2010年江苏高考数学卷解读及参考答案
2010江苏高考数学试卷清晰版

2010年江苏高考数学试题一、填空题1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲________2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲________3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。
5、设函数f(x)=x(e x +ae -x ),x ∈R ,是偶函数,则实数a =_______▲_________6、在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是___▲_______7、右图是一个算法的流程图,则输出S 的值是______▲_______8、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=____▲_____9、在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c 的取值范围是______▲_____ 10、定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为_______▲_____11、已知函数⎩⎨⎧<≥+=01012x ,x ,x )x (f ,则满足不等式)x (f )x (f 212>-的x 的范围是____▲____12、设实数x,y 满足3≤2xy ≤8,4≤y x 2≤9,则43yx 的最大值是_____▲____13、在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,C cos b a a b 6=+,则=+Btan Ctan A tan C tan __▲ 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S=梯形的面积梯形的周长)2(,则S 的最小值是_______▲_______二、解答题15、(14分)在平面直角坐标系xOy 中,点A(-1,-2),B(2,3),C(-2,-1) (1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长 (2)设实数t 满足(t -)·=0,求t 的值16、(14分)如图,四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900 (1)求证:PC ⊥BC(2)求点A 到平面PBC 的距离DCBAPE17、(14分)某兴趣小组测量电视塔AE 的高度H(单位m ),如示意图,垂直放置的标杆BC 高度h=4m ,仰角∠ABE=α,∠ADE=β(1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,,请据此算出H 的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位m ),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m ,问d 为多少时,α-β最大18.(16分)在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左右顶点为A,B ,右顶点为F ,设过点T (m t ,)的直线TA,TB①设动点P 满足422=-PB PF ,求点P ②设31,221==x x ,求点T 的坐标 ③设9=t ,求证:直线MN 必过x (其坐标与m 无关)19.(16分)设各项均为正数的数列{}n a 的前n 项和为n S ,已知3122a a a +=,数列{}nS 是公差为d 的等差数列.①求数列{}n a 的通项公式(用d n ,表示)②设c 为实数,对满足n m k n m ≠=+且3的任意正整数k n m ,,,不等式k n m cS S S >+都成立。
2010年江苏高考数学试题详析(完整版

2010年江苏高考数学试题一、填空题1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲________ 简析:由集合中元素的互异性有a+2=3或a 2+4=3,⇒a=1或a 2=-1(舍) ⇒a=1 2z 的模为______▲_________▲__ 100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。
简析:观察频率分布直方图,知有0.06×5×100=30根长度小于20mm 5、设函数f(x)=x(e x +ae -x ),(x ∈R )是偶函数,则实数a =_______▲_________简析:由偶函数⇒f(-x)=f(x) ⇒x(e x +ae -x )=-x(e -x +ae x ) ⇒x(e x +e -x )(1+a)=0 ⇒x ∈R a=-16、在平面直角坐标系xOy 中,双曲线x 24-y 212=1上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的7、右图是一个算法的流程图,则输出S 的值是______▲_______简析:读图知这是计算S=1+21+22+…+2n 的一个算法,由S=2n -1≥33且n 为正整数知n=5时跳出循环,此时,输出S=1+21+22+…+25=638、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=____▲_____ 简析:对原函数求导得y '=2x (x>0),据题意,由a 1=16=24依次求得a 2=8,a 3=4,a 4=2,a 5=1,所以a 1+a 3+a 5=219、在平面直角坐标系xOy 中,已知圆x 2+y 2=4四个点到直线12x -5y+c=0的距离为1,则实数c 的取值范10、定义在区间(0,π2)上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP与y=sinx 的图像交于点P ,则线段P P 的长为_______▲_____ 11、已知函数f(x)=⎩⎨1 ,x<0,则满足不等式f(1-x 2)>f(2x)的x 的范围是____▲____12、设实数x,y 满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是_____▲____13、在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,b +a =6cosC ,则tanC +tanC=__▲14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S=(梯形的周长)2梯形的面积,二、解答题15、(14分)在平面直角坐标系xOy 中,点A(-1,-2),B(2,3),C(-2,-1) (1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长 (2)设实数t 满足(AB →-t ·OC →)·OC →=0=0,求t 的值简析:⑴据题意,本小问解法不唯一,如利用平行四边形性质求出第四点D ,然后运用两点间距离公式求两对角线;又如,亦可利用向量知识,求向量AB →与AC →和、差的模;16、(14分)如图,四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900 (1)求证:PC ⊥BC(2)求点A 到平面PBC 的距离16题图17、(14分)某兴趣小组测量电视塔AE 的高度H(单位m ),如示意图,垂直放置的标杆BC 高度h=4m ,仰角∠ABE=α,∠ADE=β(1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,,请据此算出H 的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位m ),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m ,问d 为多少时,α-β最大解析:⑴⑵18.(16分)在平面直角坐标系xoy 中,如图,已知椭圆x 29+y 25=1的左右顶点为A,B ,右焦点为F ,设过点T(t,m)的直线TA,TB 与椭圆分别交于点M(x 1,y 1),N(x 2,y 2),其中m>0,y 1>0,y 2<0.⑴设动点P 满足PF 2-PB 2=4,求点P 的轨迹 ⑵设x 1=2,x 2=13,求点T 的坐标⑶设t=9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)19.(16分)设各项均为正数的数列{a n }的前n 项和为S n ,已知2a 2=a 1+a 3,数列{S n }是公差为d 的等差数列.⑴求数列{}n a 的通项公式(用d n ,表示)⑵设c 为实数,对满足m+n=3k 且m ≠n 的任意正整数m ,n ,k ,不等式S m +S n >cS k 都成立。
2010年高考真题——数学(江苏卷)

