中考数学思维方法讲义【第5讲】解直角三角形专题
《解直角三角形》教学设计

《解直角三角形》教学设计(续表)图28-2-5 教师呈现问题并引导学生结合图形,观察已知和的正弦来求∠A的(续表)(续表)【学习目标】 1.知识技能(1)掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.(2) 理解解一个直角三角形的前提条件. 2.解决问题通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3.数学思考 让学生思考:为什么一个直角三角形可以解的前提条件是必须有两个元素(其中一个必须为边).从而让学生理解画一个直角三角形的条件.4.情感态度(1) 通过给定具体的两个条件(其中一个为边),让学生们画直角三角形,培养学生合作交流的意识和探索精神.(2)通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯. 【学习重难点】重点:直角三角形的解法.难点: (1)三角函数在解直角三角形中的灵活运用.(2)学生可能不理解在已知的两个元素中,为什么至少有一个是边.课前延伸【知识梳理】(1) 在Rt △ABC 中,∠C =90°,a =3,c =4,则b =. (2) 在Rt △ABC 中,∠C =90°,∠A =28°,那么∠B =__62°__.(3) 在Rt △ABC 中,∠C =90°,a =4,b =5,则sin A =41,cos A =41,tan A =__45__(4) 在Rt △ABC 中,∠C =90°, ∠A =30°,a =6,则c =__12__,b =. (5) 在Rt △ABC 中,∠C =90°,已知c =6, ∠A =50°,则a =__6_sin50°__. (6) 意大利披萨斜塔在建成的时候就已倾斜,其塔顶中心点偏离垂直中心线2.1米,1972年披萨地区发生地震,这座高54.5米的斜塔在大幅摇摆后依然屹立,但塔顶中心点偏离垂直中心线增至5.2米,请你算出这时塔身中心线与垂直中心线的夹角.课内探究一、 课堂探究1(问题探究,自主学习)(1)在Rt △ABC 中,∠C =90°,c =28, ∠B =60°,解这个直角三角形. (2)在Rt △ACB 中,c =90°,a =30, ∠B =80°, 解这个直角三角形. (3)在Rt △ABC 中,c =90°,a =3,b =3, 解这个直角三角形.二、课堂探究2(分组讨论,合作探究)(1) 画一个直角三角形,使两条直角边分别为3和4.(2) 画一个直角三角形,使一条直角边为3,一个锐角为35°.(3) 画一个直角三角形,使斜边长为8,一个锐角为40°.(4) 画一个直角三角形,使两个锐角分别为30°和60°.各小组比较由(1)(2)(3)(4)画出的直角三角形.讨论1:你觉得给出什么样的条件可以画出一个确定的三角形.讨论2:你觉得确定一个直角三角形需要的元素有什么条件?三、反馈训练1.必做题在Rt△ABC中,∠C=90°,已知b=20, ∠B=35°,解这个直角三角形(结果保留小数);(2)在Rt△ABC中,∠C=90°,已知a=10 3,b=20, 解这个直角三角形.2.选做题在Rt△ABC中,∠C=90°,AC=15, ∠A的平分线AD=10 3,解这个直角三角形.课后提升1. 在Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.2. 已知在△ABC中,∠B=60°,∠C=45°,AB=6,求BC长.3. 如图,在两面墙之间有一个底端在点A的梯子,当它靠在一侧墙上时,梯子的顶端在点B处;当它靠在另一侧墙上时,梯子的顶端在点D处.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3 2 m.求点B到地面的垂直距离BC.图28-2-9。
解直角三角形题型归纳-2023年中考数学拉分专题(教师版含解析)

专题06 解直角三角形题型归纳1.如图是某小区地下停车场入口处栏杆的示意图,MQ、PQ分别表示地面和墙壁的位置,OM表示垂直于地面的栏杆立柱,OA、AB是两段式栏杆,其中OA段可绕点O旋转,AB 段可绕点A旋转.图1表示栏杆处于关闭状态,此时O、A、B在与地面平行的一直线上,并∥,OA段与竖直方向夹角为且点B接触到墙壁;图2表示栏杆处于打开状态,此时AB MQAB=.OA=,150cm 30︒.已知立柱宽度为30cm,点O在立柱的正中间,120cmOM=,120cm(1)求栏杆打开时,点A到地面的距离;(2)为确保通行安全,要求汽车通过该入口时,车身与墙壁间需至少保留10cm的安全距离,问一辆最宽处为2.1m,最高处为2.1m的货车能否安全通过该入口?(取1.73)【详解】(1)(2)2.如图,株洲市炎陵县某中学在实施“五项管理”中,将学校的“五项管理”做成宣传牌(CD),放置在教学楼A栋的顶部(如图所示)该中学数学活动小组在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿芙蓉小学围墙边坡AB向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度为i=1:3,AB m,AE=8m.(1)求点B距水平面AE的高度BH.(2)求宣传牌CD的高度.(结果精确到0.1【答案】(1)点B距水平面AE的高度BH是2米【我思故我在】本题考查了解直角三角形的应用-仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.3.