高吸水性树脂的制备与应用研究

合集下载

P(AA-co-AM)高吸水性树脂的制备及其吸水性能研究实验方案

P(AA-co-AM)高吸水性树脂的制备及其吸水性能研究实验方案

P(AA-co-AM)高吸水性树脂的制备及其吸水性能研究一实验目的1了解高吸水性树脂的基本功能及用途。

2 掌握高吸水性树脂的制备方法。

3了解高吸水性树脂吸水性的测定方法。

二实验原理高吸水性树脂是一种适度交联、具三维网络结构的新型功能高分子材料。

其分子中含有大量的-COOH、-OH等强亲水性基团,因此具有强的吸水性;同时因具有适度交联的三维网络结构,使其在水中只是吸水溶胀而不溶解。

故而这类材料具有超强的吸水、保水能力。

其疏松、多孔的表面结构,又使之能吸附小分子及离子,且吸附后树脂可洗脱再生,重复利用。

高吸水性树脂已被广泛用于农林、园艺、工业、医疗、环保等诸多领域。

高吸水性树脂先通过吸附和分散作用吸收水分,接着树脂的亲水基团通过氢键与水分子作用,离子型的亲水基团遇水开始解离,阴离子固定在高分子链上,阳离子为可移动离子。

随着亲水基团的解离,阴离子数目增多,静电斥力增大,使树脂网络扩张。

同时为了维持电中性,阳离子不能向外部溶剂扩散,而使其浓度增大,导致树脂网络内外的渗透压随之增加,水分子进一步渗入。

随着吸水量的增大,网络内外的渗透压差趋向于零,并且随网络扩张其弹性收缩力也在增加,逐渐抵消了阴离子的静电斥力,最终达到吸水平衡。

本实验以丙烯酸(AA)、丙烯酰胺(AM)为共聚单体,过硫酸钾(KPS)为引发剂,N,N'-亚甲基双丙烯酰胺(MBA)为交联剂,采用溶液聚合法制备高吸水性树脂,并探讨其吸水性能。

三仪器与试剂水浴锅搅拌器三颈瓶试剂瓶球形冷凝器量筒烧杯温度计药勺天平丙烯酰胺(AM)丙烯酸(AA)N,N-亚甲基双丙烯酰胺(MBA)过硫酸钾(KPS)各色染料四实验步骤1. 将4g丙烯酰胺(AM),2g中和度80%的丙烯酸和30 mL去离子水加入装有冷凝管、温度计和搅拌装置的150ml三颈瓶中,搅拌下升温至60℃,分别滴加0.005g/mL的MBA溶液1mL和0.05g/mL的KPS溶液2mL。

搅拌20分钟,滴加相应颜色的染料溶液数滴。

高吸水性树脂的制备与应用研究

高吸水性树脂的制备与应用研究

高吸水性树脂的制备与应用研究论文关键词:高吸水树脂;吸水机理;结构论文摘要:本文介绍了淀粉类、纤维素类、共聚合类、复合类以及可生物降解类高吸水性树脂及其发展、结构以及吸水理论,并对目前的研究现状进行了分析。

高吸水性树脂是一种新型功能高分子材料,由于它能吸收自身质量几百至上千倍的水,且吸水膨胀后生成的凝胶具有优良的保水性,因而广泛地应用于农业、林业、园艺等领域。

1 高吸水性树脂的分类高吸水性树脂发展迅速,品种繁多,根据现有的品种及其发展可按以下几个方面进行分类。

1.1 按原料来源主要分类1淀粉系:包括淀粉接枝、羧甲基化淀粉、磷酸酯化淀粉、淀粉黄原酸盐等。

2纤维素系:包括纤维素接枝、羧甲基化纤维素、羟丙基化纤维素、黄原酸化纤维素等。

3合成树脂系:包括聚丙烯酸盐类、聚乙烯醇类、聚氧化烷烃类、无机聚合物类等。

1.2 按亲水基团的种类分类①阴离子系:羧酸类、磺酸类、磷酸类等;②阳离子系:叔胺类、季胺类等;③两性离子系:羧酸-季胺类、磺酸-叔胺类等;④非离子系:羟基类、酰胺基类等;⑤多种亲水基团系:羟基-羧酸类、羟基-羧酸基-酰胺基类、磺酸基-羧酸基类等。

