目标函数的最值3步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线;(2)平移——将l 平行移动,以确定最优解的对应点的位置;(3)求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值.2.常见的3类目标函数(1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距z b的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2.(3)斜率型:形如z =y -b x -a. [提醒] 注意转化的等价性及几何意义.3.利用基本不等式求最值的方法利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有两种思路:(1)对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:拆项法、变系数法、凑因子法、换元法、整体代换法等.(2)条件变形,进行“1”的代换求目标函数最值.1.【江苏省南通市2018届高三最后一卷 --- 备用题数学试题】在斜中,若,则的最大值是__________.2.【江苏省盐城中学2018届高三考前热身2数学试卷】已知正实数满足,则的最小值为____.3.【江苏省扬州树人学校2018届高三模拟考试(四)数学试题】已知函数(,为正实数)只有一个零点,则的最小值为__________.4.【江苏省苏州市第五中学校2018届高三上学期期初考试数学(文)试题】已知三次函数在R 上单调递增,则的最小值为____________.5.【江苏省南京市2018届高三第三次模拟考试数学试题】若正数成等差数列,则的最小值为_________.6.【江苏省苏锡常镇四市2017-2018学年度高三教学情况调研(二)数学试题】已知为正实数,且,则的最小值为____.7.【江苏省无锡市2018届高三第一学期期末检测数学试卷】已知双曲线与椭圆的焦点重合,离心率互为倒数,设分别为双曲线的左,右焦点,为右支上任意一点,则的最小值为__________.8.【江苏省苏北六市2018届高三第二次调研测试数学(文科)试题】已知a ,b ,c 均为正数,且abc =4(a +b ),则a +b +c 的最小值为_______.9.【江苏省南通、徐州、扬州等六市2018届高三第二次调研(二模)测试数学(文理)试题】已知a b c ,,均为正数,且()4abc a b =+,则a b c ++的最小值为____.10.【江苏省扬州市2017-2018学年度第一学期期末调研测试高三数学试题】已知正实数,满足,则的最小值为__________.。
专题06 线性规划应用-高考数学(理)母题题源系列(江苏专版)

高考资源网(ks5u.com) 您身边的高考专家 高考资源网版权所有,侵权必究! 【母题原题1】【2017江苏,理13】在平面直角坐标系xOy中,(12,0),(0,6),AB点P在圆2250Oxy:上,若20,PAPB≤则点P的横坐标的取值范围是 ▲ .
【答案】[52,1]
【考点】直线与圆,线性规划 【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.
【母题原题2】【2016江苏,理12】已知实数,xy满足240220330xyxyxy,,, 则22xy的取值范围是 ▲ . 【答案】4[,13]5 【解析】画出不等式组表示的平面区域(图略),由图可知原点到直线220xy距离的平方为22xy的最小值,为224||55,原点到直线24=0xy与33=0xy的交点(2,3)距离的平
方为22xy的最大值,为13,因此22xy的取值范围为4[,13].5 【考点】线性规划 【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线(一般不涉及虚线),其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等,最后结合图形确定目标函数最值或值域范围. 高考资源网(ks5u.com) 您身边的高考专家 高考资源网版权所有,侵权必究! 【母题原题3】【2013江苏,理9】抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是__________.
【答案】12,2.
