高中数学教师备课必备系列(概率):专题七 (整数值)随机数(random numbers)的产生教学设计 Word版含解
高中数学第三章概率3.2.2(整数值)随机数(randomnumbers)的产生课件2新人教A必修3

同时可以画频率折线图:
正面朝上的频率 1
0.8 0.6 0.4 0.2
0
0 50 100
正面朝上 的频率
试验次数 150
由图可知:频率在概率附近波动.
【总结提升】
伪随机数 用计算器或计算机产生的随机数,它的优点在于统 计方便、速度快,缺点在于计算器或计算机产生的 随机数是根据确定的算法产生的,具有周期性(周 期很长),具有类似随机数的性质,但并不是真正 的随机数,是伪随机数.
最大特点:操
探究点2 随机模拟方法
作方便
对于古典概型,我们可以将随机试验中所有基本事
件进行编号,利用计算器或计算机产生随机数,从而获
得试验结果.这种用计算器或计算机模拟试验的方法,称
为随机模拟方法或蒙特卡罗(Monte Carlo)方法.
你认为这种方法的最大优点是什么?
不需要对试验进行具体操作,可以广泛应用到各个领域.
用计算机产生随机数的方法(以Excel软件为例): 打开Excel软件,执行下面的步骤: 1.选定A1格,键入“=RANDBETWEEN(0, 1)”,按Enter键,则在此格中的数是随机产生的0 或1; 2.选定A1格,按Ctrl+C快捷键,然后选定要随机产 生0,1的格,比如A2至A100,按Ctrl+V快捷键,则 在A2至A100的数均为随机产生的0或1,这样我们很 快就得到了100个随机产生的0,1,相当于做了100 次随机试验;
1.用随机模拟方法估计概率时,其准确度决定于( B )
A.产生的随机数的大小 B.产生的随机数的个数
C.随机数对应的结果 D.产生随机数的方法 2.某小组共有10名学生,其中女生3名,现选举2名代表, 至少有1名女生当选的概率为( B )
人教版高中数学必修三(整数值)随机数的产生课件PPT

14
(3)使用计算机的排序功能按随机数从小到大排列,即可得到考
试号从 1 到 1200 人的考试序号.(注:1 号应为 0001,2 号应为 0002,用
0 补足位数.前面再加上有关信息号码即可)
4 天气预报说,在今后五天中,每一天下雨的概率均为 30%,则这五天
中恰有两天下雨的概率大概是多少?请设计一种用计算机或计算器
数,即 0 出现的频数.
(4)选定 D1 格,键入“=1-C1/100”,按 Enter 键,在此格中的数是这
100 次试验中出现 1 的频率.
题型一
估计古典概型的概率
【例题 1】盒中有除颜色外其他均相同的 5 只白球和 2 只黑球,用随
机模拟法求下列事件的概率:
(1)任取一球,得到白球;
(2)任取三球,都是白球.
1
N1,则 即为不能打开门即扔掉,第三次才打
开门的概率的近似值.
(2)三个一组(每组数字可重复),统计总组数 M 及前两个大于 2,
第三个为 1 或 2 的组数 M1,则 1 即为试过的钥匙不扔掉,第三次才打
开门的概率的近似值.
本课结束
谢谢观看
3.2.2 (整数值)随机数
(randomnumbers)的产生
解:用计算器的随机函数 RANDI(1,9)或计算机的随机函数
RANDBETWEEN(1,9)产生 1 到 9 之间的取整数值的随机数,五个一
组,统计总组数 N 及五个数字都不相同的个数 N1,则 1- 1即为“至少
有两个重复数字”的概率近似值.
2.某人有 5 把钥匙,其中 2 把能打开门,现随机地取 1 把钥匙试着开门,
2.如何利用计算器产生 10 个 1~100 之间的取整数值的随机数.
高中课件 (整数值)随机数的产生

若要产生[M,N]的随机整数,操作如下:
第一步:ON → MODE→MODE→MODE→1→0 → 第二步:N-M+1→SHIFT→RAN#→+ → M-0.5 →= 第三步:以后每次按“=”都会产生一个M到N的取整
数值的随机数.
