01 平面机构的自由度
机械设计基础第1章

K个构件具有K-1个转动副.
• 2.局部自由度
与输出构件运动无关的自由度称 为局部自由度。
• 3.虚约束
• 对机构运动不起限制作用的重复约 束称为虚约束。
•
虚约束虽然对运动不起作用,
但有增加构件刚性、使构件受力均
衡等作用。
•
例题4 例题5
局部自由度
2
2
2
2
1
1 1
Hale Waihona Puke 11(a) 1
2
2
1
2
2
运动副表示
2
1 (b) 1
2 1
2
a)
b) 构件表示
c)
2 构件分类: 1) 固定构件(机架):用来支承运动构件的构件。 相对地面不动。 2)原动件(主动件):运动规律已知的活动构件。如: 原动机,又称输入构件。 3)从动件:机构中随着原动件的运动而运动的其余活 动构件。其中输出预期运动规律的从动件称输出构件。
第1章 平面机构的自由度和速度分析
本章要解决问题 构件组合具有确定相对运动的条件是什么? 怎样绘制机构运动简图。 何谓速度瞬心?速度瞬心有哪些用途?
基本要求 自由度、运动副、瞬心、复铰、局部自由度、虚约束; 能正确计算平面机构的自由度; 能绘制简单机械的机构运动简图;能正确判定瞬心。
重点 机构自由度的计算,机构运动简图绘制。 所有构件都在相互平行的平面内运动的机构称为平面机
• 瞬心数目 一个机构若有N个构件,则瞬心总数为
•
k=N(N-1)/2
瞬心位置 两构件相互接触 分为4种情况
• 三心定理 作平面运动的三构件的三瞬心必位于同一
平面机构的自由度计算

处理方法:将对称部分去除
§4 典型讲解
例1
计算图示大筛机构的自由度。
复合铰链: 位置C ,2个低副 局部自由度 1个 虚约束 E’
C B
n= 7 PL = 9 PH = 1
E’
A D
E
F
G
o
F=3n - 2PL - PH =3×7 -2×9 -1 =2
例2
n=8 PL=11 PH=1 F=1
局部自由度
平面机构的自由度
§1 平面机构的概念
§2 平面机构自由度计算公式
§3 平面机构自由度计算注意事项
自用盘编号JJ321002
§1
平面机构的概念
机构:具有相对运动的构件组成的系统 机构=机架+ 原动件+从动件 构件:机构中最小的运动单元 构件≠零件 运动副:两个构件直接接触形成的能够产生 某种相对运动的联接 三要素
转动副 移动副 高 副
R=1, F=2 R=2, F=1 自由度数 约束数
1( θ ) + 1( x) + 2(x,θ ) + 2(x,y) = 3 自由构 2(y,θ )= 3 件的自 1( y) = 3 由度数
结论:构件自由度=3-约束数 =自由构件的自由度数-约束数
推广到一般:
活动构件数 构件总自由度 低副约束数 高副约束数 1 × PH n 3× n 2 × PL
F=3n - 2PL - PH =3×3 -2×3 -1 =2
F=3×2 -2×2 -1=1
除去局部自由度,把滚子和从动件看作一个构件 处理方法:
3.虚约束:对机构运动实际不起作用的约束 1)联接构件与被联接构件联接点的运动轨迹互相 重合,将产生虚约束 E B C
杨可桢《机械设计基础》课后习题及详解(平面机构的自由度和速度分析)【圣才出品】

第1章平面机构的自由度和速度分析1-1至1-4 绘出图示(图1-1~图1-4)机构的机构运动简图。
图1-1 唧筒机构图1-2 回转柱塞泵图1-3 缝纫机下针机构图1-4 偏心轮机构解:机构运动简图分别如图1-5~1-8所示。
1-5至1-12 指出(图1-9~图1-16)机构运动简图中的复合铰链、局部自由度和虚约束,计算各机构的自由度。
图1-9 平炉渣口堵塞机构图1-10 锯木机机构图1-11 加药泵加药机构图1-12 测量仪表机构图1-13 缝纫机送布机构图1-14 冲压机构图1-15 差动轮系 图1-16 机械手解:图1-9 滚子处为局部自由度,。
图1-10 滚子处为局部自由度,。
图1-11。
图1-12。
图1-13 滚子处为局部自由度,。
图1-14 滚子处为局部自由度,右方三杆铰接处为复合铰链,下方两导程槽之一为虚约束,。
图1-15 最下方齿轮与机架,杆组成复合铰链,。
图1-16 3233233L H F n P P =--=⨯-⨯=。