如图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC 与手臂MC 始终在同一直线上,枪身BA 与额头保持垂直量得胳膊28cm MN =,枪柄与枪身之间的夹角为120°(即120MBA ∠=︒),肘关节M 与枪身端点A 之间的水平宽度为25.3cm(即MP 的长度),枪身8.5cm BA =.(1)求M B 的长;(2)测温时规定枪身端点A 与额头距离范围为3~5cm .在图2中,若测得75BMN ∠=︒,小红与测温员之间距离为50cm 问此时枪身端点A 与小红额头的距离是否在规定范围内?并说明理由.(结果精确到0.1cm 1.4≈ 1.7≈) 【答案】(1)33.6cm ;(2)在规定范围内,理由见详解.【分析】(1)过点B 作BH MP ⊥于点H ,在Rt BMH 中,利用含30°直角三角形三边关系,即可解答;(2)延长PM 交FG 于点I ,45NMI ∠=︒,在Rt NMI 中,利用三角函数的定义即可求出MI 的长,比较即可判断.(1)解:过点B 作BH MP ⊥于点H ,由题可知四边形ABHP 为矩形,如下图:Rt BMH Rt NMI 4.小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B ,如图所示.于是他们先在古树周围的空地上选择一点D ,并在点D 处安装了测量器CD ,测得=135ACD ∠︒;再在BD 的延长线上确定一点G ,使5DG =米,并在G 处的地面上水平放置了一个小平面镜,小明沿着BG 方向移动,当移动到点F 时,他刚好在小平面镜内看到这棵古树的顶端A 的像,此时,测得2FG =米,小明眼睛与地面的距离=1.6EF 米,测量器的高度=0.5CD 米.已知点F 、G 、D 、B 在同一水平直线上,且EF 、CD 、AB 均垂直于FB ,则这棵古树的高度AB 为多少米?(小平面镜的大小忽略不计)ACH ,得出ABG ∽△,因此得出米,ACH 中,5.广场上有一个充满氢气的气球P ,被广告条拽着悬在空中,甲乙二人分别站在E 、F 处,他们看气球的仰角分别是30度、45度,E 点与F 点的高度差AB 为1米,水平距离CD 为5米,FD 的高度为0.5米,请问此气球有多高?(结果保留到0.1米).Rt PEA AE tan30°6.综合与实践小明为自己家设计了一个在水平方向可以伸缩的遮阳蓬,如图所示,已知太原地区在夏至日的正午太阳高度角(即正午太阳光线与地平面的夹角)为75︒ ,冬至日的正午太阳高度角为29.5︒ ,小明家的玻璃窗户()AB 高为190cm ,在A 点上方20cm 的C 处安装与墙垂直的宽为CD 的遮阳蓬,并且该遮阳蓬可伸缩(CD 可变化);为了保证在夏至日正午太阳光不射到屋内,冬至日正午整块玻璃都能受到太阳光照射,求可伸缩的遮阳蓬CD 宽度的范围.(结果精确到0.1,参考数据:sin750.97︒=,cos750.26︒=,tan75 3.73︒=,sin29.50.49︒=,cos29.50.87︒=,tan29.50.57︒=)t R BCD ,求出t R BCD 中,cm 210 ,DBE ∠cm7.如图,在航线l 的两侧分别有两个灯塔A 和B ,灯塔A 到航线l 的距离为3AC =千米,灯塔B 到航线l 的距离为4BD =千米,灯塔B 位于灯塔A 南偏东60︒方向.现有一艘轮船从位于灯塔B 北偏西53︒方向的N (在航线l 上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A 正南方向的点C (在航线l 上)处.( 1.73≈,sin530.80≈︒,cos530.60≈︒,tan53 1.33≈︒ )(1)求两个灯塔A 和B 之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时). Rt ACM 中,3cos60=AM ︒,6AM = ,Rt BDM 中,cos60=BD BM ︒,8BM =,AM BM =+答:两个灯塔Rt ACM 中,tan60=3MC ︒,33=MC ,Rt BDM 中,tan60=4DM ︒,MC DM =+Rt BDN △中,由题意,得DBN ∠8.风能作为一种清洁能源越来越受到世界各国的重视,我市结合自身地理优势架设风力发电机利用风能发电.王芳和李华假期去明月峰游玩,看见风电场的各个山头上布满了大大小小的风力发电机,好奇的想知道风力发电机塔架的高度.如图,王芳站在C 点测得C 点与塔底D 点的距离为25m ,李华站在斜坡BC 的坡顶B 处,已知斜坡BC 的坡度i =,坡面BC 长30m ,李华在坡顶B 处测得轮毂A 点的仰角38α=︒,请根据测量结果帮他们计算:(1)斜坡顶点B 到CD 所在直线的距离;(2)风力发电机塔架AD 的高度.(结果精确到0.1m ,参考数据sin380.62︒≈,cos380.79︒≈,tan380.78︒≈ 1.41 1.73)≈BC︒=153由题意得,四边形BEDF由勾股定理得:EC=,ABF BF=︒≈⨯Rt ABF中,tan38400.7840=+AD AF FD答:塔架高度【我思故我在】本题考查了解直角三角形的实际应用以及勾股定理,根据题意构造直角三角形是解本题的关键.9.小明和小亮利用数学知识测量学校操场边升旗台上的旗杆高度.