温馨提示: (1)第一步,第二步的操作顺序可以互换; (2)如果已进行了一次随机整数的产生,再做类似的操
在学过二项分布后,可以计算得到三天中恰有两天下 雨的概率:
C32 0.42 (1 0.4) 0.288
练习:
试设计一个用计算器或计算机模拟掷骰子的实验,估 计出现一点的概率. (1).规定1表示出现1点,2表示出现2点,
...,6表示出现6点 (2).用计算器或计算机产生N个1至6之间的随机数
(3).统计数字1的个数n,算出概率的近似值n/N
小结:
随机数具有广泛的应用,可以帮助我们安排和模拟一 些试验,这样可以代替我们自己做大量重复试验。通过本 节课的学习,我们要熟练掌握随机数产生的方法以及随机 模拟试验的步骤:
(1)设计概率模型 (2)进行模拟试验 (3)统计试验结果
作业: 作业本:3.3.2
计算器 产生
随机数
计算机 产生
随机数
产生随机数的方法: (1).由试验(如摸球或抽签)产生随机数
例:产生1—25之间的随机整数. ①将25个大小形状相同的小球分别标1,2, …, 24, 25,
放入一个袋中,充分搅拌 ②从中摸出一个球,这个球上的数就是 随机数 (2).由计算器或计算机产生随机数 计算器或计算机产生的随机数是根据确定的算法产生的,具有 周期性(周期很长),具有类似随机数的性质,但并不是真正的随 机数,故叫 伪随机数
书P112表:历史上一些掷硬币的试验结果
2021年新版高二数学课件:《整数值随机数的产生》

高二数学课件:《整数值随机数的产生》勤奋是通往天才的必经之路,运气只是一个小因素,个人的努力才是创造事业的最基本条件。
一、教学目标:1、知识与技能:(1)了解随机数的概念,掌握用计算器或计算机产生随机数求随机数的方法;(2)能用模拟的方法估计概率。
2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数学解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:通过模拟方法的设计体验数学的重要性和信息技术在数学中的应用;通过动手模拟,动脑思考,体会做数学的乐趣;通过合作试验,培养合作与交流的团队精神。
二、重点与难点:重点:随机数的产生;难点:利用随机试验求概率.三、教学过程(一)、引入情境:历求掷一次硬币出现正面的概率时,需要重复掷硬币,这样不断地重复试验花费的时间太多,有没有其他方法可以代替试验呢? 我们可以用随机模拟试验,代替大量的重复试验,节省时间. 本节主要介绍随机数的产生,目的是利用随机模拟试验代替复杂的动手试验,以便求得随机事件的频率、概率.(二)、产生随机数的方法:1.由试验(如摸球或抽签)产生随机数例:产生1-25之间的随机整数.(1)将25个大小形状相同的小球分别标1,2,,24,25,放入一个袋中,充分搅拌(2)从中摸出一个球,这个球上的数就是随机数2.由计算器或计算机产生随机数由于计算器或计算机产生的随机数是根据确定的算法产生的,具有周期性(周期很长),具有类似随机数的性质,但并不是真正的随机数,而叫伪随机数由计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法。
(三)、利用计算器怎样产生随机数呢?例1: 产生1到25之间的取整数值的随机数.解:具体操作如下:第一步:MODE-MODE-MODE-1-0-第二步:25-SHIFT-RAN#-+-0.5-=第三步:以后每次按=都会产生一个1到25的取整数值的随机数.工作原理:第一步中连续按MODE键三次,再按1是使计算器进入确定小数位数模式,0表示小数位数为0,即显示的计算结果是进行四舍五入后的整数;第二步是把计算器中产生的0.000~0.999之间的一个随机数扩大25倍,使之产生0.000-24.975之间的随机数,加上+0.5后就得到0.5~25.475之间的随机数;再由第一步所进行的四舍五入取整,就可随机得到1到25之间的随机整数。
3.2.2 (整数值)随机数(random numbers)的产生

配人教版 数学 必修3
1.(1)常用的随机数的产生方法主要有抽签法,利用计算 器或计算机.
(2)利用摸球或抽签得到的数是真正意义上的随机数,用计 算器或计算机得到的是伪随机数.
配人教版 数学 必修3
2.用整数随机模拟试验时,首先要确定随机数的范围, 利用哪个数字代表哪个试验结果:
(1)试验的基本结果等可能时,基本事件总数即为产生随机 数的范围,每个随机数代表一个基本事件;
配人教版 数学 必修3
随机数的产生方法
【例1】 产生10个1~100之间的取整数值的随机数. 【解题探究】 要产生10个1~100之间的整数值随机数, 方法有两个,一是应用抽签法,动手做试验;二是利用计算器 或计算机模拟试验产生随机数,但抽签法花费时间较多,较麻 烦.
