1 3 第一章线性规划与单纯形法运筹学习题集第一章线性规划与单纯形

合集下载

运筹学课件第1章_线性规划与单纯形法-习题

运筹学课件第1章_线性规划与单纯形法-习题

综上所述:
a=3, b=2, c=4, d=-2, e=2, f=3, g=1, h=0 i=5, j=5, k=-3/2, l=0
6 设 X 0 是线性规划问题 max z CX , AX b, X 0
的最优解。若目标函数中用 C 代替 C 后,问题 的最优解变为 X
求证: (C C)( X X 0 ) 0
第1章 线性规划与单纯形法
• 掌握图解法、图示解释、几何解释。 • 掌握单纯形法的计算步骤。 • 根据实际生产中的经济管理问题,建立线
性规划模型,在计算机上求解。
1 将下述线性规划问题化成标准形式
min Z 2x1 2x2 3x3

st.

x1 x2 x3 4 2x1 x2 x3 6
x3' , x3'' 0
x4 0
2 已知线性规划问题:
max Z x1 3x2
x1
x3
5 (1)
st.

x1

2x2 x2
x4
10 (2)
x5 4
(3)
x1 ... x5 0
(4)
下表中所列的解均满足约束条件(1)-(3),试指出表中 哪些是可行解,哪些是基解,哪些是基可行解。
x5
30 85
x1 x2 x3 x4 x5 0
判断下列各点是否为该线性规划问题可行域上的顶点:
X (5,15, 0, 20, 0)
X (15,5,10, 0, 0)
解:
2 1 1 0 0
A 1 3
0
1
0

4 7 1 2 1

运筹学第一章线性规划及其单纯形法习

运筹学第一章线性规划及其单纯形法习
14M 4M-2 6M-3 2M-1 -M -M 0 0
x6
x7
-M
-M
6 3 2 0 0 -1 0 1
2 3
Cj
比值
CB
XB
b
检验数j
x1 x2 x3 x4 x5 x6 x7
-2 -3 -1 0 0 -M -M
x2
x7
-3
-M
2 1/4 1 1/2 -1/4 0 1/4 0
2 5/2 0 -1 1/2 -1 -1/2 1
8 4/5
Cj
0.03
B1
6
8
4000
0.06
B2
4
11
7000
0.11
B3
7
4000
0.05
原料费
0.25
0.35
0.50
售价
1.25
2.00
2.80
设备
产品
设备有效台时
设备加工费
I
II
III
A1
5
10
6000
0.05
A2
7
9
12
10000
0.03
B1
6
8
4000
0.06
B2
4
11
7000
0.11
B3
7
4000
i=5, j=5, k=-3/2, l=0
01
02
综上所述:
设 是线性规划问题 的最优解。若目标函数中用 代替 C后,问题的最 优解变为
求证:
证明:因为
将(2)-(1)有
设备
产品
设备有效台时
设备加工费
I
II

运筹学习题解答(chap1 线性规划及单纯形法)

运筹学习题解答(chap1 线性规划及单纯形法)

第一章 线性规划及单纯形法一、写出下列线性规划的标准形式,用单纯形法求解,并指出其解属于哪种情况。

1、P55,1.3(a)21510m ax x x Z +=⎪⎩⎪⎨⎧≥≤+≤+0x ,x 8x 2x 59x 4x 3.t .s 212121 解:将模型化为标准型21510x x Z Max +=⎪⎩⎪⎨⎧≥=++=++0,,,825943..4321421321x x x x x x x x x x t s 单纯形表如下因所有检验数0j ≤σ,已达最优解,最优解是)2,1(*=X ,最优目标值为2。

由检验数的情况可知,该问题有唯一最优解。

2、 P55,1.3(b)21x x 2Z m ax +=s.t⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,524261552121212x x x x x x x解:将模型化为标准型21x x 2Z Max +=t s . ⎪⎪⎩⎪⎪⎨⎧≥=++=++=+0x ,...,x ,x ,5x x x ,24x x 2x 6,15x x 552152142132 单纯形表如下因所有检验数0j ≤σ,已达最优解,最优解是)0,0,2,2,2(X *=,最有目标值为217。