1-13 求出图1-17导杆机构的全部瞬心和构件1、3的角速比。
图1-17 导杆机构解:该导杆机构的全部瞬心如图1-18所示。
由1141333413P P P P ωω=可得,杆件1、3的角速度比:3413131413P P P P ωω=。
1-14 求出图1-19正切机构的全部瞬心。
设1ω=10 rad /s ,求构件3的速度3ν。
图1-19 正切机构解:该正切机构的全部瞬心如图1-20所示。
由114133P P v ω=可得,构件3的速度:311413102002000v P P ω==⨯=。
1-15 图1-21所示为摩擦行星传动机构,设行星轮2与构件1、4保持纯滚动接触,图试用瞬心法求轮1与轮2的角速比1ω/2ω。
图1-21 摩擦行星传动机构解:确定轮1、轮2和机架4三个构件的三个瞬心121424P P P 、、,如图1-22所示。
由于在行星轮2和构件1的瞬心12P 处,有12v v =,即11222r r ωω=⋅ 因此,轮1和轮2的角速比12212r r ωω=。
1平面机构的自由度

原动件数>机构自由度
不运动或破坏
铰链五杆机构:
F 3 4 2 5 0 2 (F﹥0)
原动件数 < 机构自由度数
机构运动不确定
铰链五杆机构:
F 3 4 2 5 0 2 (F﹥0)
增加一个原动件
机构原动件数=机构自由度数
运动确定
机构自由度 F=0 ?
F 3 4 2 6 0 0
解:n=4, PL=5,PH =1,则 : F=3n-2PL-PH =3 x 4 -2 x 5-1=1
二、机构具有确定运动的条件
2
1 1
3 4
图1-9 平面连杆机构
F 3 3 2 4 0 1 (F﹥0)
原动件数=机构自由度
运动确定
图1-10 平面连杆机构
F 3 3 2 4 0 1 (F﹥0)
三、计算平面机构自由度的注意事项
例3 圆盘锯机构 F=3n-2PL-PH =3 7-2 6- 0 =9 ?
复合
F=3n-2PL-PH =3 7-2 10- 0 =1
翻
复
复 复 复
1、复合铰链: 两个以上构件在同一 处相联接的回转副 (转动副)。 若K个构件构成 的复合铰链,具有(K -1)个转动副。
A2(A1) VA2A1 B2(B1)
2 1 VB2B1
P21
如果两个刚体都是运动的,则其瞬心称为相对速度瞬心;
C2
B
E’ E F
G
A
o
D
解: n=7, PL=9(7个转动副和2个移动副) PH =1, 则: F=3n-2PL-PH =3 x 7 -2 x 9-1=2
§1-4 速度瞬心及其在机构速度分析中的应用
一、速度瞬心及其求法 1、速度瞬心的定义
第1章 平面机构运动简图及其自由度1

C A
F =3n-2pl-ph = 3 3-2 4- 0 = 1
F =3n-2pl-ph = 3 4-2 5- 1 = 1
机构自由度举例2:
偏心轮传动机构
F =3n-2pl-ph = 3 5-2 7- 0
=1
机构自由度举例3:
牛头刨床机构
F =3n-2pl-ph = 3 6-2 8- 1
③选择恰当的投影面,一般选择机构多数构件的运动平面作为投影面;
④选择合适的比例尺;
l
真实长度(mm) 图上所画长度(mm)
⑤选择合适的位置,定出各运动副间的相对位置,并画出各运动副和构
件;
⑥标出运动副代号、构件编号、原动件运动方向和机架。
实例
实例1
颚 式 破 碎 机
颚式破碎机由六个构件组成。根据机构的工作原理,构件6是 机架,原动件为曲柄1,它分别与机架6和构件2组成转动副,其回 转中心分别为A点和B点。构件2是一个三副构件,它还分别与构件 3和5组成转动副。构件5与机架6、构件3与动颚板4、动颚板4与机 架6也分别组成转动副,它们的回转中心分别为C、F、G、D和E点。 在选定长度比例尺和投影面后,定出各转动副的回转中心点A、B、 C、D、E、F、G的位置,并用转动副符号表示,用直线把各转动副 连接起来,在机架上加上阴影线,即得机构运动简图。
– 通用零件、专用零件
构件可以是单一的整体即一个零件,也可 以是由几个零件(注意:这些零件间没有 相对运动)组成的刚性结构。
注 :当可以不考虑构件自身变形时,则 称为刚性构件。本书在不作特殊说明时所提 及的构件,均指刚性构件。
1 原动件
2 从动件 3
机架 4
机器的组成