绝密★启用前2010年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ试题参考公式:锥体的体积公式:V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。
一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应的位置........上..1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =___________.2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为___________.3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是___.4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有____根在棉花纤维的长度小于20mm 。
5、设函数f(x)=x(e x +ae -x )(x R)是偶函数,则实数a =________________注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。
本卷满分160分,考试时间为120分钟。
考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
6.请保持答题卡卡面清洁,不要折叠、破损。
6、在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是__________7、右图是一个算法的流程图,则输出S 的值是_____________8、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=_________9、在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c 的取值范围是___________10、定义在区间⎪⎭⎫ ⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为____________。
全国2010年高考数学试题及答案

[键入文字]
[键入文字]
[解析] 考查函数中的建模应用,等价转化思想。一题多解。 设剪成的小正三角形的边长为 x ,则: S
(3 x) 2 4 (3 x) 2 (0 x 1) 2 1 3 3 1 x ( x 1) (1 x) 2 2
(方法一)利用导数求函数最小值。
6 2
4、某棉纺厂为了了解一批棉花的质量,从中随机抽取 了 100 根棉花纤维的长度(棉花纤维的长度是棉花质 量的重要指标) ,所得数据都在区间[5,40]中,其频率 分布直方图如图所示, 则其抽样的 100 根中, 有_▲___ 根在棉花纤维的长度小于 20mm。
[键入文字]
[键入文字]
[解析]考查频率分布直方图的知识。 100×(0.001+0.001+0.004)×5=30 5、设函数 f(x)=x(ex+ae-x)(x R)是偶函数,则实数 a=_______▲_________ [解析]考查函数的奇偶性的知识。g(x)=ex+ae-x 为奇函数,由 g(0)=0,得 a=-1。 6、在平面直角坐标系 xOy 中,双曲线 双曲线右焦点的距离是___▲_______ [解析]考查双曲线的定义。
x2 x3 12、设实数 x,y 满足 3≤ xy ≤8,4≤ ≤9,则 4 的最大值是 y y
2
▲
。
[解析] 考查不等式的基本性质,等价转化思想。
(
x2 2 x3 x2 1 1 1 1 x3 ) [16,81] , 2 [ , ] , 4 ( ) 2 2 [2, 27] , 4 的最大值是 27。 y y y xy xy 8 3 y
圆心(0,0)到直线 12x-5y+c=0 的距离小于 1, 10、定义在区间 0 ,
2010年高考江苏数学卷试题及参考答案数学I试题

BCD 一 9 。 0.
( )求 证 : C j C; 1 P nB
() 点 A 到平 面 P C 的距 离 . 2求 B
图2
5 +c 0的距 离 为 1 则 实 一 ,
1 .( 4分 )某 兴 趣 小 组 要 测 量 电视 塔 AE 的 高 度 7 1
6在 面 角 标 : 中 已 双 线 一 ・ 平 直 坐 系t ,知 曲 寻一 - O y y
1上 一 点 M 的横 坐标 为 3 则 点 M 到此 双 曲线 的 ,
右 焦 点 的距 离 为 .
( )求 以 线 段 AB, 1 AC为 邻 边 的 平 行 四边 形 的 两
条 对 角线 的 长 ;
1 2 tn . 4, a 口 一
若 J () g l J ( 一 g s )}求 m 的 一 ( < x) g g (。 , r
3 .盒子 里共 有 大小 相 同 的 3只 白球 、 1只 黑 球 . 从 若 中 随 机摸 出 两 只 球 , 它 们 颜 色 不 同 的 概 率 是 则 4 .某 棉 纺 厂 为 了
解 一 批 棉 花 的 质 量 ,从 中 随 机 抽 测 了 10 0 根 棉 花 纤 维 的 长 度 ( 花 纤 棉 维 的 长 度 是 棉
( )设 实 数 t 足 ( ~ 2 满
值.
).
一 0求 t , 的
7 .图 2是 一 个 算 法 流 程 图 , 则
输 出 的 S的 值 是 .
1 .( 4分 )如 图 3 在 6 1 , 四 棱 锥 P AB _ CD
中 ,D 上 P
A B CD , D P
【数学】2010年高考试题——数学(江苏版)