如图,旗杆AB立在水平的升旗台上,两人测得旗杆底端B到升旗台边沿C的距离为2m,升旗台的台阶所在的斜坡CD长为2m,坡角为30,小明又测得旗杆在太阳光下的影子落在水平地面MN上的部分DE的长为6m,同一时刻,小亮测得长1.6m的标杆直立于水平地面时的影子长为1.2m.请你帮小明和小亮求出旗杆AB 的高度( 1.732)CDG ∠=12CG ∴=HE HG ∴=同一时刻,物高和影长成正比,1.61.2AH HE ∴=握同一时刻,物高和影长成正比是解决本题的关键.10.某项目学习小组用测倾仪、皮尺测量小山的高度MN ,他们设计了如下方案(如图):①在点A 处安置测倾仪,测得小山顶M 的仰角MCE ∠的度数;②在点A 与小山之间的B 处安置测倾仪,测得小山顶M 的仰角MDE ∠的度数(点A ,B 与N 在同一水平直线上);③量出测点A ,B 之间的距离.已知测倾仪的高度 1.5AC BD ==米,为减小误差,他们按方案测量了两次,测量数据如下表(不完整):(1)写出MCE ∠的度数的平均值.(2)根据表中的平均值,求小山的高度.(参考数据:sin 220.37,cos 220.93,tan 220.40︒≈︒≈︒≈) (3)该小组没有利用物体在阳光下的影子来测量小山的高度,你认为原因可能是什么?(写出一条即可)【答案】(1)22°(2)101.5米(3)小山的影子长度无法测量【分析】(1)根据平均数公式,用两次测量得的MCE ∠的度数和除以2即可求解;(2)在Rt △MDE 中,利用仰角⊥MDE 的45°,即可求得ME =DE ,在Rt △MCE 中,利用仰角⊥MCE 的正切值,可得ME =CE ⋅tan⊥MCE ,进而由CE =CD +DE =CD +ME ,易知四边形CANE 、四边形ABDC 是矩形,可得EN =AC =1.5米,CD =AB =150米,代入即可求出ME 的值,然后由MN =ME +NE 求解;11.小红家的阳台上放置了一个晒衣架(如图①),图②是晒衣架的侧面示意图,立杆AB,CD相交于点O,B,D两点立于地面,经测量:AB=CD=136 cm,OA=OC=51 cm,OE=OF =34 cm,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32 cm(参考数据:sin 61.9°≈0.882,cos 61.9°≈0.471,tan 28.1°≈0.534).(1)求证:AC⊥BD .(2)求扣链EF 与立杆AB 的夹角⊥OEF 的度数(结果精确到0.1°).(3)小红的连衣裙穿在晒衣架上的总长度达到122 cm ,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由. 证明:证法一:,AB CDOA OC =1(1802OAC ∴∠==︒﹣同理可证:ODB =∠=OAC ∴∠=.AC BD ∴证法二:AB =85cm OD ==OA OC OB OD ==又,AOC BODAOC BOD ∴∽,OAC OBD ∴∠=∠,.AC BD ∴(2)解:在OEF 中,EF BD ,OEM ,Rt Rt OEM ABH ∽,,OE OM OM AB AH AB AH OE ⋅===所以:小红的连衣裙垂挂在衣架后的总长度解法二:小红的连衣裙会拖落到地面)可证:EF BD ,ABD ∴∠BD ⊥于点, 136ABD =所以:小红的连衣裙垂挂在衣架后的总长度12.开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC 的高度,如图,在A 处用测角仪测得拂云阁顶端D 的仰角为34°,沿AC 方向前进15m 到达B 处,又测得拂云阁顶端D 的仰角为45°.已知测角仪的高度为1.5m ,测量点A ,B 与拂云阁DC 的底部C 在同一水平线上,求拂云阁DC 的高度(结果精确到1m .参考数据:sin340.56︒≈,cos340.83︒≈,tan340.67︒≈).EG FG -即0.67DG -解得DG ≈DC DG ∴=∴拂云阁13.如图,为测量某建筑物AB 的高度,小刚采用了如下的方法:先从与建筑物底端B 在同一水平线上的C 点出发,沿斜坡CD 行走60米至坡顶D 处,再从D 处沿水平方向继续前行若干米后至E 点处,在E 点测得该建筑物顶端A 的仰角为60︒,建筑物底端B 的俯角为45︒,点AB C D E 、、、、在同一平面内,斜坡CD 的坡度34i =:.请根据小刚的测量数据,计算出建筑物AB 的高度.( 1.73≈)Rt DFC 中,利用勾股定理求出Rt GEB 中,利用锐角三角函数的定义求出Rt AGE 中,利用锐角三角函数的定义求出的长,进行计算即可解答.【详解】解:过点,垂足为F 交AB 于点GRt DFC 中,60DC =,⊥560a =解得12a =,⊥336DF a ==,36GB DF =∴=Rt GEB 中,Rt AGE 中,tan EG =⋅AG GB =+建筑物AB 的高度约为【我思故我在】本题考查了解直角三角形的应用14.如图1,2分别是某款篮球架的实物图与示意图,AB BC ⊥于点B ,底座=1BC 米,底座BC 与支架AC 所成的角60ACB ∠=︒,点H 在支架AF 上,篮板底部支架EH BC .EF EH ⊥于点E ,已知AH HF 3=2HE 米.(1)求篮板底部支架HE 与支架AF 所成的FHE ∠的度数.(2)求篮板底部点E 到地面的距离,(精确到0.1米)( 1.41≈ 1.73≈) 【答案】(1)篮板底部支架HE 与支架AF 所成的角⊥FHE 的度数为45°;(2)篮板底部点E 到地面的距离约为2.2米【分析】(1)在Rt ⊥HEF 中,利用锐角三角函数的定义进行计算即可解答;(2)延长FE 交直线BC 与点M ,过点A 作AG ⊥FM ,垂足为G ,根据题意易证四边形ABMG 是矩形,从而得AB =GM ,然后在Rt ⊥AGF 中求出FG ,从而求出EG ,最后在Rt ⊥ABC 中,求出AB ,进行计算即可解答.(1)⊥EF ⊥EH ,⊥⊥HEF =90°,【我思故我在】本题考查了解直角三角形的应用,勾股定理的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.。