1.3 按制品形态可分四类:粉末状;纤维状;膜状;圆颗粒状。

2 高吸水性树脂的发展2.1国外发展上世纪50年代前,人们使用的吸水材料主要是天然产物和无机物,如多糖类、纤维素、硅胶、氧化钙及磷酸等。

50年代,科学家通过大量的实验研究,建立了高分子吸水理论,称为Flory吸水理论,为吸水性高分子材料的发展奠定了理论基础。

高吸水性树脂是20世纪60年代末发展起来的,最早在1961年由美国农业部北方研究所Russell等[1]从淀粉接枝丙烯腈开始研究,其目的是在农业和园艺中作为植物生长和运输时的水凝胶,保持周围土壤的水份;其后Fanta等接着进行研究,于1966年首先发表了关于淀粉改性的物质具有优越的吸水能力的论文,指出淀粉衍生物具有优越的吸水能力,吸水后形成的膨润凝胶体保水性很强,即使加压也不与水分离,甚至具有吸湿保湿性,这些特性都超过了以往的高分子材料。

高吸水性树脂的合成与应用

高吸水性树脂的合成与应用

高吸水性树脂的研究是以淀粉接枝丙烯腈开始的。 首先由美国 Fan ta 等[2]用硝酸铈铵为引发 剂, 淀粉接枝丙烯腈获得成功。 Gug liem elli 等[10]研究了皂化水解淀粉2丙烯腈接枝共聚物,W eaver 等[11]在此基础上制得吸水性聚合物“H SPAN ”。
对于用硝酸铈铵为引发剂, 淀粉接枝丙烯腈反应原理, F an ta 等人[12, 13]认为 Ce4+ 首先与淀粉配 位, 使淀粉链上的葡萄糖环 2, 3 位置上两羟基碳原子的一个被氧化, 碳链断裂, 未被氧化的羟基碳
醚化2交联法是制备纤维素基吸水性材料的一类常用方法。 一般有三种方式: (1) 先交联后醚 化; (2) 先醚化后交联; (3) 醚化与交联同时进行。不论采用何种方式, 均需要将精制好的原料纤维素 与碱溶液相互作用生成碱纤维, 以去掉可溶性的低分子物, 同时使纤维的结晶受到破坏、增加纤维 素大分子的反应活性。这里的原料纤维素是指天然纤维素如木浆等; 醚化时所使用的醚化剂通常为 一氯醋酸及其盐、二氯醋酸及其盐、环氧乙烷、环氧丙烷等; 交联时所使用的交联剂则一般是多官能 反应基团化合物。 212 酯化法
随后, 美国 G ra in2P rocessing, Gernera l M ills Chem ica l, H ercu les, N a t iona l sta rch、日本住友化 学、花王石碱、三洋化成工业等公司纷纷开展了研究和开发高吸水性树脂的工作。
高吸水性树脂不同于传统的吸水性材料如海绵、纸、棉等。高吸水性树脂应用广泛, 主要应用于 卫生用品、农业等方面, 如土壤改良、农林园艺中育苗保苗[6]等, 使灌溉节水, 并能提高农作物产量。 值得一提的是, 1983 年将高吸水性树脂应用于婴儿纸尿布, 首先在日本问世, 从此, 推起了高吸水 性树脂生产和研究的大高潮, 世界各公司纷纷扩大生产, 增加研究和开发力度[7]。时至今日, 高吸水 性树脂仍大量用于纸尿布、卫生用品方面。 可见进一步开拓开发高吸水性树脂潜力颇大。

高吸水性树脂的制备

高吸水性树脂的制备

高吸水性树脂的制备一、实验目标1.理解高吸水性树脂制备的基本原理;2.掌握实验室中沉析、真空干燥等常见的操作。

二、产品特性与用途高吸水性树脂或称超吸水性树脂(SAR),是指能吸收自身质量几百倍甚至上千倍水分的高分子聚合物,在日常生活、农业、医药及其他工业部门有广泛用途。

例如,高吸水树脂可用作香料载体、尿不湿的吸水材料;农业上用作园艺保水剂;工业上用作油水分离材料、污水处理剂、溶剂脱水剂;医药上用作人工肾脏过滤材料、血液吸附剂等,其很多用途正处于开发研究之中。

