运筹学单纯形法讲解

合集下载

运筹学课件1-4单纯形法计算步骤

运筹学课件1-4单纯形法计算步骤

b 21 4
9 4
3 x1 1 -1 3 4 -1 12
9 x2 3 1 9 0 1 0
0 x3 1 0 0 1 0 0
0 x4 0 1 0 -3 1 -9
θ 7 4
9/4 -
所以把x3换出为非基变量,x1为换入变量即新的基变量。
第20页
cj
CB 0 0
0 9 3
XB x3 x4 cj-zj x3 x2 cj-zj x1
cj-zj
x3 x1 x5 cj-zj
6
0 1 0
5
5/2 1/2 1
0
1 0 0
0
-1/2 1/2 -1
0
0 0 1
75 5
0
2
0
-3
0
5
x2
5
0
1
0
-1
1
第10页
cj CB 0 0 0 0 6 0 XB x3 x4 x5 b 90 75 80 105/2 75/2 5
6 x1 1 2 2
5 x2 3 1 2
9/4
-
3 9
9/4 25/4
1 0 0
25
第24页
cj CB 0 0 XB x3 x4 cj-zj b 21 4
3 x1 1 -1 3
9 x2 3 1 9
0 x3 1 0 0
0 x4 0 1 0 θ 7 4
0
9
x3
x2 cj-zj x1 x2 cj-zj
9
4
4
-1 12
0
1 0 0 1 0
1
0 0 1/4 1/4 -3
i 1
第1页
单纯形表求解线性规划问题

运筹学单纯形法

运筹学单纯形法

单纯形表
max z=x1+2x2 s.t. x1+x23 x2 1 x1, x2 0
Cj CB XB b 0 0 Z X3 3 X4 1 0 1 2 0 0
标准化
max z=x1+2x2 s.t. x1+x2+ x3 =3 x2 +x4=1 x1, x2 ,x3, x40
X1 X2 X3 X4 1 0 1 1 1 2 1 0 0 0 1 0
Z=x1+2x2 x1+x2+ x3 =3 x2 +x4=1 单纯形表
Cj
1
2
0
0
单纯形法原理 单纯形表 CB XB b
z=x1+2x2 x3 =3-x1-x2 x4=1 -x2
x2进基,x4离基
X1 X2 X3 X4

3/1 11
0
1 0
1 1
1 1
2 2 0 1 0 2 0 1 0 0 1 0 -1 0
max z=x1+2x2 s.t. x1+x2+x3 =3 x2 +x4=1 x1, x2, x3, x40
x1=0
(x1,x2,x3,x4)= (0,1,2,0), z=2 C (x1,x2,x3,x4)= (2,1,0,0), z=4,最优解
B
x4=0 x3=0
(x1,x2,x3,x4)= (0,0,3,1), z=0
1 0
0 0
0 1
0
CB XB b 0 2 Z Cj CB XB b 1 2 Z X1 2 X2 1 4 X3 2 X2 1 2 1 1 0 0
X1 X2 X3 X4 1 0 1 1 0 0 0 -1 1 -1

运筹学5-单纯形法

运筹学5-单纯形法

保持可行性 保持可行性 保持可行性
保持可行性
X1
X2
X3
...
Xk
保持单调增 保持单调增 保持单调增
Z1
Z2
Z3
...
保持单调增
Zk
当Zk 中非基变量的系数的系数全为负值时,这时的基 本可行解Xk 即是线性规划问题的最优解,迭代结束。
(2) 线性规划的典则形式
标准型
Max Z CX AX b
s.t X 0
j 1
j 1
j 1
j 1
与X 0 相比,X 1 的非零分量减少1个,若对应的k-1个 列向量线性无关,则即为基可行解;否则继续上述步
骤,直至剩下的非零变量对应的列向量线性无关。
几点结论
❖ 若线性规划问题有可行解,则可行域是一个凸多边形或 凸多面体(凸集),且仅有有限个顶点(极点);
❖ 线性规划问题的每一个基可行解都对应于可行域上的 一个顶点(极点);
10
令 x1 0 x2 0
则 x3 15
X 0 0 15 24T
x4 24
为基本可行解,B34为可行基
B
0
X 24
3
108
A
0
X 34
0
15 24
0
0
X 23
12
45 0
1 基本解为边界约束方程的交点; 2 基对应于可行解可行域极点; 3 相邻基本解的脚标有一个相同。
1 0
1 0
B23 1 0 B24 1 1 B34 0 1
C42
2!
4! 4
2
!
43 21 21 21
6
由于所有|B|≠ 0, 所以有6个基阵和 6个基本解。