由检验数的情况可知,该问题有唯一最优解。

3、3212x x x Z Min -+=,t s . ⎪⎪⎩⎪⎪⎨⎧≥≤++≤+-≤-+0,,,5,822,422321321321321x x x x x x x x x x x x 解:将模型化为标准型:3212x x x Z Min -+=t s . ⎪⎪⎩⎪⎪⎨⎧≥=+++=++-=+-+0,,,5,822,422321632153214321x x x x x x x x x x x x x x x 用单纯形法迭代最优解为(0,0,4),最优值为-4。

4、43213x x x x Z Min +++=t s . ⎪⎪⎩⎪⎪⎨⎧≥=++=++-0,,,,,63,4224321421321x x x x x x x x x x 解:因为所有检验数均已非负,故已是最优解,最优解为(0,2,0,4),--10分最优目标值:6Z =*。

线性规划与单纯形法(4)

线性规划与单纯形法(4)

• 右端常数项非正
两端同乘以 -1
• 约束条件为不等式
– 当约束方程为“≤”时,左端加入一个非负的松弛变量, 就把不等式变成了等式;
– 当约束条件为“≥”时,不等式左端减去一个非负的剩余 变量(也可称松弛变量)即可。
• 决策变量xk没有非负性要求 令xk=xk′-x k〃, xk=xk′,x k〃 ≥0
例1是二维空间(平面)线性规划问题,可用作 图法直观地来表述它的求解。
因存在 x1,x2 0
必须在直角坐标的第1象限内作图,求解。
23
图1-2
max z 2x1 3x2
x1 2x2 8
4 x1
16 4x2 12
x1, x2 0
24
图1-3 目标值在(4,2)点,达到最大值14 目标函数 max z 2x1 3x2
约,用量不能突破。
– 生产单位甲产品的零部件需耗用A车间的生产能力 1工时,
– 生产单位乙产品不需耗用A车间的生产能力, – A车间的能力总量为8工时,则A车间能力约束条件
表述为
x1
≤8
– 同理,B和C车间能力约束条件为
2x2 ≤12
3x1 +4 x2 ≤36
16
(3)目标函数。目标是利润最大化,用Z表示利润,则
1
S.t. x1 -3 x2 ≥3
x1 ≥0, x2 ≥0 -1
x1 -3 x2
1
2
=3
3
x1
-1
36
1.3 线性规划问题的标准型式
一 、标准型
• 线性规划问题的数学模型有各种不同的形式,如 – 目标函数有极大化和极小化; – 约束条件有“≤”、“≥”和“=”三种情况; – 决策变量一般有非负性要求,有的则没有。

(完整版)《运筹学》习题集

(完整版)《运筹学》习题集

第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。

1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。

1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。

1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。

运筹学第一章

运筹学第一章
OR1
27
线性规划图解法例题
(无界解)
max z x 2 y x y 1 2 x 4 y 3 x 0, y 0
OR1
28
线性规划图解法例题
(无解)
min z x 2 y x y 2 2 x 4 y 3 x 0, y 0
第一章 线性规划与单纯形法
重点与难点:
1、线性规划的概念和模型,线性规划问题的标准型,线 性规划问题的标准化; 2、线性规划问题解的概念,图解法(解的几何表示),基本 可行解的几何意义,线性规划求解思路(单纯形法思想); 3、单纯形法的一般描述,表格单纯形法,一般线性规划 问题的处理,单纯形迭代过程中的注意事项; 4、线性规划建模,决策变量,约束不等式、等式,目标 函数,变量的非负限制。
某厂生产两种产品,需要三种资源,已知各产 品的利润、各资源的限量和各产品的资源消耗 系数如下表:问题:如何安排生产计划,使得 获利最多? 产品A 产品B 资源限量 4 360 劳动力 9 5 200 设 备 4 10 300 原材料 3 120 利润元/kg 70
OR1
3
例题1建模
步骤:
1、确定决策变量:设生产A产品x1kg,B产品x2kg 2、确定目标函数:maxZ=70X1+120X2 3、确定约束条件:人力约束 9X1+4X2≤360 设备约束 4X1+5X2 ≤200 原材料约束3X1+10X2 ≤300 非负性约束X1≥0 X2≥0 综上所述,该问题的数学模型表示为:
OR1
1
第一章 线性规划与单纯形法
1.1 LP(linear programming)的基本概念 LP是在有限资源的条件下,合理分配和 利用资源,以期取得最佳的经济效益的优 化方法。 LP有一组有待决策的变量,(决策变量) 一个线性的目标函数, 一组线性的约束条件。

运筹学教材编写组《运筹学》课后习题-线性规划与单纯形法(圣才出品)

