高吸水树脂
高吸水性树脂产品指标

高吸水性树脂产品指标高吸水性树脂是一种吸水量可达自向重量几十倍甚至几千倍的树脂。
这种树脂不但吸水量大,而且保水能力强,并有很强的增稠性能,因此可广泛应用于生理卫生用品、农林园艺、改选沙漠、医药、土木工程、工业用品、保鲜包装材料、日用品等领域。
一、物理性质高吸水性树脂是一种具有吸水功能的透明粉剂,本品同时含有植物生长所需的氮、磷等元素、降解后元素、无残留、不污染土壤。
二、主要指标三、主要用途1、用作土壤改良剂:将高吸水性树脂与栽培土按一定比例混合,可以改善团粒结构,提高土壤的保水性、透水性和透气性,缩小土壤昼夜温差变化,调节封的干湿度,减少灌溉次数,达到改良劣质土壤、抗旱保收的目的。
2、用作种子培育促进剂和苗木移植保存剂:高吸水性树脂以混合法、片法和涂覆法用于植物种子培育,可使其提早发育,提高发芽率,缩短发芽时间,促进生长。
将高吸水性树脂与草籽拌种,可提高飞机在干旱地区播种的成活率;将高吸水性树脂吸水凝胶涂覆在出土的幼苗的根部,进行保水处理,可大大提高幼苗的成活率和移植存放时间。
3、用作化肥缓释剂:用高吸水性树脂对化肥进行包衣后施肥,可使肥料缓慢释放,提高化肥的利用率,减少肥料流失造成的浪费和对环境的污染。
4、其它:高吸水性树脂还可用于土壤培土、农药扩散剂、菌固培养等方面。
四、包装及储存1、包装:本公司的产品均采用三合一牛皮纸包装,内衬聚乙烯塑料膜,每袋净重25公斤。
2、储存:该产品应置于阴凉通风的库房中,注意防潮。
聚丙烯酸钠百科名片聚丙烯酸钠聚丙烯酸钠是一种新型功能高分子材料和重要化工产品,固态产品为白色(或浅黄色)块状或粉末,液态产品为无色(或淡黄色)粘稠液体。
溶解于冷水、温水、甘油、丙二醇等介质中,对温度变化稳定,具有固定金属离子的作用,能阻止金属离子对产品的消极作用,是一种具有多种特殊性能的表面活性剂。
目录[隐藏]概述性质加工或制造方法用途概述性质加工或制造方法用途[编辑本段]概述聚丙烯酸钠,英文名Sodium polyacrylate,缩写PAAS或简称PAA-Na,结构式为[-CH2-CH(COONa)]n-。
高吸水性树脂

高吸水性树脂神奇的功能高分子材料—高吸水性树脂随着科学技术和国民经济的发展,高分子材料已经渗透到各个领域。
各种塑料制品、薄膜、人造皮革、合成橡胶、合成纤维等已经成为人们生活中不可缺少的材料。
功能高分子材料是20世纪60年代发展起来的新型领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的一种新型材料。
功能高分子有时也称为精细高分子或特种高分子,至今还没有一个准确的定义,一般是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。
高吸水性树脂就是一种新型的功能高分子材料,它具有优异的吸水、保水功能,可吸收自身重量几百倍、上千倍,最高可以达到5300倍的水,即使挤压也很难脱水,被冠予“超级吸附剂”的桂冠。
高吸水性树脂的种类很多,所用原料及工艺方法也各不相同。
主要类型有聚丙烯酸酯类、聚乙烯醇类、醋酸乙烯共聚物类、聚氨酯类、聚环氧乙烷类、淀粉接校共聚物类等,此外还有与橡胶共混的复合性吸水材料。
在上述各种类型中,研究开发较多的为聚丙烯酸酯类。
该树脂系以丙烯酸和烧碱为主要原料,采用逆向聚合法而制得。
