热力学与统计物理试题及答案

合集下载

《热力学与统计物理》第四版(汪志诚)课后题答案

《热力学与统计物理》第四版(汪志诚)课后题答案

若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。

确定常量C 需要进一步的实验数据。

1.3 在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。

问:(a )压强要增加多少才能使铜块的体积维持不变?(b )若压强增加100,铜块的体积改变多少?解:(a )根据1.2题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。

如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得11,T T pακ==11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰00(,)T p ()0,T p ,T pV V000ln=ln ln ,V T pV T p -000p V pV C T T ==.pV CT =11,T T pακ==0Cnp 51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和10Cnp np .T dVdT dp Vακ=-dVdTdpdpdT.Tdp dT ακ=αTκ(1)(2)(3)根据1.13题式(6),对于§1.9中的准静态绝热过程(二)和(四),有(4) (5)从这两个方程消去和,得(6)故(7)所以在是温度的函数的情形下,理想气体卡诺循环的效率仍为(8)1.14试根据热力学第二定律证明两条绝热线不能相交。

解:假设在图中两条绝热线交于点,如图所示。

设想一等温线与两条绝热线分别交于点和点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在2111ln ,V Q RT V =3224ln,V Q RT V =32121214lnln .V V W Q Q RT RT V V =-=-1223()(),F T V F T V =2411()(),F T V F T V =1()F T 2()F T 3214,V V V V =2121()ln,V W R T T V =-γ2111.T WQ T η==-p V-CAB故电阻器的熵变可参照§1.17例二的方法求出,为1.19 均匀杆的温度一端为,另一端为,试计算达到均匀温度后的熵增。

热力学统计物理练习试题和答案

热力学统计物理练习试题和答案

WORD 格式 整理 热力学·统计物理练习题一、填空题 . 本大题 70 个小题,把答案写在横线上。

1. 当热力学系统与外界无相互作用时 , 经过足够长时间 , 其宏观性质时 间改变,其所处的 为热力学平衡态。

2. 系统,经过足够长时间,其不随时间改变,其所处的状态为热力学平衡态。

3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化 学参量等四类参量描述,但有 是独立的。

4.对于非孤立系统, 当其与外界作为一个整体处于热力学平衡态时,此时 的系统所处的状态是 。

5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视 为。

6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。

7.均匀物质系统的独立参量有 个,而过程方程独立参量只有个。

8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。

9.定容压力系数的意义是在 不变条件下系统的压强随的相 对变化。

10.等温压缩系数的意义是在 不变条件下系统的体积随的 相对变化。

11.循环关系的表达式为。

12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功 W Y i dy i ,其中 y i 是, Y i 是与 y i 相应的。

13. U B U A Q W ,其中 是作的功。

W14. dUQW0 ,-W 是作的功,且 -W 等于。

22( 、 均为热力学平衡态1、L2 为15.Q W QW ,L 1L 1 1 2 1L 2准静态过程)。

16.第一类永动机是指的永动机。

17.内能是 函数,内能的改变决定于和。

18.焓是函数,在等压过程中,焓的变化等于的热量。

19.理想气体内能温度有关,而与体积。

学习参考资料分享WORD 格式整理20.理想气体的焓温度的函数与无关。

21.热力学第二定律指明了一切与热现象有关的实际过程进行的。

热力学与统计物理-参考答案

热力学与统计物理-参考答案

热力学与统计物理 参考答案一、推出克拉珀龙方程mm m m S S dp dT V V βαβα-=-()m m L T V V βα=- 在相图上取两个相邻的点),(p T A 和),(p p T T B ∆+∆+,这两点上化学势都相等,),),p T p T ((βαμμ=),),p p T T p p T T ∆+∆+=∆+∆+((βαμμ两式相减得βαμμd d =,由吉布斯函数的全微分dG SdT Vdp =-+,化学势的全微分dp V dT S d m m +-=μ,dp V dT S m mαα+-dp V dT S m m ββ+-= mm m mS S dp dT V V βαβα-=- 以L 表示1摩尔物质相变潜热,则)(αβS S T S T L -=∆=二、证明均匀系统有:能态方程:()()T V U pT p V T∂∂=-∂∂ 选T ,V 为状态参量,则),(V T U U =,那么,dV VUdT T U dU T V )()(∂∂+∂∂= (1) 右边的偏导数,和状态函数联系,麦氏关系,),(V T S S =,dV VSdT T S dS T V )()(∂∂+∂∂=将dS代入pdV TdS dU -=pdV dU V S T dT T S T T V -∂∂+∂∂=)()(dV p VST dT T S T T V ])([)(-∂∂+∂∂=则 ()[()]V V S pdU T dT T p dV T T∂∂=+-∂∂(2)比较(1)和(2), ()()T V U pT p V T∂∂=-∂∂,能态方程; 三、若按量子力学,一维简谐振子以经典平衡位置的势能为零的振动能级公式为12n n εω⎛⎫=+ ⎪⎝⎭(n=0, 1, 2, …),(1)试求一维简谐振子的振动配分函数;(2)若204.810J n εω-∆=≈⨯,系统在300K 下达到热平衡,求此时处在第一激发态和基态的粒子数之比。