运筹学教材编写组《运筹学》课后习题-线性规划与单纯形法(圣才出品)

= =
8 −3
x1, x2, x3, x4 0
解:在第二个约束条件两边同时乘以-1,得到该线性规划问题的系数矩阵
4 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台

A
=
(
P1,
P2
,
P3
,
P4
)
=
2 −1
3 2
−1 −6
−4
7
①因为 P1 、 P2 线性无关,故有
令非基变量
x2
=
x3
=
0 ,解得
x1
=
34 , 5
x4
=
7 5
,故有基可行解
X
(3)
=
34 5
, 0, 0,
7 5
T

z3
=
117 5

④因为 P2 、 P3 线性无关,故有
32xx22
− −
x3 = 8 − 2x1 6x3 = 3+ x1
+ −
4x4 7x4
令非基变量
x1
=
x4
= 0,解得
x2
最优解或称为无界解。
(4) max z = x1 + x2 s.t. 3x1x1−−x2x20−3
x1, x2 0
解:如图 l-4 所示,该问题的可行域为空集,因此该线性规划无可行解。
2 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台

1.2 将下列线性规划问题变换成标准型,并列出初始单纯形表。
取得最小值,求解方程组
x1 x1
+ +
3x2
=
3

运筹学线性规划与单纯形法

运筹学线性规划与单纯形法

整理课件
16
Max Z= x1-2x2+3x3' -3x3" + 0x4 +0x5 s.t. x1+x2+ x3' - x3" +x4 =7
x1-x2+ x3' - x3" -x5=2
-3x1+x2+2x3' -2x3" =5 x1, x2,x3',x3", x4,x5 0
第一节小结:建立模型;三个组成要素;四种形式; 化为标准形(4个条件5点)
.
9x1+4x2 ≤ 360
90 80 60 40 20
4x1+5x2 ≤200
B C
HI G
Z=70x1+120x2 3x1+10x2 ≤300
0
20 D40 E 60
80 1F00 x1
整理课件
30
二、解的几种可能情况
1.唯一最优解。目标函数直线与凸多边形只有 一个切点; 2.无穷多最优解,目标函数图形与某个约束条 件平行。 3.无界解(无最优解)----可行域无界。一般是 漏了一些约束条件。 4.无可行解----可行域为空。

Ⅱ 计划期可用能力
2
2
12
1
2
8
4
0
16
0
4
12
2
3
问:应如何安排生产计划,才能使总利润最大?
整理课件
3
解:用数学的语言进行描述:
1.决策变量:设产品I、II的产量分别为 x1、x2 2.目标函数:问题要求获取利润最大,该公司获取
利润为2 x1 + 3 x2,令z = 2 x1 + 3 x2,则max z = 2 x1 + 3 x2, max z 是该公司获取利润的目标 值,它是变量x1、 x2的函数,称为目标函数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 3 第一章线性规划与单纯形法运筹学习题集第一章线性规划与单纯形13第一章线性规划与单纯形法运筹学习题集第一章线性规划与单纯形法复习思考题1. 试述线性规划数学模型的结构及各要素的特征。

2. 求解线性规划问题时可能出现哪几种结果?哪些结果反映建模时有错误?3. 什么是线性规划问题的标准形式?如何将一个非标准型的线性规划问题转化为标准形式?4. 试述线性规划问题的可行解、基解、基可行解、最优解的概念以及上述解之间的相互关系。

5. 试述单纯形法的计算步骤,如何在单纯形表上判别问题是具有唯一最优解、无穷多最优解、无界解或无可行解?6. 如果线性规划的标准型变换为求目标函数的极小化min z,则用单纯形法计算时如何判别问题已得到最优解?7. 在确定初始可行基时,什么情况下要在约束条件中增添人工变量?在目标函数中人工变量前的系数为(-M)的经济意义是什么?8. 什么是单纯形法计算的两阶段法?为什么要将计算分成两个阶段进行,如何根据第一阶段的计算结果来判定第二阶段的计算是否需要继续进行?9. 简述退化的含义及处理退化的勃兰特规则。