中考讲义:等腰三角形与直角三角形,解直角三角形

中考讲义:等腰三角形与直角三角形,解直角三角形第一部分:等腰三角形一.基础知识1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.2.等边三角形的定义:有三条边相等的三角形叫做等边三角形.3.等腰三角形的性质:(1)两腰相等.(2)两底角相等.(3)“三线合一”,即顶角平分线、底边上的中线、底边上的高互相重合.(4)是轴对称图形,底边的垂直平分线是它的对称轴.线段的垂直平分线:性质定理:线段的垂直平分线上的点到线段的两个端点距离相等判定定理:与线段的两个端点距离相等的点在这条线段的垂直平分线上,线段的垂直平分线可以看做是和线段两个端点距离相等的所有点的集合.4.等腰三角形的判定:(1)有两条边相等的三角形是等腰三角形.(2)有两个角相等的三角形是等腰三角形.5.等边三角形的性质:三边都相等,三个角都相等,每一个角都等于60.6.等边三角形的判定:(1)三条边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60的等腰三角形是等边三角形.7.等腰直角三角形的性质:顶角等于90,底角等于45,两直角边相等.等腰直角三角形的判定:(1)顶角为90的等腰三角形.(2)底角为45的等腰三角形.8.等腰三角形的两大特性。
9.构造等腰三角形(两圆一线找等腰)。
第二部分:直角三角形基础知识1、勾股定理和它的逆定理:勾股定理:若 一 个直角三角形的两直角边为a 、b 斜边为c 则a 、b 、c 满足 逆定理:若一个三角形的三边a 、b 、c 满足 则这个三角形是直角三角形【名师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合 2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据, 3、勾股数,列举常见的勾股数三组 、 、 】 2、直角三角形的性质:除勾股定理外,直角三角形还有如下性质: ⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它所对 边是 边的一半 3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:⑴定义法有一个角是 的三角形是直角三角形 ⑵有两个角 的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的 这个三角形是直角三角形【名师提醒:直角三角形的有关性质在四边形、相似图形、圆中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】第三部分,解直角三角形基础知识锐角三角函数的概念1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦, 记为sinA ,即casin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即c bcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即batan =∠∠=的邻边的对边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、都叫做∠A 的锐角三角函数3、一些特殊角的三角函数值三角函数30°45°60°sinα 21 22 23cos α 23 2221tan α33134、各锐角三角函数之间的关系 (1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A) ; (2)平方关系:1cos sin 22=+A A (3)倒数关系:tanA ∙tan(90°—A)=1 (4)弦切关系:tanA=AAcos sin 5、锐角三角函数的增减性 当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小);(2)余弦值随着角度的增大(或减小)而减小(或增大);(3)正切值随着角度的增大(或减小)而增大(或减小);( 解直角三角形1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
中考题型:解直角三角形必备概念+解题方法

中考题型:解直角三角形一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角。
由直角三角形中的已知元素,求出其余未知元素的过程,称之为解直角三角形。
利用直角三角形的边角关系,知道其中的两个元素(至少有一个是边),就可以求出其余三个未知元素。