(从运动观点看)由构件组成 (从制造观点看)由零件组成
第1章平面机构运动简图及自由度

转动副(铰链)-两构件间的相对运动为转动
( 2 ) -两构件通过点或线接触构成的运动副 高 副
凸轮高副
齿轮高副
空间运动副
运动副类型及其代表符号
球 面 副 转 动 副 移 动 副
球 销 副 圆 柱 副 螺 旋 副
平 面 高 副
§1-2 平面机构运动简图
实际构件的外形和结构往往很复杂,在研
y
2
1
移动副约束
x
转动副 约束了沿 X 、 Y 轴移动的自由度,只保留一个 转动的自由度。 1
z
2
y
x
回转副约束
(2)高副
约束了沿接触处
n
2
t
公法线n-n方向移动
的自由度,保留绕接 触处的转动和沿接触 处公切线t-t方向移 动的两个自由度。
t
A
1
n
高副约束
结论:
① 每个低副引入两个约束,使机构失 去两个自由度,只保留一个自由度;
(b) 牛 头 刨 床 机 构
解 (a) F 3n 2PL PH 3 5 2 7 0 1
(b) F 3n 2P P 3 6 2 8 1 1 L H
3. 机构具有确定运动的条件
机构的自由度也即是机构所具有的独立 运动的个数。 从动件是不能独立运动的,只有原动件
轴线重合的虚约束
③机构中对传递运动不起独立作用的对称部分,也为虚 约束。如图所示的轮系中,中心轮经过两个对称布置的小 齿轮1和2驱动内齿轮3,其中有一个小齿轮对传递运动不起 独立作用。但由于第二个小齿轮的加入,使机构增加了一 个虚约束。 3 1
2
对称结构的虚约束
(a) AB、CD、EF平行且相等 (b)平行导路多处移动副 (c)同轴多处转动副 (d) AB=BC=BD且A在D、C 轨 迹交点 (e)两构件上两点始终等距 (f)轨迹重合 (g)全同的多个行星轮 (h)等径凸轮的两处高副 (i) 等宽凸轮的两处高副
1 平面机构自由度
主要内容
§ 1-1
§ 1-2
运动副及其分类
平面机构运动简图
§ 1-3
平面机构的自由度
§1 机构组成原理
基本要求
掌握平面机构运动简图的绘制
掌握机构自由度计算
了解平面机构组成的基本原理 重点及难点 平面机构运动简图的测绘 平面机构自由度计算及注意事项
§ 1-1
运动副及其分类
低副限制二个自由度,高副限制一个自由度。
机构的自由度
构件组成机构后,机构所 具有的独立运动的个数
§ 1-3 平面机构的自由度
实例
1
2 4
3
如图四杆机构共有1、2、3、4共四个构件,除 去机架4,共有活动构件数为 3,未用运动副联接 前,这些活动构件的自由度总数为3×3=9,用运 动副联接起来组成机构后,各构件自由度减少了, 共有4个回转副共限制2×4=8个自由度。 故机构的自由度数目为F=3×3-2×4=1。
§ 1-1
运动副及其分类
高副( higher pair) 齿轮副 凸轮副 滚轮副
球面副
限制一个移动 自由度,保留 二个的自由度
§ 1-2 平面机构运动简图
1. 平面机构运动简图
(Kinematical Sketch of echanism)
用国标规定的简单符号和线条代表运动副 和构件,按比例作出的用以说明机构中各构件 之间相对运动关系的简单图形。
§ 1-3 平面机构的自由度
这种起重复限制作用的约束称为虚约束,在计 算机构自由度时,应当除去虚约束。
虚约束的存在对机构的运动没有影响,但引入 虚约束后可以改善机构的受力情况,可以增加机构 的刚性,因此得到较多的使用。
§ 1-3 平面机构的自由度
平面机构的运动简图及自由度(一)
平面机构的运动简图及自由度(一)平面机构是机械工程中的一个基础概念,是指由连续的运动副组成的机器构造,用于将旋转运动和直线运动转换,从而实现复杂的机械运动及工业生产过程。
平面机构中最基本的元素是连杆及其构成的机构,为了正确描述机构的运动,必须先画出平面机构的运动简图,并计算其自由度。
一、平面机构的运动简图平面机构的运动简图是指平面机构在运动时各连杆及支点运动的示意图,它是描述平面机构运动的基础。
在平面机构的运动简图中,需要标出连杆的长度及固定点、转动点和动点等,用来说明机构的运动状态。
平面机构的运动状态一般分为两种,一种是平面转动运动,一种是平面移动运动。
平面转动运动即机构各连杆转动,形成一定的角度位移;平面移动运动即机构各连杆在平面内移动,形成一定的位移。