【命题意图】会从实际情境中抽象出简单的线性规划问题,并能加以解决.会解决以可行域为载体与其他知识交汇的问题.会巧用几何意义解决目标函数最值问题. 【命题规律】 1. 对简单线性规划的应用的考查,不但具有连续性,而且其题型规律易于把握; 2. 无参数的线性规划的考查,关键点是正确画出可行域,正确理解和应用目标函数的几何意义. 3. 含参数的线性规划的考查,参数可以在目标函数中,也可在可行域中;求解这类问题要有全局观念,结合目标函数逆向分析题意,整体把握解题的方向. 【答题模板】解答本类题目,以2017年试题为例,一般考虑如下两步:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学2017年全揭秘《高考母题题源》系列【母题原题1】【2017江苏,理20】已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求关于 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求的取值范围.【答案】(1)3a >(2)见解析(3)36a <≤试题解析:解:(1)由32()1f x x ax bx =+++,得222()323()33a a f x x axb x b '=++=++-.当3ax =-时,()f x '有极小值23a b -.因为()f x '的极值点是()f x 的零点.所以33()1032793a a a ab f -=-+-+=,又0a >,故2239a b a=+. 因为()f x 有极值,故()=0f x '有实根,从而231(27a )039a b a-=-≤,即3a ≥. 3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;3a >时,()=0f x '有两个相异的实根213=3a a b x ---,223=3a a bx -+-列表如下x1(,)x -∞1x12(,)x x2x2(,)x +∞()f x ' + 0 – 0 + ()f x极大值极小值故()f x 的极值点是12,x x . 从而3a >,因此2239a b a=+,定义域为(3,)+∞.(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而323212111222()()11f x f x x ax bx x ax bx +=+++++++2222121122121212(32)(32)()()23333x x x ax b x ax b a x x b x x =++++++++++ 346420279a ab ab -=-+=记()f x ,()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a -=-+,所以213()=9h a a a -+,3a >. 因为223()=09h a a a '--<,于是()h a 在(3,)+∞上单调递减. 因为7(6)=2h -,于是()(6)h a h ≥,故6a ≤.因此a 的取值范围为(36],.【考点】利用导数研究函数单调性、极值及零点【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 【母题原题2】【2016江苏,理19】已知函数()(0,0,1,1)xxf x a b a b a b =+>>≠≠. (1)设12,2a b ==. ①求方程()f x =2的根;②若对任意x ∈R ,不等式(2)()6f x mf x ≥-恒成立,求实数m 的最大值;(2)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值. 【答案】(1)①0 ②4 (2)1 【解析】试题解析:(1)因为12,2a b ==,所以()22x xf x -=+. ①方程()2f x =,即222xx-+=,亦即2(2)2210x x -⨯+=,所以2(21)0x-=,于是21x=,解得0x =.②由条件知2222(2)22(22)2(())2xx x x f x f x --=+=+-=-.因为(2)()6f x mf x ≥-对于x ∈R 恒成立,且()0f x >,所以2(())4()f x m f x +≤对于x ∈R 恒成立.而2(())444()2()4()()()f x f x f x f x f x f x +=+≥⋅=,且2((0))44(0)f f +=, 所以4m ≤,故实数m 的最大值为4.若00x >,同理可得,在02x 和log 2a 之间存在()g x 的非0的零点,矛盾. 因此,00x =. 于是ln 1ln ab-=,故ln ln 0a b +=,所以1ab =. 【考点】指数函数、基本不等式、利用导数研究函数单调性及零点【名师点睛】对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图等确定其中参数的范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数. 