单纯形法的计算步骤

单纯形法的计算步骤

运筹学基础及应用
解:化标准型
max
z 2 x1 x2 0 x3 0 x4 0 x5 5 x2 x3 15 6 x 2 x x4 24 1 2 x5 5 x1 x2 x1 , , x5 0
运筹学基础及应用
表1:列初始单纯形表 (单位矩阵对应的变量为基变量)
运筹学基础及应用
单纯形表
- Z x1基变量 x 2 ... xm XB 0 1 1E 0 单位阵 ....... 0 1 1 c c 0... c 1 2 m xm xNn 非基变量 1 .... X a1m 1 ...a1n a 2 m 1N...a 2 n
非基阵 ......
在上一节单纯形法迭代原理中可 知,每一次迭代计算只要表示出当前的约 束方程组及目标函数即可。
a1m 1 xm 1 ..... a1n xn b1 x1 x a2 m 1 xm 1 ..... a2 n xn b2 2 .......... .......... .......... ..... xm amm 1 xm 1 ..... amn xn bm Z c1 x1 ... cm xm cm 1 xm 1 ... cn xn 0
3
0 1 5/4 -15/2 1*3/2 0 0 1/4 -1/2 +0*15/2 检验数<=0 1 0 -1/4 3/2
cj z j
8.5
0
0
-1/4
-1/2
最优解为X=(7/2,3/2,15/2,0,0) 目标函数值Z=8.5
cj
CB
0 0 0
2
1
0最小的值对应 0 0

运筹学单纯形法例题求解过程

运筹学单纯形法例题求解过程

运筹学单纯形法例题求解过程(原创版)目录一、运筹学单纯形法的基本概念二、运筹学单纯形法的求解步骤1.确定基变量和初始基本可行解2.编制初始单纯形表3.判断基本可行解是否为最优解4.迭代求解下一个使目标函数更优的基本可行解5.重新计算机会费用和检验数三、运筹学单纯形法的应用实例正文一、运筹学单纯形法的基本概念运筹学单纯形法是一种求解线性规划问题的方法,它是基于数学和统计学的理论基础,通过逐步优化算法,寻找线性规划问题中最优解的一种方法。

线性规划问题是指在一定约束条件下,寻求目标函数的最小值或最大值的问题。

而单纯形法是线性规划问题中最常用的求解方法之一,它通过迭代计算,不断优化基变量,从而得到问题的最优解。

二、运筹学单纯形法的求解步骤1.确定基变量和初始基本可行解在求解线性规划问题时,首先需要确定问题的基变量,即在所有变量中选择若干个变量作为基变量。

基变量的选取可以通过寻找单位矩阵的方法来确定。

确定基变量后,可以求出初始基本可行解,即满足所有约束条件的变量值组合。

2.编制初始单纯形表根据初始基本可行解和线性规划模型提供的信息,可以编制初始单纯形表。

单纯形表是一个包含基变量、非基变量、目标函数系数、约束条件常数项和检验数等元素的矩阵表。

3.判断基本可行解是否为最优解在求解过程中,需要判断基本可行解是否为最优解。

这可以通过检验数来进行。

检验数是指非基变量与对应约束条件的乘积,如果所有非基变量的检验数都小于等于 0,说明已经达到最优解。

否则,需要继续迭代求解。

4.迭代求解下一个使目标函数更优的基本可行解如果基本可行解不是最优解,需要通过迭代求解来寻找下一个使目标函数更优的基本可行解。

迭代过程中,需要确定换入变量和换出变量,然后根据换入变量和换出变量生成新的单纯形表,并重新计算机会费用和检验数。

5.重新计算机会费用和检验数在迭代过程中,需要重新计算机会费用和检验数,以便判断新的基本可行解是否更优。

如果新的基本可行解的检验数满足条件,说明已经找到最优解,可以结束迭代求解过程。

运筹学第2章 单纯形法

运筹学第2章 单纯形法

所有检验数 j 0 ,则这个基本可行解是最优解。
n
z z0 j x j
j m 1
m
j ciaij c j =CTBa j c j
i 1
m
m
z0 c j x j = cibi =CBT b
j 1
i 1
✓对于求目标函数最小值的情况,只需 σj≤0
0
XB
b
x1
-1 x5 0
0
0 x4 3
1
-3 0
0
00
x2
x3
x4
0
-2 0
2
-2 1
0 10
-1 bi/aik
x5
1
0
0
29 2020/3/4
2、无界解
在求目标函数最大值的问题中,所谓无界解是指在约束条件 下目标函数值可以取任意的大。
•存在着一个小于零的检验数,并且该列的系数向量的每个元素 都小于或等于零,则此线性规划问题是无界的,一般地说此类
2x1 x2 x3 x5 2
s.t. x1 2x2
x4
3

x1,
x2 , x3, x4 , x5 0
✓添加人工变量x5来人为的创造一个单位矩阵作为基 ✓M叫做罚因子,任意大的数。 ✓人工变量只能取零值。必须把x5从基变量中换出去,否 则无解。
cj
3
2
00
CB XB
2020/3/4
14
(2)出基变量和主元的确定——最小比值规则
min