三、实验原理本实验以淀粉、丙烯腈为原料制备高吸水性树脂,主要的化学反应有两个,即接枝反应和水解反应。

接枝反应是以水为介质,以铈盐为引发剂,将丙烯腈接枝到已糊化的淀粉链上。

水解反应是在氢氧化钠的作用下,将接枝聚合物侧链上的腈基转变为酰胺基和羧酸盐基。

其反应式如下:接枝反应:R st +Ce4+Rst·+Ce3+(Rst代表淀粉,下同) 水解反应:作为吸水材料必须具备两个条件:一个是自身带有较多的吸水基团;二是本身不溶于水。

本实验制备的树脂是以淀粉为骨架,与丙烯腈接枝共聚成高分子化合物,不溶于水,侧链上的腈基又经过水解转化为亲水性很强的羧酸盐基和酰胺基,使其具有极强的吸水性。

因此,水解反应是使接枝共聚物实现其吸水性关键的一步反应,而水解反应条件选择的好坏直接影响到高吸水性树脂吸水性的高低。

四、主要仪器与药品1.主要仪器电热恒温水浴锅,电动搅拌器,500mL三口烧瓶以及氮气钢瓶等。

2.主要药品玉米淀粉,市售;丙烯腈,AR;硝酸铈铵,AR;氢氧化钠,AR;硝酸,AR;95%(v/v)乙醇,CP。

五、实验内容与操作步骤1. 称量淀粉10克装入三口烧瓶内,加200mL蒸馏水搅拌制成淀粉浆。

在氮气保护下,在80~85℃糊化30~40min,然后冷却到20~40℃。

2. 将硝酸铈铵用1mol/L的硝酸配成0.1g/mL的溶液,取3mL硝酸铈铵溶液与16克丙烯腈混合,配制成丙烯腈的硝酸铈铵溶液。

耐盐抗压高吸水性树脂的制备及其应用

耐盐抗压高吸水性树脂的制备及其应用

耐盐抗压高吸水性树脂的制备及其应用摘要:本文研究制备了一种具有耐盐抗压高吸水性的树脂,并探讨了其应用。

制备过程中采用了反相乳液聚合的方法,引入了丙烯酸和丙烯酰胺等单体,并添加了交联剂,使得树脂具有了优异的耐盐性、抗压性和高吸水性能。

同时,在农业领域,树脂可用于提高土壤水分利用率,改善盐渍土的质量,减轻植物对盐渍土的敏感性,从而提高农作物的产量和质量。

关键词:耐盐抗压高吸水性、树脂、反相乳液聚合、交联剂、农业1. 引言水是生命的基础,而土地是农业生产的基础。

但是,全球气候变化、人口增长和环境污染等因素导致了水资源短缺和土壤盐渍化等问题,给农业生产和生态环境带来了巨大的挑战。

因此,开发一种具有耐盐抗压高吸水性的树脂,可以提高土壤水分利用率,改善盐渍土的质量,减轻植物对盐渍土的敏感性,从而提高农作物的产量和质量,对于解决上述问题具有重要的意义。