由于工艺较为简单,易于操作,制得的树脂吸水率高,生产成本较低,因此发展非常迅速。
高吸水性树脂是一种白色或徽黄色、无毒无味的中性小颗粒。
它与海绵、沙布、脱脂棉等吸水材料的物理吸水性不同,是通过化学作用吸水的。
所以树脂一旦吸水成为膨胀的凝胶体,即使在外力作用下也很难脱水,因此可用作农业、园林、苗不移植用保水剂。
在蔬菜,花卉种植中,预先在土壤中撒千分之几的高吸水性树脂,可使蔬菜长势旺盛,增加产量。
在植树造林中,各种苗木移植期间往往因为保管不善而干枯死亡。
如果将刚出土的苗木用高吸水性树脂的水凝胶液进行保水处理,其成活率可显著提高。
有人做过山茶花、珊瑚树的移植试验。
高吸水性树脂的制备

高吸水性树脂的制备一、实验目标1.理解高吸水性树脂制备的基本原理;2.掌握实验室中沉析、真空干燥等常见的操作。
二、产品特性与用途高吸水性树脂或称超吸水性树脂(SAR),是指能吸收自身质量几百倍甚至上千倍水分的高分子聚合物,在日常生活、农业、医药及其他工业部门有广泛用途。
例如,高吸水树脂可用作香料载体、尿不湿的吸水材料;农业上用作园艺保水剂;工业上用作油水分离材料、污水处理剂、溶剂脱水剂;医药上用作人工肾脏过滤材料、血液吸附剂等,其很多用途正处于开发研究之中。
三、实验原理本实验以淀粉、丙烯腈为原料制备高吸水性树脂,主要的化学反应有两个,即接枝反应和水解反应。
接枝反应是以水为介质,以铈盐为引发剂,将丙烯腈接枝到已糊化的淀粉链上。
水解反应是在氢氧化钠的作用下,将接枝聚合物侧链上的腈基转变为酰胺基和羧酸盐基。
其反应式如下:接枝反应:R st +Ce4+Rst·+Ce3+(Rst代表淀粉,下同) 水解反应:作为吸水材料必须具备两个条件:一个是自身带有较多的吸水基团;二是本身不溶于水。
本实验制备的树脂是以淀粉为骨架,与丙烯腈接枝共聚成高分子化合物,不溶于水,侧链上的腈基又经过水解转化为亲水性很强的羧酸盐基和酰胺基,使其具有极强的吸水性。
因此,水解反应是使接枝共聚物实现其吸水性关键的一步反应,而水解反应条件选择的好坏直接影响到高吸水性树脂吸水性的高低。
四、主要仪器与药品1.主要仪器电热恒温水浴锅,电动搅拌器,500mL三口烧瓶以及氮气钢瓶等。
2.主要药品玉米淀粉,市售;丙烯腈,AR;硝酸铈铵,AR;氢氧化钠,AR;硝酸,AR;95%(v/v)乙醇,CP。
五、实验内容与操作步骤1. 称量淀粉10克装入三口烧瓶内,加200mL蒸馏水搅拌制成淀粉浆。
在氮气保护下,在80~85℃糊化30~40min,然后冷却到20~40℃。
2. 将硝酸铈铵用1mol/L的硝酸配成0.1g/mL的溶液,取3mL硝酸铈铵溶液与16克丙烯腈混合,配制成丙烯腈的硝酸铈铵溶液。
高吸水树脂及其耐盐性研究

高吸水树脂及其耐盐性研究摘要高吸水性树脂是一种新型高分子材料,在各行各业中都有广泛的应用,在实际应用中,高吸水树脂所吸的都是含盐的水,而盐对高吸水树脂的吸水率又有很大的影响,因此研究高吸水树脂的耐盐性有很大的实际意义,文章介绍了高吸水树脂的吸水机理,盐对高吸水树脂的影响及影响高吸水树脂耐盐性的因素,重点研究了耐盐性改进的几种方法,并对高吸水树脂的未来发展趋势做出展望。
关键词高吸水树脂;耐盐性;吸水率;吸水机理高吸水性树脂又称为超强吸水剂,是一种含有羧基等强亲水性基团并具有一定交联度的水溶胀型高分子聚合物。