云南师范大学《热力学与统计物理》期末试卷 ABC卷及答案 (优选.)

云南师范大学《热力学与统计物理》期末试卷 ABC卷及答案 (优选.)
2、谈谈电子气体的费米简并压强的来源和特点;简述恒星、中子星和 白矮星内部的力学平衡机制。
四 计算题(共44分) 积分公式: ,
1、定量证明理想气体绝热线比等温线陡。(8分)
2、已知简单热力学系统的特性函数,求系统的(1)焓;(2)自由 能;(3)吉布斯函数。(12分)
3、表面活性物质的分子在液面上作二维自由运动,可以看作二维气 体。已知二维气体的麦克斯韦速率概率分布为。试求(1)速率分布函 数;(2)气体速率的涨落。(12分)
条件为

6、玻耳兹曼的墓志铭用数学关系表示为
。玻耳兹曼分
布表示为

7、绝对零度下自由电子气体中每一个自由电子的平均内能与费米能量
μ(0)之间的数学关系为 。
8、在绝对零度时,费米能级以下的所有能级的一个量子态上的平均粒
子数为

三 简述题(每小题8分,共16分) 1、简述热力学第一定律和热力学第二定律,谈谈你对节约能源、低碳 生活以及可持续发展的认识。
(2分) (2分)
(2分) (2分) (2分)
分)
3.解:(1) (4分) (2) (4分) (3) (4分)
4.解: (4分) (4分)
(4分)
云南师范大学课程考试 试卷参考答案及评分标准 课程名称:《热力学统计物理》 考试班级:
08物理类 试卷编号: B卷 命题教师签名:
年月日
1. 判断题(每小题2分,共20分,请在括号内 打“√”或“×”)
米子间出现等效的吸引作用。 9、( )出现玻色-爱因斯坦凝聚现象时,玻色系统的内能、动量、压强
和熵均为零。 10、( )费米气体处在绝对零度时的费米能量、费米动量和费米简并压
强和熵均为零。
二 填空题(每空2分,共20分)

热力学与统计物理答案(汪志诚)

热力学与统计物理答案(汪志诚)

第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV = V nRTP P nRT V ==; 所以, T P nR V T V V P 11)(1==∂∂=αT PV RnT P P V /1)(1==∂∂=βP PnRT V P V V T T /111)(12=--=∂∂-=κ习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1Tα=1T p κ= ,试求物态方程。

解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此, dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p pVV T V V )(1,)(1∂∂-=∂∂=κα 所以, dp dT VdVdp V dT V dV T T κακα-=-=,所以, ⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。

问(1压强要增加多少n p 才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少 解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p x n习题 1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。

线胀系数定义为ηα)(1TL L ∂∂=等杨氏摸量定义为T L A L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。

热力学与统计物理练习题1答案

热力学与统计物理练习题1答案

热力学与统计物理 练习题1答案一、简答题1. 热力学第二定律的克氏表述;不能把热量从低温物体传到高温物体而不引起其它变化。

2. 能量均分定理。

对于处在温度为T 的平衡状态的经典系统,粒子能量中每一个平方项的 平均值等于kT 21。

3. 单元复相系的平衡条件;(5分) 设有两相 βα,则两相平衡条件为βαβαβαμμ===p p T T分别为热平衡条件、力学平衡条件和相变平衡条件。

4. 熵增原理。

(5分) 孤立系统的熵永不减少。

二、计算机题1、试证明,在某一过程中理想气体的热容量n C 如果为常数,这个过程一定是多方过程,多方过程指数Vn Pn C C C C n --=,假设气体的定压热容量和定容热容量是常数。