2. 实验方法2.1 材料十二烷基苯磺酸钠(SDS)、双氧水(H2O2)、一硫代二甲醇(MT)、甲基丙烯酰胺(MAM)、乙酸丙烯酯(AA)、交联剂等。

2.2 反相乳液聚合法制备树脂以MT和SDS为复配乳化剂,将MT和SDS按照一定比例溶解在去离子水中,得到复配乳化剂溶液。

将MT和SDS复配乳化剂溶液倒入四口瓶中,在其中加入盐类水解液、H2O2、AA、MAM等单体,并通过喷淋的方式加入交联剂。

在磁力搅拌器上加热,使体系温度达到80°C,同时加入过氧化氢,即可引发乳液聚合反应。

随着反应的进行,可以观察到乳液逐渐变浓,到达90°C时停止反应,得到未固化树脂。

2.3 固化树脂将未固化的树脂在60°C下进行烘烤,直至样品表面完全干燥,然后继续在140°C下进行固化处理,约30min后即可取出固化树脂。

3. 结果及分析通过实验发现,制备的树脂具有优异的耐盐性、抗压性和高吸水性能。

在水浸泡10min,然后放置24h后,样品吸水率达到了1500%左右,表现出很好的吸水性能。

高吸水树脂的制备——高化实验报告

高吸水树脂的制备——高化实验报告
6
高分子化学实验报告
水。当渗透压差消失时,树脂便达到了吸水平衡。 3.影响高吸水性树脂吸水倍率的因素有哪些? 答:影响因素很多。从原料上考虑,有单体的类别、中和度,还有交联剂、引发剂的 类型和用量;从聚合过程上考虑,有聚合温度、聚合时间、加料方式等;从成品的角度考 虑,有结构助剂、防老化剂的用量等等。 九、 实验心得
COOH COOH
NaOH Na2S2O8
COOH O NH NH OCHN OCHN O CONH CONH
COOH
CO因为制备高吸水树脂需要以丙烯酸钠作为一部分单体, 因此 选用水溶液聚合更加方便。 三、 实验背景
高吸水性树脂 (Superabsorbent polymers, 简称 SAP) , 是一种新型功能性高分子材料, 它能吸收相当于自身质量数百倍甚至上千倍的液体, 同时具有较高的保液能力, 不能用简单 的物理方法将内部水分挤出,还可以反复吸水释水,因此其用途极为广泛。 高吸水性树脂按原料来源主要分为三大系列: 即淀粉系列、 纤维素系列和合成树脂系列。 淀粉系包括淀粉接枝、 羧甲基化淀粉、 磷酸酯化淀粉和淀粉黄原酸盐等; 纤维素系包括纤维 素接枝、 羧甲基化纤维素、 羟丙基化纤维素和黄原酸化纤维素等; 合成树脂系包括聚丙烯酸 盐类、聚乙烯醇类、聚氧化烷烃类和无机聚合物类等。 高吸水性树脂的性能包括树脂的吸收能力、吸液速率、保水能力、强度和稳定性等,
3
高分子化学实验报告
下图分别为聚合得到的凝胶(左)和切割得到的胶块(右) :
下图分别为烘干后的吸水树脂(左,薄膜态)和吸水饱和后的树脂(右,胶冻态) :
六、
注意事项 1. 本实验为研究型实验, 中和度、 交联度和引发剂用量都为可选条件, 在实验前应明
确分工,并进行详细记录,我们将中和度和交联剂用量作为了变量。 2. 在中和过程中, 氢氧化钠水溶液应滴加到丙烯酸中, 使其缓慢放热。 中和度用摩尔 比计算。 3. 在聚合过程中不可搅动溶液,聚合之后应用去离子水洗涤,而不是自来水。

我国高吸水性树脂的制备及性能研究进展

我国高吸水性树脂的制备及性能研究进展

专论与综述我国高吸水性树脂的制备及性能研究进展杨晓玲(青岛化工学院化工系,山东青岛 266042) 摘 要:介绍了我国近20年来高吸水性树脂的研究情况。

关键词:高吸水性树脂;超强吸水树脂;接枝共聚物;吸水剂 中图分类号:T Q325 文献标识码:A 文章编号:1003-0840(2001)01-0016-04 近年来,一种新型的高分子材料以其优异的吸水性能和广阔的应用领域越来越受到人们的重视,并发展成为一个专门的科学领域,它就是高吸水性树脂,亦称超强吸水剂。

1 我国高吸水性树脂的制备研究 我国于80年代初开始进行高吸水性树脂的研究。

1982年中科院化学所的黄美玉等人[1]在国内最先合成出以二氧化硅为载体的聚- -巯丙基硅氧烷为引发剂,吸水能力为400倍的聚丙烯酸钠类高吸水性树脂,之后有关高吸水性树脂的专利和文献报道逐渐增多,在80年代后期已有20多个单位进行了开发工作,并有少数单位已进行生产。

90年代末我国已将其应用列为重大科技推广项目在农业方面应用。

如吉林省将其用于移植苗木,新疆、河南和甘肃等省用其改良土壤。

但由于目前高吸水性树脂的价格较高,至今收效甚微。

1.1 淀粉-丙烯腈接枝共聚 以淀粉-丙烯腈接枝共聚制备高吸水性树脂的单位有[2]:兰州大学、南开大学、上海大学、黑龙江科学院石化所、太原工业大学、湖北省化学研究所、海南师范学院、中科院长春应用化学所、宁夏计量研究所、中科院成都有机化学研究所、青岛化工学院[3]等。