配人教版 数学 必修3
【解析】(方法一)抽签法. (1) 把 100 个 大 小 、 形 状 相 同 的 小 球 分 别 标 上 号 码 1,2,3,…,100; (2)把这些已经标上号码的小球放到一个袋子中搅拌均匀; (3)从袋子中任意摸出一个小球,记录号码并把小球放回袋 子中搅拌,这个球上的数就是第一个随机数; (4)把步骤(3)中的操作重复10次,即可得到10个1~100之 间的整数值随机数.
配人教版 数学 必修3
②利用计算器或计算机产生随机数时,由于不同型号的计 算器产生随机数的方法可能会有所不同,故需特别注意操作步 骤与顺序的正确性,具体操作需严格参照其说明书.
特别提醒:应用计算器或计算机要特别注意遵照产生随机 数的方法来进行,切记不可随意改变其步骤顺序和操作程序, 否则会出现错误.
5727 0293 7140 9857 0347 4373 8636 9647 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 6710 4281
(整数值)随机数的产生 课件

探究点 1 随机数的产生方法 某校高一全年级共 25 个班 1 200 人,期末考试时,如
何把学生分配到 40 个考场中去? 【解】 要把 1 200 人分到 40 个考场中去,每个考场 30 人, 首先要把全体学生按一定顺序排成一列,然后从 1 号到 30 号 去第 1 考场,31 号到 60 号去第 2 考场,…,人数太多,如果 用随机数表法给每个学生找一个考试号,太费时费力,我们可 以用随机函数给每一个学生一个随机号数,然后再按号数用计 算机排序即可.
(1)按班级、学号顺序把学生档案输入计算机. (2)用随机函数 RANDBETWEEN(1,1 200)按顺序给每个学生 一个随机数(每个人的都不同). (3)使用计算机排序功能按随机数从小到大排列,即可得到考试 号从 1 到 1 200 人的考试序号(注:1 号应为 0001,2 号应为 0002, 用 0 补足位数.前面再加上有关信息号码即可).
据此估计四天中恰有三天下雨的概率为( )
A.34
B.52
21
17
C.40
D.40
(2)盒中有大小、形状相同的 5 个白球、2 个黑球,用随机模拟 法求下列事件的概率. ①任取一球,得到白球; ②任取三球,都是白球. 【解】 (1)选 B.在 40 组四位随机数中,0~5 的整数恰出现 3 次的四位数有 16 组,故四天中恰有三天下雨的概率的估计值 为1460=25.
探究点 2 随机模拟法估计概率 (1)池州九华山是著名的旅游胜地.天气预报 8 月 1 日
后连续四天,每天下雨的概率为 0.6.现用随机模拟的方法估计 四天中恰有三天下雨的概率:在 0~9 十个整数值中,假定 0, 1,2,3,4,5 表示当天下雨,6,7,8,9 表示当天不下雨.在 随机数表中从某位置按从左到右的顺序读取如下 40 组四位随 机数:
高二数学教案整数值随机数的产生教案

高二数学教课设计整数值随机数的产生教课设计一、教课目的 :1、知识与技术 :(1)认识随机数的观点,掌握用计算器或计算机产生随机数求随机数的方法 ;(2)能用模拟的方法预计概率。
2、过程与方法 :(1)经过对现实生活中详细的概率问题的研究 ,感知应用数学解决问题的方法 ,领会数学知识与现实世界的联系 ,培育逻辑推理能力 ;(2)经过模拟试验 ,感知应用数学解决问题的方法,自觉养成动手、动脑的优秀习惯。
3、感情态度与价值观:经过模拟方法的设计体验数学的重要性和信息技术在数学中的应用 ;经过着手模拟 ,动脑思虑 ,领会做数学的乐趣;经过合作试验 ,培育合作与沟通的团队精神。
二、要点与难点:要点 :随机数的产生 ;难点 :利用随机试验求概率.三、教课过程(一 )、引入情境 :历史上求掷一次硬币出现正面的概率时,需要重复掷硬币,这样不停地重复试验花销的时间太多,有没有其余方法能够代替试验呢 ?我们能够用随机模拟试验,取代大批的重复试验,节俭时间 .本节主要介绍随机数的产生,目的是利用随机模拟试验取代复杂的着手试验,以便求得随机事件的频次、概率.(二 )、产生随机数的方法:1.由试验 (如摸球或抽签 )产生随机数例:产生 1-25 之间的随机整数.(1)将 25 个大小形状同样的小球分别标1,2, , 24, 25,放入一个袋中 ,充足搅拌(2)从中摸出一个球,这个球上的数就是随机数2.由计算器或计算机产生随机数因为计算器或计算机产生的随机数是依据确立的算法产生的,拥有周期性 (周期很长 ),拥有近似随机数的性质 ,但其实不是真实的随机数 ,而叫伪随机数由计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法。