绝密★启用前2010年一般高等学校招生全国一致考试(江苏卷)数学Ⅰ试题参照公式:锥体的体积公式: V锥体=Sh,此中S是锥体的底面积,h 是高。
一、填空题:本大题共14 小题,每题 5 分,共 70 分。
请把答案填写在答题卡相应的地点上 .1、设会合 A={-1,1,3} ,B={a+2,a2+4},A∩ B={3} ,则实数 a=___________.[ 分析 ] 考察会合的运算推理。
3B,a+2=3, a=1.2、设复数 z 知足 z(2-3i)=6+4i(此中 i 为虚数单位),则 z 的模为 ___________.[ 分析 ] 考察复数运算、模的性质。
z(2-3i)=2(3+2i),2-3i 与 3+2 i 的模相等, z 的模为 2。
3、盒子中有大小同样的 3 只白球, 1 只黑球,若从中随机地摸出两只球,两只球颜色不一样的概率是 _ __.[ 分析 ] 考察古典概型知识。
4、某棉纺厂为了认识一批棉花的质量,从中随机抽取了100 根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间 [5,40]中,其频次散布直方图如下图,则其抽样的 100 根中,有 ____根在棉花纤维的长度小于20mm。
[ 分析 ] 考察频次散布直方图的知识。
100×( 0.001+0.001+0.004 )× 5=305、设函数 f(x)=x(ex+ae-x)(xR)是偶函数,则实数a=________________[ 分析 ] 考察函数的奇偶性的知识。
g(x)=ex+ae-x 为奇函数,由 g(0)=0 ,得 a=-1。
6、在平面直角坐标系xOy 中,双曲线上一点M,点 M的横坐标是3,则 M到双曲线右焦点的距离是 __________[ 分析 ] 考察双曲线的定义。
,为点7、右图是一个算法的流程图,则输出M到右准线的距离,=2, MF=4。
S 的值是 _____________[ 分析 ] 考察流程图理解。
2010江苏省高考数学测验题(含答案)

2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试卷参考公式:锥体的体积公式: V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。
一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应的位.......置上...1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____.2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____.3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__.4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。
5、设函数f(x)=x(e x +ae -x )(x R)是偶函数,则实数a =_______▲_________6、在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是___▲_______7、右图是一个算法的流程图,则输出S 的值是______▲_______8、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=____▲_____9、在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c 的取值范围是______▲_____10、定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为_______▲_____。
2010江苏数学