【母题原题3】【2015江苏,理19】已知函数),()(23R b a b ax x x f ∈++=. (1)试讨论)(x f 的单调性;(2)若a c b -=(实数c 是a 与无关的常数),当函数)(x f 有三个不同的零点时,a 的取值范围恰好是),23()23,1()3,(+∞--∞ ,求c 的值.【答案】(1)当0a =时, ()f x 在(),-∞+∞上单调递增;当0a >时, ()f x 在2,3a ⎛⎫-∞- ⎪⎝⎭,()0,+∞上单调递增,在2,03a ⎛⎫- ⎪⎝⎭上单调递减; 当0a <时, ()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减.(2) 1.c = 【解析】当0a =时,因为()230f x x '=>(0x ≠),所以函数()f x 在(),-∞+∞上单调递增;当0a >时,()2,0,3a x ⎛⎫∈-∞-+∞ ⎪⎝⎭时,()0f x '>,2,03a x ⎛⎫∈-⎪⎝⎭时,()0f x '<, 所以函数()f x 在2,3a ⎛⎫-∞-⎪⎝⎭,()0,+∞上单调递增,在2,03a ⎛⎫- ⎪⎝⎭上单调递减;当0a <时,()2,0,3a x ⎛⎫∈-∞-+∞ ⎪⎝⎭时,()0f x '>,20,3a x ⎛⎫∈- ⎪⎝⎭时,()0f x '<,所以函数()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减.【考点定位】利用导数求函数单调性、极值、函数零点【名师点晴】1.求函数的单调区间的步骤:①确定函数()y f x =的定义域;②求导数()y f x ''=,令()0f x '=,解此方程,求出在定义区间内的一切实根;③把函数()f x 的间断点(即()f x 的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义区间分成若干个小区间;④确定()f x '在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性. 2.已知函数的零点个数问题处理方法为:利用函数的单调性、极值画出函数的大致图像,数形结合求解.3.已知不等式解集求参数方法:利用不等式解集与对应方程根的关系找等量关系或不等关系.【命题意图】 导数是研究函数的重要工具,利用导数研究函数的单调性可以描绘出函数图象大致的变化趋势,是进一步解决问题的依据.分类讨论思想具有明显的逻辑特征,是整体思想一个重要补充,解决这类问题需要一定的分析能力和分类技巧.因此高考对这类题主要考查导数的运算、代数式化简与变形,考查运算求解能力,运用数形结合、分类讨论的思想方法分析与解决问题能力.【命题规律】 含有参数的函数导数试题,主要有两个方面:一是根据给出的某些条件求出这些参数值,基本思想方法为方程的思想;二是在确定参数的范围(或取值)使得函数具有某些性质,基本解题思想是函数与方程的思想、分类讨论的思想.含有参数的函数导数试题是高考考查函数方程思想、分类讨论思想的主要题型之一.这类试题在考查题型上,通常以解答题的形式出现,难度中等. 【答题模板】解答本类题目,以2017年试题为例,一般考虑如下三步:第一步:明确目标函数,利用导数分析目标函数性质 导函数()f x '的极值点是()f x 的零点,因此导函数是目标函数,对其求导,研究其极值点取法及取值条件.再根据极值点是()f x 的零点得等量关系,进而求出关于 的函数关系式,而极值取值条件实际为函数定义域,这一步导数的基本应用; 第二步:构造目标函数,利用导数证明目标函数性质 本题虽为不等式证明,实际为利用导数证明函数单调性进而确定最小值,这一步是导数的综合应用;第三步:寻求目标函数,利用导数讨论目标函数性质 通过图像可知极值点关于拐点对称,因此先论证12()()0f x f x +=,再转化到利用函数性质求解不等式2732a b ->-,即转化到第二步的内容,第三步是导数的灵活应用. 【方法总结】1.研究函数单调区间,实质研究函数极值问题.分类讨论思想常用于含有参数的函数的极值问题,大体上可分为两类,一类是定区间而极值点含参数,另一类是不定区间(区间含参数)极值点固定,这两类都是根据极值点是否在区间内加以讨论,讨论时以是否使得导函数变号为标准,做到不重不漏.2.求可导函数单调区间时首先坚持定义域优先原则,必须先确定函数的定义域,尤其注意定义区间不连续的情况,此时单调区间按断点自然分类;其次,先研究定义区间上导函数无零点或零点落在定义区间端点上的情况,此时导函数符号不变,单调性唯一;对于导函数的零点在定义区间内的情形,最好列表分析导函数符号变化规律,得出相应单调区间.3.讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论,在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论.讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制.4.含参数的函数的极值(最值)问题常在以下情况下需要分类讨论: (1)导数为零时自变量的大小不确定需要讨论;(2)导数为零的自变量是否在给定的区间内不确定需要讨论; (3)端点处的函数值和极值大小不确定需要讨论;(4)参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论. 5.求可导函数单调区间的一般步骤(1)确定函数)(x f 的定义域(定义域优先); (2)求导函数()f x ';(3)在函数)(x f 的定义域内求不等式()0f x '>或()0f x '<的解集.(4)由()0f x '>(()0f x '<)的解集确定函数)(x f 的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.6.由函数)(x f 在(,)a b 上的单调性,求参数范围问题,可转化为()0f x '≥ (或()0f x '≤)恒成立问题,要注意“=”是否可以取到.7. 求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.8. 函数、导数解答题中贯穿始终的是数学思想方法,在含有参数的试题中,分类与整合思想是必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为函数最值问题、把方程的根转化为函数零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分注意数学思想方法的应用.9. 导数及其应用通常围绕四个点进行命题.第一个点是围绕导数的几何意义展开,设计求曲线的切线方程,根据切线方程求参数值等问题,这类试题在考查导数的几何意义的同时也考查导数的运算、函数等知识,试题的难度不大;第二个点是围绕利用导数研究函数的单调性、极值(最值)展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,主要考查通过转化使用导数研究函数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;第四个点是围数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用. 10. 函数的单调性问题与导数的关系(1)函数的单调性与导数的关系:设函数()y f x =在某个区间内可导,若()0f x '>,则()f x 为增函数;若/()0f x <,则()f x 为减函数.(2)用导数函数求单调区间方法求单调区间问题,先求函数的定义域,在求导函数,解导数大于0的不等式,得到区间为增区间,解导数小于0得到的区间为减区间,注意单调区间一定要写出区间形式,不用描述法集合或不等式表示,且增(减)区间有多个,一定要分开写,用逗号分开,不能写成并集形式,要说明增(减)区间是谁,若题中含参数注意分类讨论;(3) 已知在某个区间上的单调性求参数问题先求导函数,将其转化为导函数在这个区间上大于(增函数)(小于(减函数))0恒成立问题,通过函数方法或参变分离求出参数范围,注意要验证参数取等号时,函数是否满足题中条件,若满足把取等号的情况加上,否则不加.(4)注意区分函数在某个区间上是增(减)函数与函数的增(减)区间是某各区间的区别,函数在某个区间上是增(减)函数中的区间可以是该函数增(减)区间的子集. 11.函数的极值与导数 (1)函数极值的概念设函数()y f x =在0x 附近有定义,若对0x 附近的所有点,都有0()()f x f x <,则称0()f x 是函数()f x 的一个极大值,记作y 极大值=0()f x ;设函数()y f x =在0x 附近有定义,若对0x 附近的所有点,都有0()()f x f x >,则称0()f x 是函数()f x 的一个极小值,记作y 极小值=0()f x .注意:极值是研究函数在某一点附近的性质,使局部性质;极值可有多个值,且极大值不定大于极小值;极值点不能在函数端点处取. (2)函数极值与导数的关系当函数()y f x =在0x 处连续时,若在0x 附近的左侧/()0f x >,右侧/()0f x <,那么0()f x 是极大值;若在0x 附近的左侧/()0f x <,右侧/()0f x >,那么0()f x 是极小值.注意:①在导数为0的点不一定是极值点,如函数3y x =,导数为/23y x =,在0x =处导数为0,但不是极 值点;②极值点导数不定为0,如函数||y x =在0x =的左侧是减函数,右侧是增函数,在0x =处取极小值,但在0x =处的左导数0(0)(0)lim x x x -∆→-+∆--∆=-1,有导数0(0)(0)lim x x x+∆→+∆-∆=1,在0x =处的导数不存在.