(三 )、利用计算器如何产生随机数呢?例 1: 产生 1 到 25 之间的取整数值的随机数.解:详细操作以下 :第一步 :MODE-MODE-MODE-1-0-第二步 :25-SHIFT-RAN#-+-0.5-=第三步 :此后每次按 =都会产生一个 1 到 25 的取整数值的随机数.工作原理 :第一步中连续按 MODE 键三次 ,再按 1 是使计算器进入确立小数位数模式,0 表示小数位数为0,即显示的计算结果是进行四舍五入后的整数 ;第二步是把计算器中产生的 0.000~0.999 之间的一个随机数扩大25 倍 ,使之产生 0.000-24.975 之间的随机数 ,加上 +0.5 后就获得0.5~25.475 之间的随机数 ;再由第一步所进行的四舍五入取整 ,便可随机获得 1 到 25 之间的随机整数。
高中数学3.2.2(整数值)随机数(randomnumbers)的产生课件新人教A版必修3

“0”,补足位数),程序结束.
利用随机模拟法估计概率
[例 2] (1)已知某运动员每次投篮命中的概率低于 40%,现 采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概 率:先由计算器产生 0 到 9 之间取整数值的随机数,指定 1,2,3,4 表示命中,5,6,7,8,9,0 表示不命中;再以每三个随机数为一组, 代表三次投篮的结果.经随机模拟产生了 20 组随机数:
随机数的产生方法
[例 1] 某校高一年级共有 20 个班 1 200 名学生,期末考试时,
如何把学生随机地分配到 40 个考场中去? [解] 第一步,n=1; 第二步,用 RANDI(1,1 200)产生一个[1,1 200]内的整数随机
数 x 表示学生的座号; 第三步,执行第二步,再产生一个座号,若此座号与以前产生
[随堂即时演练]
1.利用抛硬币产生随机数 1 和 2,出现正面表示产生的随机数为
1,出现反面表示产生的随机数为 2.小王抛两次,则出现的随
机数之和为 3 的概率为
()
A.12
B.13
1 C.4
D.15
产生随机数的方法 [导入新知] 1.利用计算器产生随机数的操作方法 用计算器的随机函数 RANDI(a,b)或计算机的随机函数 RANDBETWEEN(a,b)可以产生从整数 a 到整数 b 的取整数 值的随机数. 例如,用计算器产生 1 到 25 之间的取整数值的随机数, 方法如下:
2.利用计算机产生随机数的操作程序 每个具有统计功能的软件都有随机函数,以 Excel 软件 为例,打开 Excel 软件,执行下面的步骤: (1)选定 A1 格,键入“=RANDBETWEEN(0,1)”,按 Enter 键,则在此格中的数是随机产生的 0 或 1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整体设计教学分析产生随机数的方法有两种:(1)由试验产生的随机数:例如我们要产生1—25之间的随机整数,我们把25个大小形状等均相同的小球分别标上1,2,3,…,24,25,放入一个袋中,把它们充分搅拌.然后从中摸出一个球,这个球上的数就是随机数.一般当需要的随机数个数不是太多时,可以用这种方法产生随机数.如果需要随机数的量很大,这种方法就不是很方便,因为速度太慢.(2)用计算器或计算机产生随机数:由于计算机或计算器产生的随机数是根据确定的算法产生的,具有周期性(周期很长),具有类似随机数的性质,但并不是真正的随机数,称为伪随机数.在随机模拟中,往往需要大量的随机数,这时会选择用计算机产生随机数.这部分内容是新增加的内容,是随机模拟中最简单、易操作的部分,所以要求每个学生会操作.具体教学时,教师可以在课堂上带着学生用计算器操作一遍,然后让学生模拟掷硬币的试验或掷骰子的试验,并统计试验的结果.根据试验结果,教师可以设计一些与上一章统计部分相联系的问题,通过知识的相互联系,可以帮助学生更好地理解概率的意义和一些统计思想.例如:①每个学生模拟掷一个硬币的试验20次,统计出现正面的频数与频率,并可用频率估计概率,在此基础上进一步提出问题:这个估计的精度如何?误差大吗?②如果全班有50人,每人得到一个频率,那么有50个观测数据,计算这50个数据的平均数和标准差,并根据统计中的平均数和标准差的含义和计算的具体数值,解释这个模拟结果,通过这个过程,可以使学生进一步理解频率是概率的估计值,以及平均数和标准差的含义等.不同的计算器产生随机数的操作步骤可能不同,教科书中仅是以一种计算器为例给出产生随机数的步骤.