制备实例[4]:将50g玉米淀粉与850m L蒸馏水调匀,加入三口烧瓶中,然后加入3g37%甲醛,水浴加热,搅拌成糊,冷却至室温,依次加入76g丙烯腈,14g硝酸铈铵溶液(1.25g硝酸铈铵用12.75 g1mo l・L-1硝酸溶解制得),搅拌均匀,用50%NaOH调至pH为7,通入氮气,在氮气保护下,至室温搅拌2h,加入200m L蒸馏水,水浴加热至82℃,保温搅拌20min,驱尽过量丙烯腈,加入100g 50%NaOH,升温至80~90℃,保温搅拌皂化2h,至出现淡黄色为止,用冰乙酸调pH至7,迅速加2000m L无水甲醇,搅拌下纯化,蒸出过量甲醇,冷却至室温,抽滤,于60℃真空干燥,制得的吸水树脂吸蒸馏水量为1650g・g-1,吸人工尿为130g・g-1。

高吸水性树脂的合成与应用探讨

高吸水性树脂的合成与应用探讨

101 高吸水性树脂的特点及性能高吸水性树脂的三维结构和亲水性基团使其具有很好的亲水特性,表现出很好的保水性和吸水性。

当高吸水性树脂吸收水分时,会膨胀成为一种水凝胶,即便是在压力作用下,水也很难从凝胶中分离出来[1]。

与传统的吸水材料相比较,高吸水性树脂的吸水速度更快,吸水量更多,能够达到其自身数量的百倍乃至千倍。

因此,高吸水性树脂被广泛应用于生理卫生用品、农林园艺以及医药等领域。

2 高吸水性树脂的种类2.1 淀粉类高吸水性树脂淀粉是一种广泛存在于植物中的天然高分子聚合物。

利用淀粉制备高吸水性树脂不仅能够降低生产成本,而且制备的高吸水性树脂具有较好的生物降解性。

淀粉类高吸水性树脂的主要合成方法是接枝共聚,淀粉在引发剂的作用下与乙烯类有机单体进行接枝共聚。

该反应主要利用偶氮类、过氧化物以及氧化还原类引发剂进行反应,在特殊的情况下也可采用辐射引发[2]。

吴瑞红[3]在采用过硫酸钾引发红薯淀粉-丙烯酸-丙烯酰胺接枝共聚,实验结果表明,该高吸水性树脂具有较好的吸水性和耐盐性。

2.2 纤维素类高吸水性树脂纤维素的来源比较广泛,在市场上很容易获得,同时价格也比较便宜,在化学反应过程中自身的属性很容易发生改变。

因此,利用纤维素作为高吸水性树脂的原料也是一个重要的发展方向。

秦传高[4]在中以过硫酸钾为引发剂,N,N-亚甲基双丙烯酰胺为交联剂,麦秸秆纤维素和丙烯酸作为原料合成了高吸水性树脂,实验结果表明,该吸水性树脂对去离子水、自来水以及0.9%生理盐水的吸收率分别达到了322.7g/g、167.2g/g和30.6g/g。

2.3 合成树脂类高吸水性树脂合成树脂的发展起步比较晚,最开始是在日本及西方发达国家应用起来的。

目前,合成树脂类高吸水性树脂成为了主要的研究方向,其主要分为丙烯酸(盐)类、丙烯腈类以及聚乙烯醇类。

2.4 高吸水性树脂制备方法在使用高吸水性树脂时,由于对高吸水树脂的形貌、适用范围以及对其吸水能力的需求不尽相同,因此,在制作高吸水树脂时,要挑选针对性的合成工艺,其特性详见表1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高吸水性树脂的制备与应用研究高材1203 庞进20120221172摘要:本文介绍了淀粉类、纤维素类、共聚合类、复合类以及可生物降解类高吸水性树脂及其发展、结构以及吸水理论,并对目前的研究现状进行了分析。