(3)函数的极值问题①求函数的极值,先求导函数,令导函数为0,求出导函数为0点,方程的根和导数不存在的点,再用导数判定这些点两侧的函数的单调性,若左增由减,则在这一点取值极大值,若左减右增,则在这一点取极小值,要说明在哪一点去极大(小)值;②已知极值求参数,先求导,则利用可导函数在极值点的导数为0,列出关于参数方程,求出参数,注意可导函数在某一点去极值是导函数在这一点为0的必要不充分条件,故需将参数代入检验在给点的是否去极值;③已知三次多项式函数有极值求参数范围问题,求导数,导函数对应的一元二次方程有解,判别式大于0,求出参数的范围. 12.最值问题 (1)最值的概念对函数()y f x =有函数值0()f x 使对定义域内任意,都有()f x 0()f x (()f x 0()f x )则称0()f x 是函数()y f x =的最大(小)值.注意:①若函数存在最大(小)值,则值唯一;最大值可以在端点处取;若函数的最大值、最小值都存在,则最大值一定大于最小值.②最大值不一定是极大值,若函数是单峰函数,则极大(小)值就是最大(小)值. (2)函数最问题①对求函数在某一闭区间上,先用导数求出极值点的值和区间端点的值,最大者为最大值,最小者为最小值,对求函数定义域上最值问题或值域,先利用导数研究函数的单调性和极值,从而弄清函数的图像,结合函数图像求出极值;②对已知最值或不等式恒成立求参数范围问题,通过参变分离转化为不等式()f x ≤(≥)()g a ( 是自变量,是参数)恒成立问题,()g a ≥max ()f x (≤min ()f x ),转化为求函数的最值问题,注意函数最值与极值的区别与联系.1.【2017徐州考前信息卷20】已知函数2()f x x ax =+,()ln g x x b =+,,a b ∈R ,且()f x 的最小值为('(1))f g . (1)求的值;(2)若不等式()()bf x xg x ≤对任意21[,e ]ex ∈恒成立,其中是自然对数的底数,求的取值范围;(3)设曲线()y f x =与曲线()y g x =交于点000(,)(1)P x y x >,且两曲线在点P 处的切线分别为,.试判断,与轴是否能围成等腰三角形?若能,确定所围成的等腰三角形的个数;若不能,请说明理由.此时无符合题意的值;………………………………………………………6分 ②若0b >,令'()0h x =,解得1x b=. 列表如下:1(0,)b1b1(,)b+∞ '()h x ()h x↘极小值↗由题意,可知222()(3)ln 0,e e e (e )(e 3)ln e 0,h b h b ⎧=--⎪⎨⎪=--⎩≤≤ 解得2e 23e 1e 3b --≤≤. 故的取值范围为2e 2[,]3e 1e 3--.……………………………………………8分②当2αβ=时,由tan tan αβ>可得0122x +>, 而22tan tan tan 21tan βαββ==-,即02022211()x x x -=-, 整理得,32000210x x x --+=.…………………………………………………13分 令32()21x x x x ϕ=--+,则2'()322x x x ϕ=--. 令'()0x ϕ=,解得17x ±.列表如下:17(1,)3+ 173+ 17(,)3++∞'()x ϕ ()x ϕ↘极小值↗而(1)10ϕ=-<,()028ϕ=-<,(2)10ϕ=>, 所以()x ϕ在3(,2)2内有一个零点,也是(1,)+∞上的唯一零点.所以存在唯一的012)x +∈+∞满足题意.综上所述,,与轴能围成2个等腰三角形.……………………………16分2.【2017南通二模19】 已知函数1()e x f x =,()ln g x x =,其中e 为自然对数的底数.(1)求函数()()y f x g x =在x 1处的切线方程;(2)若存在12x x ,()12x x ≠,使得[]1221()()()()g x g x f x f x λ-=-成立,其中为常数, 求证:e λ>;(3)若对任意的(]01x ∈,,不等式()()(1)f x g x a x -≤恒成立,求实数a 的取值范围.(2)由已知等式[]1221()()()()g x g x f x f x λ-=-得1122()()()()g x f x g x f x λλ+=+.记()()()ln ex p x g x f x x λλ=+=+,则e ()e xx x p x x λ-'=. …… 4分 假设e λ≤.①若λ≤0,则()0p x '>,所以()p x 在()0+∞,上为单调增函数. 又12()()p x p x =,所以12x x =,与12x x ≠矛盾. …… 6分②若0e λ<≤,记()e x r x x λ=-,则()e x r x λ'=-.令()0r x '=,解得0ln x λ=.当0x x >时,()0r x '>,()r x 在()0x +∞,上为单调增函数; 当00x x <<时,()0r x '<,()r x 在()00x ,上为单调减函数. 所以0()()=1ln )0r x r x λλ-≥(≥,所以()0p x '≥, 所以()p x 在()0+∞,上为单调增函数. 又12()()p x p x =,所以12x x =,与12x x ≠矛盾.