教学中,可以让学生自己看计算器的说明书,按说明书的提示进行操作.很多软件都能产生随机数,教科书中以Excel软件为例,主要考虑到这个软件比较普遍,多数教师对它比较熟悉.教师在讲授这部分内容之前应该熟悉一下Excel软件,特别是产生随机数的函数、画统计图的功能及对统计数据结果的处理功能.用随机模拟的方法模拟随机现象称为统计试验.这里必须明确随机模拟方法得到的结果只能是概率的近似值或估计值,每次试验得到的结果可能是不同的.三维目标1.通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,了解随机数的概念;体会数学知识与现实世界的联系,培养逻辑推理能力.2.通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.利用计算机产生随机数,并能直接统计出频数与频率.通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.重点难点教学重点:学会利用随机数实验来求简单事件的概率.教学难点:学会利用计算器、计算机求随机数的方法.课时安排1课时教学过程导入新课思路1复习上一节课的内容:(1)古典概型.我们将具有①试验中所有可能出现的基本事件只有有限个;(有限性)②每个基本事件出现的可能性相等.(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型.(2)古典概型计算任何事件的概率计算公式:P(A)=基本事件的总数数所包含的基本事件的个A.本节课我们学习(整数值)随机数的产生,教师板书课题.思路2在第一节中,同学们做了大量重复试验,有的同学可能觉得这样做试验花费的时间太多了,那么,有没有其他方法可以代替试验呢?答案是肯定的,这就是我们将要学习的内容(整数值)随机数的产生.推进新课新知探究提出问题(1)在掷一枚均匀的硬币的试验中,如果没有硬币,你会怎么办?(2)在掷一枚均匀的骰子的试验中,如果没有骰子,你会怎么办?(3)随机数的产生有几种方法,请予以说明.(4)用计算机或计算器(特别是TI图形计算器)如何产生随机数?活动:学生思考或讨论,并与同学交流活动感受,讨论可能出现的情况,师生共同最后汇总方法、结果和感受.讨论结果:(1)我们可以用0表示反面朝上,1表示正面朝上,用计算器做模拟掷硬币试验. (2)我们可以分别用数字1、2、3、4、5、6表示出现“1点”“2点”“3点”“4点”“5点”和“6点”,用计算器做模拟掷骰子试验.(3)可以由试验产生随机数,也可用计算机或计算器来产生随机数.①由试验产生的随机数:例如我们要产生1—10之间的随机数,可以把大小形状均相同的十张纸片的背后分别标上:1,2,3,…,8,9,10,然后任意地抽出其中一张,这张纸上的数就是随机数.这种产生随机数的方法比较直观,不过当随机数的量比较大时,就不方便,因为速度太慢.②用计算机或计算器(特别是TI图形计算器)产生随机数:利用计算机程序算法产生,具有周期性(周期很长),具有类似随机数性质,称为伪随机数.在随机模拟时利用计算机产生随机数比较方便.(4)介绍各种随机数的产生.①计算器产生随机数下面我们介绍一种如何用计算器产生你指定的两个整数之间的取整数值的随机数.例如,要产生1—25之间的取整数值的随机数,按键过程如下:以后反复按键,就可以不断产生你需要的随机数.同样地,我们可以用0表示反面朝上,1表示正面朝上,利用计算器不断地产生0,1两个随机数,以代替掷硬币的试验.按键过程如下:②利用TI图形计算器产生随机数的方法只要输入RAND(N)(其中N为任意整数,如图:RAND(20)表示1到20的随机数.)利用TI图形计算器产生随机数的速度很快而且很方便.③介绍利用计算机产生随机数(主要利用Excel软件)先让学生熟悉Excel软件特别是产生随机数的函数,画统计图的功能,以及了解Excel软件对统计数据进行处理的功能.我们也可以用计算机产生随机数,而且可以直接统计出频数和频率.下面以掷硬币为例给出计算机产生随机数的方法.每个具有统计功能的软件都有随机函数.以Excel软件为例,打开Excel软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1.(2)选定A1格,按Ctrl+C快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl+V快捷键,则在A2至A100的数均为随机产生的0或1,这样我们很快就得到了100个随机产生的0,1,相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数,也就是反面朝上的频数.