解:根据热力学第一定律pdV dT C dT C V n +=由RT pV =,有RdT Vdp pdV =+,将dT 代入上式,得01=-+⎪⎭⎫⎝⎛--Vdp R C C pdV R C C V n V n两边除以pV ,再经整理,得到0=+pdpV dV n,经积分即得C pV n =。

2、图1.16所示的循环称狄塞尔(Diesel )循环。

试证明,理想气体在狄塞尔循环中的效率为 ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=1213121311V V V V V V V V γγγη , 假设PC 和V C 是常数。

解:狄塞尔循环为等压加热循环,在等压过程32→中,吸收热量(),231T T C Q p -=,在等容过程14→中,放出热量()142T T C Q V -=,所以该循环的效率()()()231423142312111T T T T T T C T T C T T C Q Q Q p V p ---=----=-=γη (1) 因32→为等压过程,所以2323V V T T =(2) 因21→和43→为绝热过程,所以122111--=γγV T V T 和133114--=γγV T V T (其中41V V =)由上两式,得到,1122113314--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=-γγVV T V V T T T (3)将(3)式代入(1)式,并考虑到(2)式,经化简之后,则得⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=1213121311V V V V V V V V γγγη。

热力学统计物理(A参考答案)

热力学统计物理(A参考答案)

宝鸡文理学院试题课程名称中学物理教育理论适用时间2011年7月与实践研究试卷类别 A 适用专业、年级、班专升本一. 填空题(本题共7 题,每空3 分,总共21 分)1. 假设一物质的体涨系数和等温压缩系数经过实验测得为:,则该物质的物态方程为:。

2. 1 mol 理想气体,保持在室温下(K)等温压缩,其压强从1 准静态变为10 ,则气体在该过程所放出的热量为:焦耳。

3. 计算机的最底层结构是由一些数字逻辑门构成的,比如说逻辑与门,有两个输入,一个输出,请从统计物理的角度估算,这样的一个逻辑与门,室温下(K)在完成一次计算后,产生的热量是:焦耳。

4. 已知巨热力学势的定义为,这里是系统的自由能,是系统的粒子数,是一个粒子的化学势,则巨热力学势的全微分为:。

5. 已知粒子遵从经典玻耳兹曼分布,其能量表达式为,其中是常数,则粒子的平均能量为:。

6. 温度时,粒子热运动的热波长可以估算为:。

7. 正则分布给出了具有确定的粒子数、体积、温度的系统的分布函数。

假设系统的配分函数为,微观状态的能量为,则处在微观状态上的概率为:。

二. 简答题(本题共3 题,总共30 分)1. 请从微观和统计物理的角度解释:热平衡辐射的吉布斯函数为零的原因。

(10分)2. 请说说你对玻耳兹曼分布的理解。

(10分)3. 等概率原理以及在统计物理学中的地位。

(10分)三. 计算题(本题共4 题,总共49 分)1. 一均匀杆的长度为L,单位长度的定压热容量为,在初态时左端温度为T1,右端温度为T2,T1 < T2,从左到右端温度成比例逐渐升高,考虑杆为封闭系统,请计算杆达到均匀温度分布后杆的熵增。