综合①②,假设不成立,所以e λ>. …… 9分 (3)由()()(1)f x g x a x -≤得ln e (1)x x a x --≤0.记ln e (1)x F x x a x --()=,0x <≤1, 则()211e e e x x xF x ax x a x x '-=-()=. ①当1e a ≤时,因为211ee x x ≥,e 0x x >,所以0F x '()≥,所以F x ()在(]0+∞,上为单调增函数,所以(1)F x F ()≤=0,故原不等式恒成立. …… 12分 ②法一:当1ea >时,由(2)知e e x x ≥,3211e e a x F x a x x x -'-=()≤,当()13e 1a x -<<时,0F x '<(),()F x 为单调减函数,所以(1)F x F >()=0,不合题意. 法二:当1ea >时,一方面1=1e 0F a '-<(). 另一方面,111e x a ∃=<,()()111121111e e e e 10F x a x x a x a a x x '-=-=->()≥.所以01(1)x x ∃∈,,使0=0F x '(),又F x '()在(0)+∞,上为单调减函数, 所以当01x x <<时,0F x '<(),故F x ()在0(1)x ,上为单调减函数, 所以(1)F x F >()=0,不合题意.综上,1e a ≤. …… 16分3. 【2017泰州考前预测卷19】已知函数2()2ln f x x x ax =+-,R a ∈. (1)若函数()y f x =在(0,)+∞上单调递增,求实数的取值范围; (2)若a =e ,解不等式:()2f x <;(3)求证:当4a >时,函数()y f x =只有一个零点.所以4a ≤,即实数的取值范围是(,4]-∞. ………4分(2)当a =e 时,2()2ln f x x x x =+-e ,2222()20x x f x x x x-+'=+-=>e e , 所以()f x 在(0,)+∞上单调递增,又因为2()2ln 2f =+-⋅e e e e e =,所以()2()()f x f x f <⇔<e ,因此0x <<e , 故不等式()2f x <的解集为(0,)e . ………9分(3)2222()2x ax f x x a x x-+'=+-=,(0,)x ∈+∞,令2()22g x x ax =-+,当4a >时,因为2160a ∆=->,所以2()22g x x ax =-+一定有两个零点,设为1212,()x x x x <,又因为121x x =,所以1201x x <<<,则()f x 在区间1(0,)x 或2(,)x +∞上单调递增,在12(,)x x 上单调递减, ………12分因为2111()220g x x ax =-+=,所以22111111()2ln 2ln 2f x x x ax x x =+-=--, 因为101x <<,所以221111()2ln 22ln120f x x x x =--<--<,所以21()()0f x f x <<,又()2ln ()f x x x x a =+-,则()2ln 0f a a =>,所以()f x 在(0,)+∞上只有一个零点. ………16分 4. 【2017苏锡常镇二模19】已知函数()(1)ln f x x x ax a =+-+(为正实数,且为常数). (1)若函数()f x 在区间(0,)+∞上单调递增,求实数的取值范围; (2)若不等式(1)()0x f x -≥恒成立,求实数的取值范围.【解析】解:(1)()(1)ln f x x x ax a =+-+,1()ln +x f x x a x+'=-. ……1分 因()f x 在(0,)+∞上单调递增,则()0f x '≥,1ln +1a x x+恒成立. 令1()ln +1g x x=+,则21()x g x -'=, ……2分 因此,min ()(1)2g x g ==,即02a <.……6分(2)当02a<时,由(1)知,当(0,)x ∈+∞时,()f x 单调递增. ……7分又(1)0f =,当(0,1)x ∈,()0f x <;当(1,)x ∈+∞时,()0f x >. ……9分 故不等式(1)()0x f x -恒成立. ……10分若2a >,ln (1)1()x x a x f x x+-+'=,设()ln (1)1p x x x a x =+-+,令()ln 20p x x a '=+-=,则2e 1a x -=>. …12分 当2(1,e )a x -∈时,()0p x '<,()p x 单调递减,则()(1)20p x p a <=-<, 则()()0p x f x x'=<,所以当2(1,e )a x -∈时,()f x 单调递减, ……14分 则当2(1,e )a x -∈时,()(1)0f x f <=,此时(1)()0x f x -<,矛盾. ……15分 因此,02a <. ……16分5. 