与传统的吸水材料(如纸、棉、海绵等)相比,高吸水性树脂具有吸水容量大、吸水速度快、保水能力强等优越性能,广泛应用于农业、园林、建筑、涂料、石油化工医、疗卫生及环境保护等领域。
1高吸水树脂的吸水机理高吸水性树脂由于是一个交联的三维网络结构,所以其吸水过程是高聚物的溶胀过程,一个比较复杂的过程。
目前,较为通用的离子网络理论认为,高吸水树脂在水中,水分子氢键与高吸水树脂的亲水基团作用,离子型的亲水基团遇水开始离解,阴离子固定于高分子链上,阳离子为可移动离子,随着亲水基团的进一步离解,阴离子数目增多,离子间的静电斥力增大使树脂网络扩张,同时为了维护电中性,阳离子不能向外部溶剂扩散,导致可移动阳离子在树脂网络内的浓度增大,网络内外的渗透压随之增加,水分子进一步渗入。
随着吸水量的增大网络内外的离子浓度差逐渐减少,渗透压差趋于零,同时随着网络扩张其弹性收缩力也在增加,逐渐抵消阴离子的静电斥力,最终达到吸水平衡。
2盐对高吸水树脂吸水倍率的影响高吸水树脂吸水倍率受盐的影响很大,如吸收纯水可达400倍~600倍的聚丙烯酸盐系吸水树脂,吸自来水为250倍~350倍,生理盐水40倍~60倍,人工海水7倍~l0倍。
盐浓度越高其吸水倍率越低。
耐盐性可分为两个方面,即对钠盐,钾盐等碱金属盐的耐盐性(称作耐碱金属盐性)和对钙盐、镁盐,铝盐等多价金属盐的耐盐性(称为耐多价金属盐性)。
高吸水性树脂生产工艺

高吸水性树脂生产工艺高吸水性树脂是一种具有优异吸水性能的新型材料,广泛应用于卫生产品、农业、环境工程等领域。
下面简要介绍高吸水性树脂的生产工艺。
首先,高吸水性树脂的生产工艺可以分为合成树脂和后处理两个步骤。
合成树脂的主要原料是丙烯酸酯和乙烯基醚单体,通过聚合反应合成交联型树脂颗粒。
这一步骤的关键是确定合适的反应温度、反应时间和反应助剂等条件,以确保树脂具有良好的吸水性能和稳定性。
接下来,合成的树脂颗粒需要进行后处理工艺。
首先是粉碎,将合成的树脂颗粒进行磨碎,以获得适当的颗粒大小。
然后是干燥,将粉碎后的树脂颗粒进行烘干,去除其中的水分。
干燥后的树脂颗粒需要进行筛分,以获得均匀的颗粒粒径。
最后是包装和贮存,将筛分后的树脂颗粒装入适当的包装中,并进行贮存,以保持其吸水性能。
在高吸水性树脂的生产过程中,需要注意以下几点。
首先是原料选择,应选用优质的丙烯酸酯和乙烯基醚单体,以确保树脂的质量。
其次是反应条件控制,应进行充分的实验研究,确定最佳的反应温度、反应时间和反应助剂用量等条件。
此外,需要对生产中的关键步骤进行严格的操作控制,以确保树脂的品质稳定性。
高吸水性树脂的生产工艺不断进步和创新,目前已经发展出了一些新的工艺方法,如微乳液聚合法、反相悬浮聚合法等。
这些新工艺方法可以提高树脂的吸水性能和稳定性,降低生产成本,有助于进一步发展和应用高吸水性树脂材料。
总之,高吸水性树脂的生产工艺是一个复杂的过程,需要考虑多个因素的影响。
通过合理的原料选择、反应条件控制和严格的操作控制,可以获得优质的高吸水性树脂产品。
随着科技的不断进步,高吸水性树脂的生产工艺将会不断完善和提高,为各个领域的应用提供更多可能性。
高吸水树脂-聚丙烯酸钠的制备

一、实验目的(1)了解高吸水树脂的制备方法(2)了解高吸水树脂的吸水原理及影响因素。
二、实验原理(1)制备原理:自由基聚合机理。
单体为用NaOH部分中和的丙烯酸,在水溶液中进行溶液聚合,引发剂为水溶性的热引发剂过硫酸铵,交联剂为N,N-亚甲基双丙烯酰胺,进行共聚合,以形成三维的网状结构。