2010江苏数学题目分析2010江苏数学考试是江苏省高考的一部分,数学部分包括了选择题、填空题和解答题。
本文将对该年份江苏数学试题进行细致的分析和解答。
选择题选择题是江苏数学考试的一部分,考察的是学生对基础知识的掌握和运用能力。
下面是几道典型题目示例:1.设函数$f(x) = \\sqrt{x^2 + 6x + 10}$,则f(6)的值是多少?A) 6 B) 8 C) 10 D) 122.若m为正整数,且方程mx2−3x+2=0有两个不相等的实数根,那么m的取值范围是多少?A)m>0 B) $m \\geq 6$ C) m>3 D) $m \\geq 3$填空题填空题是江苏数学考试的另一部分,考察的是学生对运算的熟练程度和解题能力。
下面是两个填空题的示例:1.若a!=b,那么2a+b的值为\\\_。
2.如果x2+ax+b的两个根分别为−1和3,那么a+b的值为\\\_。
解答题解答题是江苏数学考试的重点部分,考察的是学生分析问题和解决问题的能力。
下面是一个典型的解答题示例:1.已知点A(1,2)在曲线y=x3+bx2+cx+d上,且该曲线的斜率恒为3。
求曲线方程。
首先,由题意可得点A在曲线上,代入得$2 = 1^3 + b\\cdot1^2 + c\\cdot1 + d$,得到b+c+d=1。
其次,由题意可得曲线的斜率恒为3,即曲线的导数恒为3。
对曲线方程求导并令导数等于3,可得3x2+2bx+c=3。
将b+c+d=1和3x2+2bx+c=3联立,解方程组得到b=1,c=−2,d=2。
综上,曲线方程为y=x3+x2−2x+2。
总结通过本文对2010江苏数学试题的分析和解答,我们可以看到试题涵盖了基础知识的运用、运算的熟练程度和解题能力。
希望本文对需要备考江苏数学考试的同学有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、2010年江苏高考数学考卷解读
2010年高考已经落下帷幕,本次数学试题突出数学学科特点,考查基础与考查能力并重,有创新题、题目梯度明显,
区分度较高。考生的评价集中为一个字“难”,许多题目看似简单,但要真正解决得分却很难。运算量很大,甚至部
分同学的最后两题都没来得及看。接下来我们来具体分析试题。
1、基础题 试题第1题、第2题、第3题、第4题、第5题、第6题、第7题分别考查考纲中的集合的性质与集合
的运算、复数的运算、古典概型、频率直方图的运用、函数的奇偶性、双曲线的标准方程与集合性质、算法流程图,
基本集中在对A、B级要求的考查。难度与计算量均不大。大多数考生都应该能顺利解决。 第9题主要考查直线与
圆的位置关系以及点到直线的距离的计算,只要判断准确接下来的计算也不成问题。 第11题主要考查分段函数、
函数的单调性以及不等式,难度虽不大,但分情况讨论对于部分函数基础较薄弱的考生稍有难度。
第15题主要考查向量,并与平时常用的解析法结合,在处理过程中需要稍加小心,容易出现计算上的失误。
第16题以四棱锥为模型,主要考查立体几何中线线、线面垂直以及多面体的体积,需要证明过程完整、理由充分,
有部分考生虽然会做,但论证过程写的不够完善而导致失分。
总体看以上列举的考题考查的考点明确,难度与平时练习相当,考生的失分会较少。
2、中档题
第8题、第10题、第12题主要考查导数的集合意义、数列的概念、三角函数的图像、不等式的解法与不等式的性
质中比较容易的考点,只要平时的基本功扎实,解决这几个问题应该不难。重点在与考题与平时练习题的联系。
第17题测量电视塔的高度,本题的原型在苏教版数学必修5第11页第3题,它进行了改编,并添加了初中的相似
三角形、解直角三角形这些知识的运用,在此基础上,考查了解斜三角形、基本不等式的运用。题目本身难度不大,
但在这些知识点的融合中,有部分考生往往会失去方向,似乎有很多途径来解决问题,但要找到一个真正适合的方
法不容易。
第19题主要考查等差数列的概念和通项公式与不等式的证明,本题主要是难下手,许多考生就在这一环节上缺少
有效的突破,最终无功而返。
3、难题
第13题主要考查三角变换与运用解三角形知识进行三角运算,综合性较高,边、角、三角函数名称错综复杂,处
理这类问题在运算、代换等运用方面需要恰当。否则导致运算量偏大,却得不到最后结果。第14题构造等腰梯形,
求其周长的平方与面积的比值的最小值,将几何图形与函数模型相结合,具有高度的综合性,有想法,当深入解决
问题时发现对于函数知识的要求相当高。
第18题有难度但不是所有问题都不能解决,前两小题应该很好解决主要是直线与圆锥曲线的交点;轨迹的概念和
轨迹方程的求法。有难度的在第三小题,主要集中在计算上,有很多同学有解决问题的方法和方向,但要真正解决
问题计算是关键。
第20题本卷的压轴题,难度不言而喻,主要考查函数与不等式的运用。
纵观列举的难题具有一些显著的特点:起点高,思维难度高、跳跃性强,抽象概括程度高,字母参数多,运算量大,
审题下手困难,时间太紧,完成情况不够理想。
2010高考数学体现了对于高中学生的数学要求,难易结合,区分度较大,注重知识之间的联系,有多个题均考查了
多个知识之间的联系,创新性强,但又不失基础。让不同层次的考生都有得分点。
同时对于来年的高考数学提出了一些新的要求,在注重数学基本能力和综合能力的培养的基础上,我们学生不仅要
在数学解题的思想方法和应用意识上多下功夫,更应在数学创新意识的建立与培养上有所创新和突破。
二、2010年与2009年考点考频分析比较