(4)选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率.同时可以画频率折线图,它更直观地告诉我们:频率在概率附近波动.上面我们用计算机或计算器模拟了掷硬币的试验,我们称用计算机或计算器模拟试验的方法为随机模拟方法或蒙特卡罗(Monte Carlo)方法.应用示例思路1例1 利用计算器产生10个1—100之间的取整数值的随机数.解:具体操作如下:键入反复操作10次即可得之.点评:利用计算器产生随机数,可以做随机模拟试验,在日常生活中有着广泛的应用.变式训练利用计算器生产10个1到20之间的取整数值的随机数.解:具体操作如下:键入反复按键10次即可得到.例2 天气预报说,在今后的三天中,每一天下雨的概率均为40%,这三天中恰有两天下雨的概率是多少?活动:这里试验出现的可能结果是有限个,但是每个结果的出现不是等可能的,所以不能用古典概型求概率的公式.用计算器或计算机做模拟试验可以模拟下雨出现的概率是40%.解决步骤:(1)建立概率模型:模拟每一天下雨的概率为40%,有很多方法,例如用计算机产生0—9的随机数,可用0,1,2,3表示下雨,其余表示不下雨(当然,也可以用5,6,7,9表示下雨,其余表示不下雨),这样可以体现下雨的概率为40%.(2)进行模拟实验,可以用Excel软件模拟的结果(模拟20个):可用函数“RANDBETWEEN(1,20)”.(3)验证统计结果(略).注意:用随机数模拟的方法得到的仅仅是20次的模拟结果,是概率的近似值,而不是概率.随着模拟的数量不断地增加(相当于增加样本的容量),模拟的结果就越接近概率.关于例2的实际操作,有条件的可以让学生自己上机动手或利用计数器来演算. 点评:掌握产生随机数的方法,特别是用计算机模拟的方法,还要建立适当的模型.思路2例1 某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?活动:学生审题,教师提示指导,其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能用古典概型的概率公式计算,我们用计算机或计算器做模拟试验可以模拟投篮命中的概率为40%.解:我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以产生0到9之间的取整数值的随机数.我们用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,这样可以体现投中的概率是40%.因为是投篮三次,所以每三个随机数作为一组.例如:产生20组随机数:812,932,569,683,271,989,730,537,925,907,113,966,191,431,257,393,027,556.这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为205=25%. 点评:(1)利用计算机或计算器做随机模拟试验,可以解决非古典概型的概率的求解问题.(2)对于上述试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间.(3)随机函数RANDBETWEEN (a,b )产生从整数a 到整数b 的取整数值的随机数.例2 你还知道哪些产生随机数的函数?请列举出来.知能训练1.本节练习4.答案:(1)61. (2)略.(3)应该相差不大,但会有差异.存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.2.0表示反面朝上,1表示正面朝上,请用计算器做模拟掷硬币试验.解:具体操作如下:键入拓展提升某班有45个人,现要选出1人去检查其他班的卫生,若每个人被选到的机会均等,则恰好选生甲的机会有多大?(4)利用稳定后1出现的频率估计恰好选生甲的机会.课堂小结随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的中考中都采用产生随机数的方法把考生分配到各个考场中.作业习题3.2A组5、6,B组1、2、3.设计感想本堂课首先复习古典概型及其概率计算,接着设计了试验不能实现的问题,指出可以用随机数来替代试验,举出了三种随机数的产生方法,同学们要切实领会,用事例说明了模拟试验的作用,真实感受到随机数模拟试验带来的好处,在日常和实际生活中,充分利用随机数模拟试验,达到最快最准的效果.。