解直角三角的四种基本类型:(1)已知两直角边;(2)已知一直角边和斜边;(3)∠A +∠B =90°常用的三角函数值:2330cos 21=︒145tan 2245cos 2245sin =︒=︒=︒360tan 2160cos 2360sin =︒=︒=︒解直角三角形常用的概念 仰角、俯角:在视线与水平线所成的锐角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角..注:与仰角、俯角、坡度、坡角、方位角有关的问题,通常与勾股定理、锐角三角函数综合考查。
利用解直角三角形解决实际问题的方法利用解直角三角形解决实际问题时,分析背景语言,由实际图抽象出数学图形,把实际问题化归为直角三角形中的边角问题。
具体方法如下:(1)紧扣三角函数的定义,寻找边角关系.(2)添加辅助线,构造直角三角形。
作高线是常用的辅助线添加方法.(3)逐个分析相关直角三角形,构造方程求解。
一般设最短的边为x,先分别在不同的直角三角形中用含x的代数式表示出未知边,再根据两个直角三角形边的数量关系(和差或相等)列方程求出未知量.(2016•贵阳模拟.22.10分)如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)【分析】过点D作DH⊥BC于点H,则四边形DHCE是矩形,DH=EC,DE=HC,设建筑物BC的高度为xm,则BH=(x﹣5)m,由三角函数得出DH= (x﹣5),AC=EC﹣EA= (x﹣5)﹣10,得出x=tan50°•[ (x﹣5)],解方程即可.【解答】解:过点D作DH⊥BC于点M,如图所示:则四边形DHCE是矩形,DH=EC,DE=HC,设建筑物BC的高度为xm,则BH=(x﹣5)m,在Rt△DHB中,∠BDH=30°,∴DH= (x﹣5),AC=EC﹣EA= (x﹣5)﹣10,在Rt△ACB中,∠BAC=50°,tan∠BAC= ᒀ ᒀ,∴x=tan50°•[ (x﹣5)],解得:x≈21,答:建筑物BC的高约为21m.【点评】本题考查了仰角、坡角的定义,解直角三角形的应用,能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形是解题的关键.。
中考数学专题 解直角三角形含答案

4、在 ABC 中, C 1350 ,a 2,b 2 求:①c 的长 ②sinA 的值 ③求 AB 边上的高 h
5、如图 8,在 ABC 中,已知 C 900 , AC 6 3,BAC 的平分线 AD=12,求 ABC 其余各边的长,各角的度数和 ABC 的内切圆的半径的长。
6、如图 9,要测铁塔的高 AB,从与铁塔底部在同一水平直线上的 C、D 两处,用测 角仪器测得铁塔顶 B 的仰角分别为 300 和 450 ,C、D 间距离为 14 米,测角仪器的
2
A、 >600
B、 <600
C、 >300
D、 <300
13、若 00< <1800,且 cos 3 ,则角 的度数是:
2
A、300
B、600
C、1500
D、300 或 1500
14、在 ABC 中, A 900 ,AD⊥BC,若 AB=2AC,则 BC 与 DC 之间的关系为:
A、BC=2DC
A、12, 3 3
B、12, 3
C、 4 3, 3 3
D、 4 3, 3
11、若 , 互为补角,那么以下四个关系式中,不一定成立的是:
A、 sin sin >0
B、cos -cos >0
C、 sin sin =0
D、cos +cos =0
12、 是直角三角形的一个锐角, cos > 1 则:
为:
A、16 和 9
B、9 和 16
C、16 和 12
D、12 和 16
三、解答题
1、已知 00< <1800,00<θ <1800,且 cos 3 ,sin 1 ,
2
2
求 tg ctg 的值。
2、 RtABC 中, C =900,c=17,内切圆半径 r=3,求两条直角边 a、b。
中考数学复习讲义课件 专题5 几何与图形实际应用

解:过点 C 作 CF⊥AE 于点 F.则 FC=AD=20m,AF=DC. 在 Rt△ACF 中,∠EAC=22°. ∵tan∠EAC=FACF=tan22°≈25,∴DC=AF≈52FC=50(m). 在 Rt△ABD 中,∠ABD=∠EAB=67°. ∵tan∠ABD=ABDD=tan67°≈152,∴BD≈152AD=235(m). ∴BC=DC-BD=50-235≈41.7(m). 答:大桥 BC 的长约为 41.7m.
4.(2021·怀化)政府将要在某学校大楼前修一座大桥.如图,宋老师测得大 楼的高是 20m,大楼的底部 D 处与将要修的大桥 BC 位于同一水平线上, 宋老师又上到楼顶 A 处测得 B 和 C 的俯角∠EAB,∠EAC 分别为 67°和 22°,宋老师说现在我能算出将要修的大桥 BC 的长了.同学们:你知道宋 老师是怎么算的吗?请写出计算过程.(结果精确到 0.1m,其中 sin67°≈ 1123,cos67°≈153,tan67°≈152,sin22°≈38,cos22°≈1156,tan22°≈25)
解:设 BN 的长为 x 米,则 BM=x+1.1+2.8-1.5=x+2.4(米). 由题意,得∠CND=∠ANB,∠CDN=∠ABN=90°. ∴△CND∽△ANB.∴ CADB=DBNN.同理,△EMF∽△AMB.∴AEBF=FBMM. ∵EF=CD,∴DBNN=FBMM,即1x.1=x+1.52.4. ∴x=6.6.∵CADB=DBNN,∴A1.B6=16..16.∴AB=9.6(米).
答:点 C 到弦 AB 所在直线的距离约为 6.64 米.