10. 举例说明生产和生活中应用线性规划的可能案例,并对如何应用进行必要描述。

11. 判断下列说法是否正确:(a) 图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的;(b) 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;(c) 线性规划问题的每一个基解对应可行域的一个顶点;(d) 如线性规划问题存在可行域,则可行域一定包含坐标的原点;(e) 对取值无约束的变量xj,通常令xj=x′j-x″j,其中x′j?0,x″j?0,在用单纯形法求得的最优解中有可能同时出现x′j,0,x″j,0;(f) 用单纯形法求解标准型的线性规划问题时,与σj,0对应的变量都可以被选作换入变量; (g) 单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量的值为负;(h) 单纯形法计算中,选取最大正检验数σk对应的变量xk作为换入变量,将使目标函数值得到最快的增长;(i) 一旦一个人工变量在迭代中变为非基变量后,则该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果;(j) 线性规划问题的任一可行解都可以用全部基可行解的线性组合表示; (k)若X1,X2分别是某一线性规划问题的最优解,则X=λ1X1+λ2X2也是该线性规划问题的最优解,其中λ1、λ2可以为任意正的实数;(l) 线性规划用两阶段法求解时,第一阶段的目标函数通常写为minz=?ixai(xai为人工变量),但也可写为min z=?ikixai,只要所有ki均为大于零的常数;(m)对一个有n个变量、m个约束的标准型的线性规划问题,其可行域的顶点恰好为Cmn个; (n) 单纯形法的迭代计算过程是从一个可行解转换到目标函数值更大的另一个可行解; (o) 线性规划问题的可行解如为最优解,则该可行解一定是基可行解; (p) 若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;(q) 线性规划可行域的某一顶点若其目标函数值优于相邻的所有顶点的目标函数值,则该顶点处的目标函数值达到最优;(r) 将线性规划约束条件的“?”号及“?”号变换成“=”号,将使问题的最优目标函数值得到改善;(s) 线性规划目标函数中系数最大的变量在最优解中总是取正的值;(t) 一个企业利用3种资源生产4种产品,建立线性规划模型求解得到的最优解中,最多只含有3种产品的组合;(u) 若线性规划问题的可行域可以伸展到无限,则该问题一定具有无界解; (v) 一个线性规划问题求解时的迭代工作量主要取决于变量数的多少,与约束条件的数量关系相对较小。

练习题1.1用图解法求解下列线性规划问题,并指出各问题是具有唯一最优解、无穷多最优解、无界解或无可行解。

(a) min z=6x1+4x2(b) max z=4x1+8x2s.t.2x1+x2?13x1+4x2?1.5x1, x2?0s.t.2x1+2x2?10-x1+x2?8x1, x2?0(c) max z=x1+x2(d) max z=3x1+9x2 s.t.8x1+6x2?244x1+6x2?-122x2?4x1, x2?0s.t.x1+3x2?22-x1+x2?4x2?62x1-5x2?0x1, x2?01.2某炼油厂根据计划每季度需供应合同单位汽油15万t(吨)、煤油12万t、重油12万t。

该厂从A,B两处运回原油提炼,已知两处原油成分如表11所示。

又如从A处采购原油每t价格(包括运费、下同)为200元,B处原油每t为310元。

试求: (a)选择该炼油厂采购原油的最优决策; (b)如A处价格不变,B处降为290元/t,则最优决策有何改变?表11原油成分AB汽油1550煤油2030重油5015其他1551.3线性规划问题:max z=c1x1+x2s.t.x1+x2?6x1+2x2?10x1, x2?0试用图解法分析,问题最优解随c1(-?<c1<?)取值不同时的变化情况。

1.4将下列线性规划问题变换成标准型,并列出初始单纯形表。

(a) max z=2x1+x2+3x3+x4s.t.x1+x2+x3+x4?72x1-3x2+5x3=-8x1-2x3+2x4?1x1, x3?0, x2?0, x4无约束(b) max z=?ni=1?mk=1aikxik/pks.t.?mk=1xik?bi(i=1,…,n)?ni=1cikxik=dk(k=1,…,m)xik?0(i=1,…,n; k=1,…,m)(c) min z=?mi=1?nj=1cijxijs.t.?nj=1xij?ai(i=1,…,m)?mi=1x ij=bj(j=1,…,n)xij?0(i=1,…,m; j=1,…,n)1.5判断下列集合是否为凸集: (a) X=,,x1,x2,,x1x2?30,x1?0,x2?0,(b) X={,x1,x2,,x2-3?x21,x1?0,x2?0}(c) X={,x1,x2,,x21+x22?1} 1.6在下列线性规划问题中,找出所有基解。