(你可能要用到的积分公式为)(10分)2. 设一物质的物态方程具有以下形式:,试证明其内能和体积无关。

(10分)3. 表面活性物质的分子在液面上作二维自由运动,可以看作是二维气体。

请用经典统计理论计算:(1)二维气体分子的速度分布和速率分布。

热力学与统计物理试卷1、2+答案

热力学与统计物理试卷1、2+答案

热力学与统计物理试卷(甲)一、选择题:(每题3分,共15分)1、一个P、 V为参量的系统,T V不变时,下列说法证确的是()(1)系统处于平衡态时,熵最小;(2)系统处于平衡态时,内能最小;(3)系统处于平衡态时,自由能最大;(4)系统处于平衡态时,自由能最小;2、液体中有一气泡,如a表示液相,B表示气相,两相平衡时有()(1)、 T a≠ T B, P a≠ P B, μa≠μB;(2)、T a = T B, P a≠ P B, μa = μB;(3)、T a = T B, P a = P B, μa≠μB;(4)、T a = T B, P a = P B, μa= μB;3、一个单元系统,固、液两相共存时,()(1)因两相共存,所以不可能处于平衡态;(2)因两相共存,所以两相质量一定相等;(3)两相共存时,化学势高的相,物质的量将减少;(4)两相共存时,化学势高的相,物质的量将增加;4、初平衡态和终平衡态确定的热力学系统,,下列说法证确的是()(1)压强一定发生变化;(2)温度一定发生变化;(3)内能、熵、焓,自由能变化,但不确定;(4)内能、熵、焓、自由能变化都是确定的;5、两个完全不同的A、B物体,处于热平衡有:()(1)、 T A=T B , P A≠P B, V A≠V B ;(2)、 T A≠T B , P A=P B, V A=V B ;(3)、 T A=T B , P A=P B, V A=V B ;(4)、 T A≠T B , P A≠P B, V A=V B ;二、填空题:(每空3分,共30分)1、理想气体分别经等压、等容过程,温度都由T1升到T2,假设等压、等容热容是常数,则前后过程熵增的比值为()。

2、等温等容条件下的系统处在温度平衡`状态的必要和充分条件为(),由()可以确定平衡条件,由()可以确定平衡的稳定性条件。

3、写出玻尔兹曼分布表示式()、玻色分布表示式()、费米分布表示式()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.选择(25分)
1.下列不是热学状态参量的是( )
A.力学参量
B.几何参量
C.电流参量 D 。

化学参量
2。

下列关于状态函数的定义正确的是( )
A.系统的吉布斯函数是:G=U —TS+PV
B 。

系统的自由能是:F=U+TS
C 。

系统的焓是:H=U —PV
D.系统的熵函数是:S=U/T
3.彼此处于热平衡的两个物体必存在一个共同的物理量,这个物理量就是( )
A.态函数
B.内能 C 。

温度 D 。


4。

热力学第一定律的数学表达式可写为( )
A 。

W Q U U A
B +=- B.W Q U U B A +=-
C 。

W Q U U A B -=-
D 。

W Q U U B A -=-
5.熵增加原理只适用于( )
A 。

闭合系统 B.孤立系统 C 。

均匀系统 D.开放系统
二.填空(25分)
1.孤立系统的熵增加原理可用公式表示为
( ).
2.热力学基本微分方程du=( )。

3.热力学第二定律告诉我们,自然界中与热现象有关的实际过程都是()。

4.在S。

V不变的情况下,平衡态的()最小。

5。

在T。

VB不变的情形下,可以利用( )作为平衡判据。

三.简答(20分)
1.什么是平衡态?平衡态具有哪些特点?
2.什么是开系,闭系,孤立系?
四.证明(10分)
证明范氏气体的定容热容量只是温度的函数,与比容无关五.计算(20分)
试求理想气体的体胀系数α,压强系数β,等温压缩系数
T K
参考答案
一。

选择 1~5AACAB
二。

填空
1。

ds≧0
2。

Tds—pdv
3。

不可逆的
4。

内能
5。

自由能判据
三.简答
1.一个孤立系统,不论其初态如何复杂,经过足够长的时间后,将会达到这样状态,系统的各种宏观性质在长时间内不发生变化,这样的状态称为热力学平衡态.
特点:不限于孤立系统
弛豫时间
涨落
热动平衡
2.开系:与外界既有物质交换,又有能量交换的系统
闭系:与外界没有物质交换,但有能量交换的系统,
孤立系:与其他物体既没有物质交换也没有能量交换的系统四.证明
解证:范氏气体()RT b v v a p =-⎪⎭⎫ ⎝⎛+2 T v U ⎪⎭⎫ ⎝⎛∂∂=T V T p ⎪⎭⎫ ⎝⎛∂∂—p =T 2v
a p
b v R =-- T v U ⎪⎭⎫ ⎝⎛∂∂=2v
a ⇒)(),(0T f v a U v T U +-= =V C V T U ⎪⎭⎫ ⎝⎛∂∂=)(T f ' ;与v 无关。

五.计算
解:已知理想气体的物态方程为 PV=nRT 由此易得
α=V
1 P T V ⎪⎭⎫ ⎝⎛∂∂ = PV nR = T 1
Β= P 1 V T P ⎪⎭⎫ ⎝⎛∂∂ = PV nR = T 1
T κ=-V 1T P V ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛-V 1⎪⎭⎫ ⎝⎛-2n P RT =P 1。

相关文档
最新文档