【2017南京二模19】已知函数f (x )=e x-ax -1,其中e 为自然对数的底数,a ∈R . (1)若a =e ,函数g (x )=(2-e)x . ①求函数h (x )=f (x )-g (x )的单调区间; ②若函数F (x )=⎩⎨⎧f (x ),x ≤m ,g (x ),x >m的值域为R ,求实数m 的取值范围;(2)若存在实数x 1,x 2∈,使得f (x 1)=f (x 2),且|x 1-x 2|≥1,求证:e -1≤a ≤e 2-e . 【解析】解:(1)当a =e 时,f (x )=e x-e x -1.……4分由①可知当m<0时,h(m)=e m-2m-1>h(0)=0,故(*)不成立.因为h(m)在(0,ln2)上单调递减,在(ln2,1)上单调递增,且h(0)=0,h(1)=e-3<0,所以当0≤m≤1时,h(m)≤0恒成立,因此0≤m≤1.………………… 6分2°当m>1时,f (x)在(-∞,1)上单调递减,在(1,m]上单调递增,所以函数f (x)=e x-e x-1在(-∞,m]上的值域为.………………… 9分(2)f ′(x)=e x-a.若a≤0时,f ′(x)>0,此时f(x)在R上单调递增.由f(x1)=f(x2)可得x1=x2,与|x1-x2|≥1相矛盾,所以a>0,且f(x)在(-∞,ln a]单调递减,在,则由f (x1)=f (x2)可得x1=x2,与|x1-x2|≥1相矛盾,同样不能有x1,x2∈,故f (1)≤f (x1)=f (x2).…………………… 14分又f (x)在(-∞,ln a]单调递减,且0≤x1<ln a,所以f (x1)≤f (0),所以f (1)≤f (0),同理f (1)≤f (2).即⎩⎨⎧e -a -1≤0,e -a -1≤e 2-2a -2,解得e -1≤a ≤e 2-e -1, 所以 e -1≤a ≤e 2-e . …………………… 16分6.【2017镇江一模20】已知函数x x x f ln )(=,)()(12-=x x g λ(λ为常数). (1)若函数)(x f y =与函数)(x g y =在1=x 处有相同的切线,求实数λ的值; (2)若21=λ,且1≥x ,证明:)()(x g x f ≤; (3)若对任意),[+∞∈1x ,不等式恒)()(x g x f ≤成立,求实数λ的取值范围.(3)设函数()()2ln 1H x x x x λ=--,从而对任意[)1x ∈+∞,,不等式()0(1)H x H =恒成立. 又()ln 12H x x x λ'=+-, 当()ln 120H x x x λ'=+-,即ln 12x xλ+恒成立时, 函数()H x 单调递减. ……10分 设()ln 1x r x x +=,则()2ln 0xr x x-'=,所以()()max 11r x r ==,即1122λλ⇒,符合题意; ……12分 当0λ时,()ln 120H x x x λ'=+-恒成立,此时函数()H x 单调递增.于是,不等式()(1)0H x H =对任意[)1x ∈+∞,恒成立,不符合题意; ……13分于是当11,2x λ⎛⎫∈ ⎪⎝⎭时,()0H x >成立,不符合题意; ……15分综上所述,实数的取值范围为:12λ. ……16分7. 【2017扬州一模20】已知函数()()()f x g x h x =⋅,其中函数()x g x e =,2()h x x ax a =++. (1)求函数()g x 在()1,(1)g 处的切线方程;(2)当02a <<时,求函数()f x 在[2,]x a a ∈-上的最大值;(3)当0a =时,对于给定的正整数,问函数()()2(ln 1)F x e f x k x =⋅-+是否有零点?请说明理由.(参考数据 1.649, 4.482,ln 20.693e e e e ≈≈≈≈) 【解析】解:(1) ()xg x e '=,故(1)g e '=,所以切线方程为(1)y e e x -=-,即y ex = ---------------------3分(3)结论:当1k =时,函数()F x 无零点;当2k ≥时,函数()F x 有零点 ------------9分 理由如下:①当1k =时,实际上可以证明:22ln 20x ex e x -->.方法一:直接证明2()2ln 2xF x ex e x =--的最小值大于0,可以借助虚零点处理.212()(2)x F x x x e x +'=+-,显然可证212()(2)x F x x x e x+'=+-在()0,+∞上递增,因为1112211212()2()20e eF e e e e e e e e e +⎡⎤⎛⎫'=+-=+-<⎢⎥ ⎪⎝⎭⎣⎦,32154024F e ⎛⎫'=-> ⎪⎝⎭,所以存在011(,)2x e ∈,使得()00F x '=,所以当0(0,)x x ∈时,()F x 递减;当0(,)x x ∈+∞时,()F x 递增, 所以()()00min 012(ln 1)2F x F x x x ==--+,其中011(,)2x e ∈, 而()12(ln 1)2x x x ϕ=--+递减,所以()132(ln 2)025x ϕϕ⎛⎫>=-> ⎪⎝⎭,所以()min 0F x >,所以命题得证。