8.某新农村乐园设置了一个秋千场所,如图所示,秋千拉绳 OB 的长为 3m, 静止时,踏板到地面距离 BD 的长为 0.6m(踏板厚度忽略不计).为安全起见, 乐园管理处规定:儿童的“安全高度”为 hm,成人的“安全高度”为 2m.(计 算结果精确到 0.1m)
中考数学复习第五单元三角形时解直角三角形的应用教案
第五单元三角形第25课时解直角三角形的应用教学目标【考试目标】能运用三角函数解决与直角三角形有关的简单实际问题.【教学重点】掌握仰角、俯角,坡度、坡角,方向角等概念;学会把实际问题抽象化. 教学过程一、体系图引入,引发思考二、引入真题、归纳考点【例1】(2016年呼和浩特)在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基顶端B(和A、E共线)与地面C处固定的绳索的长BC为(海里)3.710310≈-=⋅=∴BC AC AB 80m .她先测得∠BCA=35°,然后从C 点沿AC 方向走30m 到达D 点,又测得塔顶E 的仰角为50°,求塔高AE .(人的高度忽略不计,结果用含非特殊角的三角函数表示) 【解析】在Rt △ABC 中,∠ACB=35°,BC=80m ,∴cos ∠ACB= AC/AB ,∴AC=80cos35°.在Rt △ADE 中,tan ∠ADE=AE/AD ,∵AD=AC+DC=80cos35°+30,∴AE=(80cos35°+30)tan50°.答:塔高AE 为(80cos35°+30)tan50°m【例2】(2016年临沂)一艘轮船位于灯塔P 南偏西60°方向,距离灯塔20海里的A 处,它向东航行多少海里到达灯塔P 南偏西45°方向上的B 处(参考数据: ≈1.732,结果精确到0.1)?【解析】如图,AC ⊥PC ,∠APC=60°,∠BPC=45°,AP=20,在Rt △APC 中,∵cos ∠APC=PC//AP ,∴PC=20•cos60°=10,在△PBC 中,∵∠BPC=45°,∴△PBC 为等腰直角三角形, ∴BC=PC=10,答:它向东航行约7.3海里到达灯塔P 南偏西45°方向上的B 处.【例3】(2016年济宁)某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1: .(1)求新坡面的坡角a ;(2)原天桥底部正前方8米处(PB 的长)的文化墙PM 是否需要拆桥?请说明理由.【解析】(1)∵新坡面的坡度为1:,3310102022=-=∴AC 3∴tanα=tan∠CAB= = .∴∠α=30°.答:新坡面的坡角a 为30°; (2)文化墙PM 不需要拆除.过点C 作CD ⊥AB 于点D ,则CD=6, ∵坡面BC 的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6 ,∴AB=AD ﹣BD=6 -6<8,∴文化墙PM 不需要拆除. 【例4】如图1是一副创意卡通圆规,图2是其平面示意图,OA 是支撑臂,OB 是旋转臂,使用时,以点A 为支撑点,铅笔芯端点B 可绕点A 旋转作出圆. 已知OA=OB=10cm . (1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm )(2)保持∠AOB=18°不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm )(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)【解析】(1)如图,过点O 作OC ⊥AB 于点C ,则AB=2BC ,∠BOC=12∠AOB=9°,∴在Rt △OBC 中,BC=OB×sin9°≈10×0.1564=1.564(cm).∴AB=2×1.564=3.128≈3.13(cm).答:所作圆的半径约为3.13cm.(2)∵∠B=12(180°-∠AOB)=81°<90°,故可在BO 上找到一点D , 使得AD=AB ,此时所作圆的大小与(1)中所作圆的大小相等.如图,过点A 作AE ⊥OB 于点E ,则BD=2BE.在Rt △AOE 中,OE=AO×cos18°≈10×0.9511=9.511(cm),∴BE=10-9.511=0.489(cm),∴BD=2×0.489≈0.98(cm).答:铅笔芯折断部分的长度约为0.98cm.三、师生互动,总结知识先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.3331333课后作业布置作业:同步导练教学反思学生对与解三角形的实际问题的掌握情况很好,望多加复习巩固,做到熟练会用.。
中考数学复习专题题型(五)解直角三角形的实际应用
中考数学复习专题题型(五)解直角三角形的实际应用直角三角形求解的实际应用(XXXX年间最大的铜像。
铜像由像体广告和基础光盘组成。
如图所示,在Rt△ABC,[回答]420万试验点:解决直角三角形的应用。
(XXXX年级数学兴趣小组想测量大楼的高度。
他们在辽宁省丹东市的c位置抬头看建筑物的顶部,测量仰角为48度,然后向建筑物方向移动6米到达d位置,测量仰角为64度,并计算建筑物的高度。
(测角仪的高度被忽略,结果精确到0.1米)(参考数据:sin 48 ≅,tan48 ≈,sin64 ≈,tan64 ≈2)解答:根据问题的含义,∠亚行= 64,∠ACB = 48 =在Rt△亚行中,tan64等于BD=≈AB,,,=在Rt△ACB中,当tan为48时,CB = ∴CD = BC-BD为6=AB﹣AB* 7阿布,解决方案:AB=≈14.7 (m),∴这座建筑的高度约为14.7米。
5.(四川宜宾,2016)如图所示,光盘是一个高4米的平台,AB是一棵与光盘底部齐平的树。
在c点测量平台顶部a点的仰角α = 30,从平台底部向树的方向水平前进3米到达e点。
在e点测量树顶部a点的仰角β = 60,计算树高AB(结果保留根数)解决方案:在f点制作CF⊥AB,设置AF=x米,在Rt△ACF,tan ⊥ACF =然后CF ===,=x,在直角△ABE中,AB=x+BF=4+x (m),在直角△ABF中,tan≈aeb =∫cf-be = de,即x=,x﹣,然后是BE===(x+4)米。
(x+4)=3。
然后AB=+4= (m)。
m.答:树高是多少6.(2016-湖北黄石,8点)如图所示,为了测量山峰的高度,将山坡的一侧分为AB段和BC段。
斜坡的每一段都近似“直”。
实测坡长AB=800米,BC=200米,坡角∠BAF = 30度,∠CBE = 45度。
(1)计算边坡AB段的高度EF;(2)找到山峰的高度。
1.414,CF结果精确到仪表)解决方案:(1)在h中制作BH⊥AF,如图所示,在Rt△ABF中,sin≈bah =∴BH = 800?sin30 =400,∴ef=bh=400m;(2)在Rt△CBE中,sin ∠cbe = ∴ce = 200?sin45 =100≈141.4,,,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,CF山约为541米。
中考数学点对点-解直角三角形问题(解析版)
∴AD=AB×sin30°=20 10(海里),
BD=AB×cos30°=20 10 10×1.73=17.3,
∵BD⊥AC,BF⊥CE,CE⊥AC,
∴∠BDC=∠DCF=∠BFC=90°,
∴四边形BDCF为矩形,
∴DC=BF﹣9.7,FC=BD=17.3,
如图,连接BC.