高吸水性树脂是一种新型功能高分子材料,由于它能吸收自身质量几百至上千倍的水,且吸水膨胀后生成的凝胶具有优良的保水性,因而广泛地应用于农业、林业、园艺等领域。

关键词:高吸水树脂;吸水机理;结构1 高吸水性树脂的分类高吸水性树脂发展迅速,品种繁多,根据现有的品种及其发展可按以下几个方面进行分类。

1.1 按原料来源主要分类1淀粉系:包括淀粉接枝、羧甲基化淀粉、磷酸酯化淀粉、淀粉黄原酸盐等。

2纤维素系:包括纤维素接枝、羧甲基化纤维素、羟丙基化纤维素、黄原酸化纤维素等。

3合成树脂系:包括聚丙烯酸盐类、聚乙烯醇类、聚氧化烷烃类、无机聚合物类等。

1.2 按亲水基团的种类分类①阴离子系:羧酸类、磺酸类、磷酸类等;②阳离子系:叔胺类、季胺类等;③两性离子系:羧酸-季胺类、磺酸-叔胺类等;④非离子系:羟基类、酰胺基类等;⑤多种亲水基团系:羟基-羧酸类、羟基-羧酸基-酰胺基类、磺酸基-羧酸基类等。

1.3 按制品形态可分四类:粉末状;纤维状;膜状;圆颗粒状。

2 高吸水性树脂的发展2.1国外发展上世纪50年代前,人们使用的吸水材料主要是天然产物和无机物,如多糖类、纤维素、硅胶、氧化钙及磷酸等。

50年代,科学家通过大量的实验研究,建立了高分子吸水理论,称为Flory吸水理论[1],为吸水性高分子材料的发展奠定了理论基础。

高吸水性树脂是20世纪60年代末发展起来的,最早在1961年由美国农业部北方研究所Russell等[2]从淀粉接枝丙烯腈开始研究,其目的是在农业和园艺中作为植物生长和运输时的水凝胶,保持周围土壤的水份;其后Fanta等接着进行研究,于1966年首先发表了关于淀粉改性的物质具有优越的吸水能力的论文,指出淀粉衍生物具有优越的吸水能力,吸水后形成的膨润凝胶体保水性很强,即使加压也不与水分离,甚至具有吸湿保湿性,这些特性都超过了以往的高分子材料。

首次开发成功后,世界各国对高吸水性树脂在体系、种类、制备方法、性能改进、应用领域等方面进行了大量的研究工作,并取得了一系列的研究成果。

1975年美国谷物加工公司成功研究出淀粉接枝丙烯腈高吸水性树脂,但直到1978 年才由日本的三洋化成工业率先进行了商业化生产,将高吸水性树脂用于一次性尿布,于1979年在日本名古屋投产了1000吨/年的生产设备,产品远销欧美各国,使其市场潜力和应用研究受到人们的重视。

高吸水性树脂的发展也随之进入了一个新的时代。

70 年代末美国UCC公司用放射法交联各种氧化烯烃聚合物,合成了非离子型的高吸水性树脂,其吸水能力高达2000倍,从而打开了合成非离子型高吸水性聚合物的大门。

80年代出现了以天然化合物及其衍生物为原料(藻酸盐、聚氨基酸、壳聚糖、蛋白质等)制取的高吸水性材料,同时,出现了高吸水性复合材料,由于它能改善吸水性材料的耐盐性、吸水速度、水凝胶的强度等许多性能,所以发展迅速。

90年代初,吸水性树脂的研究更是突飞猛进。

最新开发了对环境友好的聚氨基酸系高吸水性树脂、可生物降解的复合纤维或无纺布材料、高吸水性树脂泡沫、芳香性卫生用品、室内装饰性凝胶材料等。

目前,日本触媒、三洋化成及德国Stockhausen 三大生产集团掌握了全球高吸水树脂70%的市场,他们之间均以技术合作方式,进行着世界性国际联合经营,占居了世界主要技术和市场。

在过去将近20年中,世界高吸水性树脂的市场需求持续强劲增长是全球高吸水性树脂的生产能力和趋势,从1986年世界高吸水性树脂产量不足0.5万吨/年,到2001年为125万吨/年。