指出哪些是基可行解,并分别代入目标函数,比较找出最优解。

(a) max z=3x1+5x2s.t.x1+x3=42x2+x4=123x1+2x2+x5=18xj?0(j=1, (5)(b) min z=4x1+12x2+18x3s.t.x1+3x3-x4=32x2+2x3-x5=5xj?0(j=1, (5)1.7已知线性规划问题:max z=x1+3x2s.t.x1+x3=5x1+2x2+x4=10x2+x5=4x1,…,x5?0????表12中所列的解(a)~(f)均满足约束条件???,试指出: 表中哪些解是可行解,哪些是基解,哪些是基可行解,表12序号x1x2 x3 x4 x5(a)24300(b)100-504(c)30274(d)14.540-0.5(e)02562(f)045201.8分别用图解法和单纯形法求解下列线性规划问题,并对照指出单纯形法迭代的每一步相当于图解法可行域中的哪一个顶点。

(a) max z=10x1+5x2s.t.3x1+4x2?95x1+2x2?8x1, x2?0(b) max z=100x1+200x2s.t.x1+x2?500x1?2002x1+6x2?1200x1, x2?01.9已知某线性规划问题的约束条件为s.t.2x1+x2-x3=25x1+3x2-x4=304x1+7x2-x3-2x4-x5=85xj?0(j=1, (5)判断下列各点是否为该线性规划问题可行域的凸集的顶点:(a) X=(5,15,0,20,0)(b) X=(9,7,0,0,8)(c) X=(15,5,10,0,0)1.10已知下述线性规划问题具有无穷多最优解,试写出其最优解的一般表达式。

max z=10x1+5x2+5x3s.t.3x1+4x2+9x3?95x1+2x2+x3?8x1, x2?01.11线性规划问题:min z=CXAX=bX?0其可行域为R,目标函数最优值为z*,若分别发生下列情形之一时,其新的可行域为R′,新的目标函数最优值为(z*)′,试分别回答(a)(b)(c)三种情况下R与R′及z*与(z*)′之间的关系:(a) 增添一个新的约束条件;(b) 减少一个原有的约束条件;(c) 目标函数变为min z=CXλ,同时约束条件变为AX=λb, X?0 (λ,1)。

1.12在单纯形法迭代中,任何从基变量中替换出来的变量在紧接着的下一次迭代中会不会立即再进入基变量,为什么?1.13会不会发生在一次迭代中刚进入基变量的变量在紧接着的下一次迭代中立即被替换出来?什么情况下有这种可能,试举例说明。

图111.14已知线性规划问题:max z=c1x1+c2x2s.t.5x2?156x1+2x2?24x1+x2?5x1, x2?0用图解法求解时,得其可行域顶点分别为O,Q1,Q2,Q3,Q4(见图11)。

试问: c1, c2如何变化时,目标函数值分别在上述各顶点实现最优, 1.15下述线性规划问题中,分别求目标函数值z的上界z-*和下界z*:(a) max z=c1x1+c2x2s.t.a11x1+a12x2?b1a21x1+a22x2?b2x1, x2?0式中: 1?c1?3, 4?c2?6; 8?b1?12, 10?b2?14;-1?a11?3, 2?a12?5; 2?a21?4, 4?a22?6(b) max z=c1x1-c2x2s.t.-a11x1+a12x2?b1a21x1-a22x2?b2x1,x2?0式中: 2?c1?3, 4?c2?6; 8?b1?12, 10?b2?15;-1?a11?1, 2?a12?4; 2?a21?5, 4?a22?6 1.16用单纯形法求解下列线性规划问题,并指出问题的解属于哪一类。

(a) max z=6x1+2x2+10x3+8x4 s.t.5x1+6x2-4x3-4x4?203x1-3x2+2x3+8x4?254x1-2x2+x3+3x4?10x1~4?0(b) max z=x1+6x2+4x3s.t.-x1+2x2+2x3?134x1-4x2+x3?20x1+2x2+x3?17x1?1, x2?2, x3?31.17分别用大M法和两阶段法求解下列线性规划问题,并指出问题的解属于哪一类。

(a) max z=4x1+5x2+x3(b) max z=2x1+x2+x3s.t.3x1+2x2+x3?182x1+x2?4x1+x2-x3=5xj?0(j=1,2,3)s.t.4x1+2x2+2x3?42x1+4x2?204x1+8x2+2x3?16xj?0(j=1,2,3)1.18表13为用单纯形法计算时某一步的表格。

相关文档
最新文档