∵∠ADC和∠ABC所对的弧长都是 ,
∴根据圆周角定理知,∠ADC=∠ABC.
在Rt△ACB中,根据锐角三角函数的定义知,
sin∠ABC ,
∵AC=2,BC=3,
∴AB ,
∴sin∠ABC ,
∴sin∠ADC .
【例题3】(2020•荆门)如图,海岛B在海岛A的北偏东30方向,且与海岛A相距20海里,一艘渔船从海岛B出发,以5海里/时的速度沿北偏东75°方向航行,同时一艘快艇从海岛A出发,向正东方向航行.2小时后,快艇到达C处,此时渔船恰好到达快艇正北方向的E处.
(2)在Rt△BEF中,解直角三角形求出EF,BF,在Rt△ABD中,解直角三角形求出AD,BD,证明四边形BDCF为矩形,得出DC,FC,求出CE的长,则可得出答案.
【解析】(1)过点B作BD⊥AC于点D,作BF⊥CE于点E,
由题意得,∠NAB=30°,∠GBE=75°,
∵AN∥BD,
∴∠ABD=∠NAB=30°,
∠B=90°-∠A,a=c·sinA, b=c·cosA
五、特殊值的三角函数
三角函数
0°
30°
45°
60°
90°
sinα
0
1
cosα
1
0
tanα
0
1
(名师整理)最新数学中考专题复习《圆与直角三角形 》考点精讲精练课件
课后精练
解:(1)证明:如图,连接 OE,∵EG 是⊙O 的切 线,∴OE⊥EG.∵BF⊥GE,∴OE∥AB.∴∠A=∠ OEC.∵OE=OC,∴∠OEC=∠C.∴∠A=∠C.∵∠ ABG=∠A+∠C,∴∠ABG=2∠C.
课堂精讲
【解】(1)证明:∵ED⊥AD,∴∠EDA=90°. ∴AE 是⊙O 的直径,AE 的中点是圆心 O. 如图,连接 OD,则 OA=OD, ∴∠1=∠ODA. ∵AD 平分∠BAC,∴∠2=∠1=∠ODA. ∴OD∥AC. ∴∠BDO=∠ACB=90°. ∴BC 是⊙O 的切线.
课堂精讲
(2)先根据勾股定理求出 OE,OD,AD 的长,证明 Rt△AOD∽Rt △ACB,得出比例线段即可求出 AC 的长.
课堂精讲
【解】(1)证明:如图,连接 OC, ∵CE 与⊙O 相切,点 C 是⊙O 的半径, ∴OC⊥CE. ∴∠OCA+∠ACE=90°. ∵OA=OC,∴∠A=∠OCA. ∴∠ACE+∠A=90°. ∵OD⊥AB,∴∠ODA+∠A=90°. ∵∠ODA=∠CDE,∴∠CDE+∠A=90°. ∴∠CDE=∠ACE.∴EC=ED.
图1
图2
备用图
课后精练
解:(1)∵OD⊥AC,
∴
,∠AFO=90°.
又∵AC=BD,∴
,
即
.
∴
.∴
.
∴∠AOD=∠DOC=∠BOC=60°.
∵AB=2,∴AO=BO=1.
∴AF=AO·sin∠AOF=1×23= 23.则 AC=2AF= 3.