目前全球对高吸水性树脂生产和需求几乎是直线上升趋势。

在本世纪,随着北美、西欧高吸水性树脂市场逐渐进入成熟期,以及亚太和拉美等新兴市场的快速发展,全球对高吸水性树脂的需求将急剧膨胀,全世界对高吸水性树脂的需求将不断增加。

2.2国内发展我国从80年代才开始研制高吸水性树脂,1982 年中科院化学研究所的黄美玉等在国内最先合成出聚丙烯酸钠类高吸水性树脂,80年代后期己有20多个单位、研究所、纺织科学研究院与山东省济宁化肥厂联合研制出聚丙烯酸类的高吸水性树脂,建起国内第一套100吨/年的生产装置。

我国高吸水性树脂的消费始于1991年,一些独资或合资企业引进护翼卫生巾生产线,1993年引进尿裤生产线后,消费需求不断增加。

1985年北京化工研究院申请了国内第一项吸水性树脂的专利,到2006年底,我国己申请专利200多项,主要集中在合成淀粉接枝丙烯腈皂化水解物、聚丙烯酸盐、聚乙烯醇衍生物等高吸水性树脂[3]。

近年来,医用高吸水材料、生物可降解高吸水材料和有机—无机复合材料的研究也日益增多。

如淀粉类可生物降解高吸水材料、聚氨基酸类、可生物降解高吸水性树脂、无机—有机复合高吸水性材料、羟乙基纤维素高吸水性材料的合成及性能研究。

在应用研究方面,90年代末,我国己将高吸水性树脂在农业领域的应用列为重大科技推广项目。

吉林省开展的移植苗木研究,黑龙江省开展的种子培育研究均取得可喜成就,新疆、河南等省也在研究利用吸水性树脂改良土壤,甘肃省中国科学院兰州化学物理研究所、兰州大学、西北师范大学等许多单位也开展了高吸水性树脂研究工作,开发出一系列新型的有机—无机复合材料、可生物降解的高分子材料以及耐盐耐高温等高吸水性树脂,成功应用于西北干旱土壤改良、油田堵水等工作。

高吸水性树脂在我国有着巨大的市场潜力,但在工业化及应用研究方面与国外还有很大差距,我国所需的高吸水聚合物大部分仍需要进口。

如何加强高吸水性树脂吸水理论的研究,并开发出性能良好而廉价的吸水性树脂,这些都需要我们作进一步的努力。

3.高吸水性树脂的结构与吸水机理3.1 高吸水性树脂的结构高吸水性树脂是一种三维网络结构,它不溶于水而大量吸水膨胀,形成高含水凝胶。

高吸水性树脂的主要性能是具有吸水性和保水性。

要具有这种特性,其分子中必须含有强吸水性基团和一定的网络结构,即具有一定的交联度。

实验表明:吸水基团极性越强,含量越多,吸水率越高,保水性也越好。

而交联度需要适中,交联度过低则保水性差,尤其在外界有压力时水很容易脱除。

高吸水性树脂的微观结构因合成体系的不同而呈现出多样性。

大多数高吸水性树脂是由分子链上含有强亲水性基团(如羧基、磺酸基、酞胺基、羟基等)的三维网状结构所组成。

吸水时,首先是离子型亲水基团在水分子的作用下开始离解,阴离子固定在高分子链上,阳离子作为可移动离子在树脂内部维持电中性。

由于网络具有弹性,因而可容纳大量水分子,当交联密度较大时,树脂分子链的伸展受到制约,导致吸水率下降。

随着离解过程的进行,高分子链上的阴离子数增多,离子之间的静电斥力使树脂溶胀,同时,树脂内部的阳离子浓度增大,在聚合物网络内外溶液之间形成离子浓度差,渗透压随之增大,使水进一步进入聚合物内部。

当离子浓度差提供的驱动力不能克服聚合物交联构造及分子链间的相互作用(如氢键)所产生的阻力时,吸水达到饱和。

3.2 高吸水性树脂的吸水机理文献资料报道,高吸水性树脂吸水机理有多种说法,其中有两种占主要地位,金益芬等[5]认为高吸水性树脂吸水有3个原动力:水润湿、毛细管效应和渗透压。