反应如下:(2)吸水原理:利用单体中的亲水基团来吸附水分,借助树脂内的离子基团电离后的库伦斥力撑开三维结构,使树脂吸水后充分溶胀、链段伸展,并借助电离后树脂内外的渗透压将水分吸入树脂内部,最后通过内部的三维交联结构来进行存储,因而能够吸收超过其本身多倍的水分。
吸水性能与树脂分子链的组成、结构、分子量、交联度等有很大关系,本实验就是利用不同的配方来探究高吸水树脂的最适配方,不同小组选择不同中和度与交联剂的配方进行实验,我们为第四个配方。
(3)实验中药品的称量:第四个配方(中和度为50%,0.05g交联剂)10% NaOH水溶液的质量:m(丙烯酸)=5g M(丙烯酸)=72g/mol M(NaOH)=40g/molm(NaOH)=[m(丙烯酸)M(NaOH)/ M(丙烯酸)/0.1]×0.5=13.89g称取10% NaOH水溶液质量为13.89g。
三、实验药品与仪器(1)仪器:水浴锅、烧杯、表面皿、温度计、瓷盘。
(2)药品:经减压蒸馏的丙烯酸、经重结晶的过硫酸铵(APS)、N,N-亚甲基双丙烯酰胺、10%氢氧化钠水溶液表1.实验分组配方丙烯酸/g 中和度/% N,N-亚甲基双丙烯酰胺/g APS/g5.0 25 0.05 0.15.0 25 0.1 0.15.0 25 0.2 0.15.0 50 0.05 0.15.0 50 0.2 0.15.0 50 0.2 0.055.0 75 0.05 0.15.0 75 0.2 0.15.0 75 0.2 0.055.0 100 0.05 0.15.0 100 0.2 0.15.0 100 0.5 0.1四、实验步骤与实验记录(1)在100mL烧杯中加人5g丙烯酸,用10%氯氧化钠水溶液中和至不同中和度,之后按配方4加人0.05 g N,N亚甲以丙烯酰,0.1g 过硫酸铵,再补加适量水(水的总量不超过40g),搅拌溶解,用表面皿盖住烧杯,将烧杯入70℃水浴中静置聚合,待反应物完全形成凝胶后取出烧杯,将凝胶转移到搪瓷盘中,将凝胶切割成碎片或薄片,置手50℃烘箱中干燥至恒重,待用。
高分子吸水性树脂
2.高吸水性树脂分类
⑴淀粉类 淀粉是一种原料来源广泛、种类多、价格 低廉的多羟基天然化合物。与淀粉进行接 枝共 聚反应的单体主要是亲水性和水解后 变成亲水性的乙烯类单体。 目前合成高吸 水树枝通常采 用的是自由基型接枝共聚。 例如:淀粉接枝、羧甲基化淀粉、磷酸化 淀粉、淀粉磺酸盐等。
2.高吸水性树脂分类
工业化生产多以合成聚丙烯酸系为主,因为其反应易于 实现且树脂的各项性指标都比较 好,吸水能力高、保水 能力强,与淀粉等天然高分子接枝共聚物相比,具有生产 成本低、工艺条件简单、生产效率高、吸水性能好等一系 列优点。
⑵纤维素系类 由于淀粉系高吸水性树脂的 出现, 人想到 用纤维素为原料制备高吸水树脂。 纤维素 原料来 源广泛, 能与多种低分子反应, 是 近十年来高吸水树脂发展的一个方面。 例 如: 纤维素接枝、 羟丙基化纤维素、黄原 酸化纤维素等。
2.高吸水性树脂分类
⑶合成树脂系 它的种类很多,且随着研究的深入,也越来越多。 例如:聚丙烯酸盐类、聚乙烯醇类、 聚氧化烷烃类、 无机聚合物类。
⑷吸氨性强 树脂中含有羧基的聚合阴离子物,适当调节 pH 值, 使部分羧基呈酸性,可吸收氨,有明 显的防臭作用。
3.高吸水性树脂的特点