课后精练
(2)如图,连接 BC,∵AB 为直径,OD⊥AC,∴∠AFO =∠ C=90°.∴ OD∥BC.∴ ∠ D= ∠EBC.∵ DE= BE, ∠ DEF = ∠BEC,∴△DEF≌△BEC(ASA).∴BC=DF,EC=EF.又 ∵AO=OB,∴OF 是△ABC 的中位线.设 OF=t,则 BC=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学备课大师 www.eywedu.net【全免费】 http://www.xiexingcun.com/ http://www.eywedu.net/ 6 8 C E
A B D
BCAD状元廊学校秋季班数学思维方法讲义之五 年级:九年级
§第5讲 解直角三角形专题 【考点透视】 一、锐角三角函数与解直角三角形: 1.锐角三角函数的定义,通过画图找出直角三角形中边角关系; 2.准确记忆30°、45°、60°的三角函数值并进行计算;已知三角函数值求相应锐角; 3.三角函数与直角三角形的相关应用. 二、几何直线型: 1、利用有关三角形、平行四边形、特殊平行四边形(矩形、菱形、正方形)、梯形等的性质、判定及其相关结论进行相关计算推理; 2、解决几何图形的三大变换问题。 【思想方法】 1、本专题所研究的锐角三角函数,所涉及的角都是锐角,研究这样的角,可以与直角三角形直接联系起来。利用直角三角形的边角关系求图形中的某些边或角时,都是通过数值计算,这是数形结合的一种方式。所以在分析问题时,最好画出它的平面或截面示意图,按照图中边角关系去进行计算,便于解答、防止出错。有些图形虽然不是直角三角形,但可添加适当的辅助线把它们分割成一些直角三角形和矩形,如等腰三角形、梯形等问题。从而可以运用直角三角形的有关知识去解决这些图形中求边角的问题。 2、“一招制胜”——分离图形法 【精彩知识】 考点1:有关三角函数的重要概念 【例1】(1)如图所示正方形网格中,每个小正方形的边长都相等,点A、B、C、D都在这些小正方形的顶点上,线段AB与CD相交于P,则tan∠BPD的值为 。 (2)已知△ABC中,∠A、∠B是锐角,且sinA=135,tanB=2,AB =29cm,则ABCS= . 变式训练: 1.(泰安市)直角三角形纸片的两直角边长分别为 6,8,现将ABC△如图那样折叠,使点A与点B重合,折痕为DE,则tanCBE的值是( ) A.247 B.73 C.724 D.13 2. 如图,已知△ABC,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC 于点D,则AD的长是 ,cosA的值是 .(结果保留根号) 考点2: 有关三角函数的计算
【例2】已知α是锐角,且sin(α+15°)=32,计算10184cos(3.14)tan3的值。
变式训练: 计算:20113015(1)()(cos68)338sin602
考点3: 锐角三角函数之间的关系及三角函数增减性 【例3】若0°变式训练: 1.已知为锐角,下列结论:
11sincos <2>如果45,那么sincos
<3>如果cos12,那么60 <4>(sin)sin112其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 2. 已知m为实数,且sinα、cosα是方程0132mxx的两根,则44cossin的值为 。
PABD
C数学备课大师 www.eywedu.net【全免费】
http://www.xiexingcun.com/ http://www.eywedu.net/ BADC
EF
考点4:解直角三角形 【例4】如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2. (1)求证:DC=BC; (2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论; (3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值. 【例5】如图,为了测量某山AB的高度,小明先在山脚下C点测得山顶A的仰角为45°,然后沿坡角为30°的斜坡走100米到达D点,在D点测得山顶A的仰角为30°,求山AB的高度.(参考数据:3≈1.73) 【例6】如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60方向上,港口D在港口A北偏西60方向上.一艘船以每小时25海里的速度沿北偏东30的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C在B处的南偏东75方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.
变式训练: 如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米
处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处. (1)求该轮船航行的速度; (2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,) 数学备课大师 www.eywedu.net【全免费】
http://www.xiexingcun.com/ http://www.eywedu.net/ DAB
FE
C
GPD
AB
GFE
CP
O11x
y
【能力拓展】 【例7】在平面直角坐标系xOy中,已知抛物线y=2(1)(0)axca与x轴交于A、B两点(点A
在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为3ykx,与x轴的交点
为N,且COS∠BCO=31010。 (1)求此抛物线的函数表达式; (2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由; (3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度? 【例8】(1)如图①,在菱形ABCD和菱形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连结PG、PC。若∠ABC=∠BEF=60°,试探究PG与PC的位置关系及PCPG的值; (2)将图①中的菱形BEFG绕B点顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图②),(1)中的两个结论是否发生变化?写出你的猜想并加以证明; (3)在图①中若∠ABC=∠BEF=2α(0°
图① 图② 数学备课大师 www.eywedu.net【全免费】
http://www.xiexingcun.com/ http://www.eywedu.net/ C
BAD
PEFBC
ADGPEF
BC
ADGP
EFBC
ADGA B
C D E F M N R α β
【以练励学】 1. 如图,Rt△ABC中,∠C=90°,AC=BC,AC=6,D是AC上一点,
tan∠DBA=15,则AD 的长为( )
A.2 B.2 C.1 D.22
2、小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、C在同一直线上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8,试求BD的长。
3、综合实践课上,小明所在小组要测量护城河的宽度。如图所示是护城河的一段,两岸ABCD,河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠β=72°。请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字). (参考数据:sin 36°≈0.59,cos 36°≈0.81,tan36°≈0.73,sin 72°≈0.95,cos 72°≈0.31,tan72°≈3.08)
4、我市在规划沿江新城期间,欲拆江岸边的一根电线杆AB(如图),已知距电线杆AB水平距离14米处是河岸,即BD=14米,该河岸的坡面CD的坡角∠CDF的正切值为2(即tan∠CDF=2),岸高CF为2米,在坡顶C处测得杆顶A的仰角为30°,D、E之间是宽2米的人行道,请你通过计算说
明在拆除电线杆AB时,为确保安全,是否将此人行道封上?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区)
5、在矩形ABCD和矩形CEFG中,已知kCECGABAD,连结DE与AF交于点P,连结CP. (1)如图1,当k=1时,点B、C、E在一条直线上,求DEAF的值。 (2)如图2,当k=1,并将图1中的矩形CEFG绕点C顺时针旋转一定的角度时, ① 求DEAF的值;② 求证:CP⊥AF。
(3)如图3,当k≠1时,请直接写出DEAF的值(用含k的式子表示)。
图1 图2 图3