高吸水能力主要由这3个方面的因素决定。

水润湿是所有物质吸水的必要条件,聚合物对水的亲和力大,必须含有多个亲水基团(如-OH、-COOH等);毛细管效应则是让水容易迅速地扩散到聚合物中;渗透压可以使水通过毛细管扩散、渗透到聚合物内部,或者说,渗透压可以使水连续向稀释聚合物固有电解质浓度的方向发动。

刘廷栋等则认为当水与高分子表面接触时主要有3种相互作用:一是水分子与高分子中电负性强的氧原子形成氢键;二是水分子与疏水基团相互作用;三是水分子与亲水基团的相互作用。

上述两种理论虽然表述不相同,但二者的理论都是建立在高吸水聚合物的主体网络结构基础之上的,实质是相同的。

高吸水性树脂吸水后形成高含水凝胶,属于弹性凝胶。

高吸水性树脂的出现促进了凝胶学理论的发展,弹性凝胶的基本规律和特性也适用于高吸水性树脂。

在研究吸水性树脂的吸水理论中,最具代表性的就是Flory对凝胶研究过程中提出的热力学理论公式以及Omidian等提出的吸水动力学理论。

3.2.1 Flory-Huggins热力学理论Flory深入研究了高分子在水中的膨胀后,从聚合物凝胶内外离子浓度差产生的渗透压出发,导出了高吸水性树脂溶胀平衡时的最大吸水倍数理论[6]:(1)对于离子性高吸水性树脂,由于固定在树脂上的电荷密度为一个较大值,因此吸水倍数较大;而对于非离子性树脂,固定在树脂上的电荷密度值较小,所以吸水倍数较小;(2)在相同接枝率的情况下,交联剂用量越少,交联密度越小(要形成有效的三维网络结构),即分母越小,吸水倍数值越大,树脂的吸少能力越好;(3 )对于同一树脂,当外部为电解质溶液时,由于树脂结构是确定的,因而可将单体单元的摩尔体积、固定在树脂上的电荷密度、交联密度视为常数,同时电解质浓度不是很大时,溶剂与树脂的亲合力与纯水时的差别不大,此时溶液离子强度越大,吸水倍数越小,且吸水倍数与外部溶液的电解质离子强度成反比,这就解释了高吸水树脂在盐溶液中其吸液率急剧下降的原因。

但处于吸水状态的高吸水性树脂,显示橡胶的弹性行为,其刚性率与交联密度成正比。

吸水倍率表示交联密度小时,吸水倍率大,但刚性则反而降低。

显然只控制交联密度是不能同时满足既提高吸水能力,又获得高强度凝胶的高吸水性树脂。

进一步解释为,达到吸水极限(吸水倍数最高状态时)的树脂,吸水倍数高时其凝胶的弹性就变差。

而具有高吸水能力的树脂没有达到吸水饱和状态时,其吸水凝胶具有一定程度的弹性。

这种理论指导的意义在于:仅仅注重追求高吸水倍数的树脂,而不照顾吸水后树脂水凝胶的刚性(弹性)是缺乏实用价值的,如果树脂吸水后变成稀汤状,吸水倍数再高也缺乏实用价值。

获得具有良好实用价值的树脂既要兼顾尽可能高的吸水倍数,又要保证一定的弹性“成型”性。

3.2.2吸水动力学理论高吸水性树脂吸水时,一方面水向吸水性树脂内部扩散;另一方面组成吸水剂的高分子链在水的作用下彼此分离、扩展。

吸水速率取决于水向高吸水性树脂内部的扩散速率以及高分子链在水的作用下扩展的速率。

4. 高吸水性树脂的制备4.1淀粉系高吸水性树脂的制备淀粉系高吸水性树脂是按自由基型或离子型接枝共聚机理进行。

淀粉在引发剂存在下或辐射下,使淀粉变成自由基,淀粉自由基与乙烯类单体反应生成淀粉大分子自由基,继而再与乙烯类单体进行链增长、链终止,从而得到淀粉类高吸水性树脂。

4.1.1 淀粉接枝丙烯腈类高吸水性树脂淀粉接枝丙烯腈及α-甲基丙烯腈符合接枝共聚基本原理,可用负离子催化剂使淀粉进行离子型接枝共聚,也有自由基型接枝共聚。

相关文档
最新文档