而平面机构中的转动连杆可以成为主杆,其他连杆相应地被称为从动杆。
二、平面机构的自由度在平面机构的自由度分析中,需要确定平面运动的自由度和自由度的计算方法。
平面运动的自由度是指平面机构在运动过程中不被任何约束的情况下,可以自由移动的数量。
计算平面运动的自由度,需要注意以下几个要点:1. 在平面机构中,任意两杆之间的运动关系都是互相影响的,因为机构中的所有连杆都是通过驱动点或者固定点来完成运动的。
2. 平面机构的自由度与杆件数量相关,不同组合的杆件数量可以分别计算得出自由度。
3. 在整个机构中,任意两杆之间的约束条件不能重复,不能计算两次。
4. 对于已知结构的平面机构,可以通过计算自由度来判断其合理性和优化设计。
三、总结在机械工程学中,平面机构是基础性的概念,在复杂机械结构中被广泛应用。
平面机构的运动简图是描述其运动的基础,而自由度则是定义其可自由运动的数量。
因此,在机械工程的实践操作中,必须通过正确绘制平面机构的运动简图并使用正确的自由度计算方法,才能得出更加准确的机械设计结果。
第1章机构自由度
(2)两构件组成若干个轴线互相重合的转动副, 只有一个转动副起作用。
如:两个轴承支持一根轴只能看作一个转动副。
(3)机构中传递运动不起独立作用的对称部分存 在虚约束。
增加一个齿轮,使机构增加一个虚约束。(增加 三个自由度,组成一个转动副和两个高副)
例题4 计算机构的自由度
②
4 ③
3 ①
2②
1
F = 3n–2PL–PH
第一章 平面机构的自由 度和速度分析
本章要点 §1—1 运动副及其分类
§1—2 平面机构运动简图
§1—3 平面机构的自由度
本章要点
1、平面机构自由度的计算 2、计算平面机构自由度的注意事项 3、平面机构具有确定运动的条件
§1—1 运动副及其分类
一、构件自相由对度于:参考系构件所具有的 独立运动数目。一个作平面运动的自由构件具 有三个自由度。(P5)
机构中的构件可分三类:
1)固定构件(机架) :
用来支承其他活动构件(运动构件)的构件。
2)原动件(主动件)(或输入构件):
是运动规律已知的活动构件。
3)从动件 :
是机构中随着原动件的运动而运动的其余活动 构件。其中输出预期运动的从动件称为输出构件, 其他从动件则起传递运动的作用。
任何一个机构 中,必有一个构件 被相对地看作固定 构件
= 3× 3 – 2× 3 – 2 =1
例题
例题5 计算图示机构自由度。
6
⑧
F = 3n–2PL–PH
5 ①
⑤
② ⑦
⑥
8
7 ⑩ = 3× 9 –2×12 – 2 =1
④ 4
③
3
9
⑫ 10 ②
1
2
平面机构的自由度
例 试绘制内燃机的机构运动简图
§1-3 平面机构的自由度
一、平面机构的自由度的计算 机构的自由度:机构中活动构件相对 于机架所具有的独立 运动的数目。 (与构件数目,运动副的类型和数目 有关)
n个活动构件:自由度为3n。 PL个低副: 限制 2PL个自由度 PH个高副: 限制 PH 个自由度
F≤0,构件间无相对运动,不成为机构。
F>0,
原动件数=F,运 动确定
2
1 1
3 4
C
3
原动件数<F,运动不确定 2 C'
B
1
1
D'
D
4 4
A
5
E
原动件数>F,机构破坏
试计算图示挖土机的自由度,并说明为什么要配置三个油缸。
缝纫机刺布机构
油泵
四、计算平面机构自由度的实用意义
1 判定机构的运动设计方案是否合理。 2 修改设计方案 (1) F=0:增加一构件带进一平面低副。 (2) F<原动件数目:增加一构件带进 两平面低副。 (3) F>原动件数目:增加原动件数目 3 判定机构运动简图是否正确
第一章 平面机构的自由度和速度分析
1.平面机构的组成 2.机构具有确定相对运动的条件 3.机构运动简图的画法 4.机构自由度的计算
§1-1 平面机构的组成
一、机构的组成与分类 1、概念:
机构是具有确定相对运动的构件的组合 构件:机构中的(最小)运动单元一个或 若干个零件刚性联接而成
2、机架:固定不动的构件 原动件:输入运动规律的构件 从动件:其它的活动构件
1. 铰链四杆机构 – 如图2-21所示,P24为构件4和构件2
的等速重合点,而构件4和构件2分 别绕绝对瞬心P14和P12转动,因此有