⑸增稠性 高吸水性树脂吸水后呈凝胶状,比普通水 溶性高分子具有更高的粘度,用在化妆品 上具 有明显的增稠效果。
⑹能和其它高分子材料共混
1.高吸水性树脂定义
高吸水性树脂(Super Absorbent Resin )简称 SAR, 又称高吸水性聚合物(SAP)是一 种含有羧基、 羟基等 强亲水性基团并具有一定交联度的水溶胀型高分子聚合物。 它不溶于水, 也不溶于有机溶剂,却有着奇特的吸水性 能和保水能力,同时又具备高分子材料的优点,与 传统 的吸水材料相比具有更大的优势:与海绵、棉花、纤维素、 硅胶相比,高吸水性树脂的 吸水量大,可以吸收比自身 重几百倍甚至上千倍的水,并且保水性强,即使在受热、 加压条 件下也不易失水,对光、热、酸、碱的稳定性好, 具有良好的生物降解性能。 [1]
高吸水性树脂的制备和应用
高吸水性树脂的制备和应用高吸水性树脂是一种具有极高吸水性能的新型材料。
它具有非常强的水吸附性和保水性能,可以在单体、乳液或粉末形式等多种形式出现。
高吸水性树脂被广泛应用于各种领域,如医疗、农业、环保等等。
本文将介绍高吸水性树脂的制备及其应用。
一、高吸水性树脂的制备高吸水性树脂的制备方法主要有两种,分别是物理交联法和化学交联法。
其中,化学交联法是最常用的方法。
1. 物理交联法物理交联法是将含有吸水性单体的水溶液或水相悬浊液中加入一些交联剂,使得单体间形成物理交联点,从而形成高分子网络结构。
实验中可采用以下方法:(1)冻融法将含有吸水性单体的水溶液或水相悬浊液冷冻至低于0℃,然后加热至30~40℃进行融化,反复进行数次,直到交联点足够稳定。
(2)加盐交联法在吸水性单体水溶液或水相悬浊液中加入一些盐类,使得单体形成物理交联点。
2. 化学交联法化学交联法是将含有吸水性单体的水溶液或水相悬浊液中加入一些交联剂,在高温或室温下反应形成交联点。
实验中可采用以下方法:(1)自由基交联法使用引发剂进行自由基聚合反应,产生交联点。
通常使用双丙烯酰胺作为单体,N,N'-亚甲基双丙烯酰胺或N,N'-亚甲基双丙烯酰胺偶氮联产物作为引发剂。
(2)离子交联法使用离子反应组成交联点,通常使用一些含有羟基的单体,如丙烯酸、甲基丙烯酸和2-羟乙基丙烯酸等。
二、高吸水性树脂的应用1. 医疗用途高吸水性树脂被广泛应用于医疗领域,如医用敷料和尿不湿等。
吸收率高、吸收速度快、保持时间长等特点让它成为医疗敷料中重要的原料。
2. 农业用途高吸水性树脂可以被应用于土壤改良和植物生长促进。
在干旱或缺水期,将高吸水性树脂添加到土壤中可以提高土壤的保水性能,促进植物的生长。
3. 环保用途高吸水性树脂可以用于水处理和土壤污染治理。
它可以吸附有害物质、去除水的污染物和土壤中的重金属等。
高吸水性树脂作为一种新型的材料,在各个领域都有着广泛的应用前景。
高吸水性树脂
高水性树脂学院:信息工程学院姓名:龚先兵学号:6100212260高吸水性树脂高吸水性树脂也称超强吸水性聚合物简写为SAP.它是一种含有羧基,羟基等强亲水性基团并具有一定交联度的水溶胀型的高分子聚合物,不溶于水也不溶于有机溶剂,能够吸收自身重量的几百倍甚至上千倍的水,且吸水膨胀后生成的凝胶具有良好的保水性和耐候性,一旦吸水膨胀成水凝胶 ,即使加压也难以将水分离出来.同时 ,高吸水性树脂可循环使用.因此 ,越来越受到人们的关注.目前 ,超强吸水树脂已在工业,农业,林业,卫生用品等领域中得到广泛应用 ,并显示出更为广阔的发展前景。