bi aik
aik

0


bl alk
确定出基变量的方法:把已确定的入基变量在各约束方程中的正的系数

运筹学——3.单纯形矩阵描述与改进单纯形法

运筹学——3.单纯形矩阵描述与改进单纯形法

32
计算B的逆矩阵

(6)计算RHS
1 / 2 8 2 1 1 B1 b 1 0 16 16 1 / 4 12 3
23
第2节 改进单纯形法
第1步计算结束后的结果
基 B1 P3 , P4 , P2 ; 基变量 X B1 x3 , x4 , x2 ;
22
(5)计算非基变量的系数矩阵
1 / 2 1 1 1 1 N1 4 B1 N1 1 0 4 1 1 / 4 1 1 1 / 2 4 0 1/ 4
B2 1b i 1 min 1 B2 P5 0 B P 2 5 i 2 8 3 min , , 4 对应x4 1/ 2 2 1/ 4
31
基变换:
新的基
B3 P , P5 , P2 ; 1 换入变量x5 的系数向量是 1 0 1 / 2 0 1 / 2 1 B2 P5 4 1 2 0 2 主元素 0 0 1 / 4 1 1 / 4
确定换出变量
B11b i 1 min 1 B1 P 0 1 B P 1 1 i 2 16 3 min , , 2 对应x3 1 4 0


26
由此得到新的基
B2 P , P4 , P2 1 1 1 B1 P 4 1 0 1 1 0 0 2 4 E2 4 1 0 0 0 0 1 1 0 0 1 0 1/ 2 1 1 B2 E2 B1 4 1 0 0 1 0 0 0 1 0 0 1/ 4 1 0 1/ 2 4 1 2 0 0 1/ 4

对偶单纯形法(经典运筹学)

对偶单纯形法(经典运筹学)

引进人工变量 x6,x7 max Z 2 x1 x 2 Mx6 Mx7 3x1 x 2 x3 x6 3 4 x 3 x x x 6 2 4 7 s.t 1 x1 2 x 2 x5 3 x1 , x 2 , x3 , x 4 , x5 0
3 6 最优解 X ( ,, 0, 0, 0 ) 5 5
最优值 Z 12
5
对偶单纯形法步骤:
1、找出一个初始对偶可行解。 即找出一个基B,
把原问题写成该基的典则形式时,目标函数的系数均≤0
2、判断: (1)若B-1b≥0,则得到最优解 (2)若B-1b≥0, 记B 1b b1 , b2 , , bm
m ax Z 2 x1 x 2 3 x1 x 2 x3 3 4 x 3x x 6 1 2 4 s.t 基 B的典则形式 x1 2 x 2 x5 3 x1 , x 2 , x3 , x 4 , x5 0
取基B P 3, P 4,P 5
解:问题化为标准型 max Z 2 x1 x 2 5 x1 x 2 x3 2 x 2 x3 x 4 5 s.t 6x xx 9 xx 2 2 6 x3 3 5 5 9 44 x1 , x 2 , x3,x 4,x5 0
1、确定出基变量: 设br =min{bi | bi <0} 则取br所在行的基变量 为出基变量 即取X4为出基变量 2、确定入基变量: 原则: 保持检验行系数≤0
i i0 设 min | a ri 0 a ri a ri 0
1 21 3
X1 检 -2/3 X3 -5/3 X2 4/3 X5 -5/3 X1 检 0 X3 0 X3 X4 0 -1/3 1 0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学单纯形法讲解
一、单纯形法基本概念
在运筹学中,单纯形法是一种在给定点搜索可行解集合的一种技术。

设有m个点x、 y、 z分布在两点P、 Q,它们是相互独立的,这样的点组成了单纯形。

单纯形是可以用于求解最优化问题的一种简单的对象,因而又称为对象或对象群。

由单纯形求出的最优解就叫做单纯形的最优解。

在实际应用中,一般用来求最优解的都是单纯形。

二、单纯形法适用条件和范围
在运筹学中,单纯形法常用于求解线性规划、非线性规划和整数规划等,还可以求解网络的流量、质量等。

但当运输问题用单纯形法求解时,解不存在,无最优解,也无单纯形。

非线性规划只能得到对象最优解。

三、单纯形法具体步骤和算法介绍
1、明确问题的目标。

2、计算出所有解,按确定的先后顺序排列。

3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。

四、单纯形法的误差和精度
1、明确问题的目标。

一般在最优化问题中,用最小值对准目标是最理想的,但是在实际工程应用中,人们往往要求越多越好,甚至有时只要求几个较小的值。

但要注意所得结果的可靠性和正确性,也要尽可能减少计算过程中的误差。

2、计算出所有解,按确定的先后顺序排列。

首先,找出最优解,再在这个最优解附近寻找另外的比最
优解更好的最优解,直到所有点都达到满意的精度。

这种方法称为“穷举法”。

穷举法通常用于没有更好的方法时,常用于工程实际中。

3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。

4、单纯形法的误差:由于人们认识上的错误或操作不当造成的,如排除法的计算次数与数据采集次数之比,以及采样值的平均数与真值之比,与取值的个数有关,与取值的精度也有关,必须合理确定取值范围。

5、单纯形法的精度:根据问题的规模,计算数据量和计算次数,反复调整取值点,改进计算方法,从而得到尽可能高的精度。

单纯形法的精度可达0.01或0.05。

3、为了缩小搜索空间。

4、便于修改搜索方向。

5、增加信息,使决策者有更多机会了解全局情况。

相关文档
最新文档