1.SAP的结构与吸水机理高吸水性树脂是由三维空间网络构成的聚合物 ,它的吸水,既有物理吸附 ,又有化学吸附 ,所以 ,它能吸收成百上千倍的水。
物理吸水:当水与高分子表面接触时 ,有种相互作用 ,一是水分子与高分子电负性强的氧原子形成氢键结合二是水分子与疏水基团的相互作用三是水分子与亲水基团的相互作用。
高吸水性树脂本身具有的亲水基和疏水基与水分子相互作用形成自为水合状态。
树脂的疏水基部分可因疏水作用而易于折向内侧 ,形成为不溶性的粒状结构 ,疏水基周围的水分子形成与普通水不同的结构水。
水分子封闭在边长为一聚合物网络内 ,这些水的吸附不是纯粹毛细管的吸附 ,而是高分子网络的物理吸附。
化学吸水:高吸水性树脂的离子网络高吸水性树脂在结构上是轻度变联的空间网络结构 ,它是由化学交联和树脂分子链间的相互缠绕物理交联构成的。
吸水前 ,高分子网络是固态网束 ,未电离成离子对 ,当高分子遇水时 ,亲水基与水分子的水合作用 ,使高分子网束张展 ,产生网内外离子浓度差。
如高分子网结构中有一定数量的亲水离子 ,从而造成网结构内外产生渗透压 ,水分子以渗透压作用向网结构内渗透。
同理 ,如被吸附水中含有盐时 ,渗透压下降 ,吸水能力降低。
亲水离子对是高吸水性树脂能够完成吸水全过程的动力因素 ,这一点也可从式中看出。
高分子吸水树脂SAP
高分子吸水树脂SAP剖析高吸水性树脂(英文名为Super Absorbent Resin,简写为SAR),或者称为高吸水性聚合物(英文名为Super Absorbent Polymer,简写为SAP),是一种含有羧基等强亲水性基团并具有一定交联度的水溶胀型高分子聚合物。
与传统吸水材料如海绵、纤维素、硅胶相比,它不溶于水,也不溶于有机溶剂,却又有着奇特的吸水性能和保水能力,同时又具备高分子材料的优点。
高吸水性树脂的吸水量高,可达到自重的千倍以上,而且保水性强,即使在受热、加压条件下也不易失水,对光、热、酸碱的稳定性好,还具有良好的生物降解性能。
高吸水性树脂的开发与研究只有几十年的历史。
是一种典型的功能高分子材料,具有一般高分子化合物的基本特性。
它能够吸收并保持自身质量数百倍乃至数千倍的水分或都数十倍的盐水,并且能够保水贮水,即使加压也很难把水分离出来。
这是由于其分子结构上带有大量具有很强亲水性的化学基团,而这些化学基团又可形成各种相应的复杂结构,从而赋予该材料良好的高吸水和高保水特性。
高吸水性树脂与水有很强的亲和力使它在个人卫生用品方面得到广泛应用,并在农业、土木建筑、保鲜材料、改造环境等方面的应用也显示出广阔的前景。
如婴儿纸尿片、老年失禁纸尿片布、妇女用卫生巾等,广大发展中国家在这方面的需求不断增长,各国纷纷扩大生产,增加研究和开发力度。
高吸水性树脂作为通讯电缆的防水剂、湿度调节剂、凝胶转动装置、活体酶载体、人造雪等方面也得到了大量的研究和应用。
高吸水性树脂在农艺园林方面的应用也已表现出令人鼓舞的前景,它有利于节水灌溉、降低植物死亡率、提高土壤保肥保水能力、提高作物发芽率等。
高吸水树脂在沙漠治理方面的应用更是具有无可估量的社会效益。
由此可见进一步开发高吸水性树脂仍然有很重大的意义。
1.国外状况高吸水树脂的研究开发始于20世纪60年代后期。
1966年美国农业部北方研究所Fan-ta等进行了淀粉接枝丙烯腈的研究,从此开始了高吸水树脂的发展。