交联剂作用机理

合集下载

什么是交联剂

什么是交联剂

什么是交联剂什么是交联剂?交联剂也叫固化剂、硬化剂、熟化剂,它能使线型或轻度支链型的大分子转变成三维网状结构,以此提高强度、耐热性、耐磨性、耐溶剂性等性能,可用于发泡或不发泡制品。

那么交联剂有哪些,交联剂的作用是什么。

什么是交联剂?交联剂是一种能在线型分子间起架桥作用,从而使多个线型分子相互键合交联成网状结构的物质。

促进或调节聚合物分子链间共价键或离子键形成的物质。

交联剂在不同行业中有不同叫法,例如:在橡胶行业习惯称为“硫化剂”;在塑料行业称为“固化剂”、“熟化剂”、“硬化剂”;在胶黏剂或涂料行业称为“固化剂”、“硬化剂”等。

以上称呼虽有不同,但所反映的化学性质和机理是相同的。

交联剂有哪些?1、外交联剂所谓外交联剂就是在使用前加入,然后在室温、加热或辐照下发生交联反应。

外加交联剂又分为以下类别:⑴多异氰酸酯(JQ-1、JQ-1E、JQ-2E、JQ-3E、JQ-4、JQ-5、JQ-6、PAPI、可乳化MDI、四异氰酸酯)。

⑵多元胺类(丙二胺、MOCA)。

⑶多元醇类(聚乙二醇、聚丙二醇、三羟甲基丙烷)。

⑷缩水甘油醚(聚丙二醇缩水甘油醚)。

⑸无机物(氧化锌、氯化铝、硫酸铝、硫黄、硼酸、硼砂、硝酸铬)。

⑹有机物(苯乙烯、a-甲基苯乙烯、丙烯腈、丙烯酸、甲基丙烯酸、乙二醛、氮丙啶)。

⑺有机硅类(正硅酸乙酯、正硅酸甲酯、三甲氧基硅烷)。

⑻苯磺酸类(对甲苯磺酸、对甲苯磺酰氯)。

⑼丙烯酸酯类(二丙烯酸-1,4-丁二醇酯、二甲基丙烯酸乙二醇酯、TAC、丙烯酸丁酯、HEA、HPA、HEMA、HPMA、MMA)。

⑽有机过氧化物(过氧化二异丙苯,过氧化双2,4一二氯苯甲酰)。

⑾金属有机化合物(异丙醇铝、醋酸锌、乙酰丙酮钛)。

⑿氮丙啶类⒀多功能聚碳化二亚胺类交联剂。

⒁封闭型交联剂⒂异氰酸酯类交联剂2、内交联剂所谓内交联剂意指作为一种单体在聚合时进人大分子结构链内,或者作为一个组分加入到胶黏剂中,能够稳定储存,只有在加热到一定温度或辐射条件才能发生交联反应。

交联剂和偶联剂

交联剂和偶联剂
交联,主要起引发作用。 应注意:过氧化物会促进分解,且价格昂贵,应
慎用。
精品课件
(4)金属氧化物
常用的有ZnO、MgO、PbO,用在含卤素原子的橡胶 中,如氯丁橡胶、溴化丁基橡胶。
(5)胺类(NH2-R) 主要用在热固性塑料(酚醛塑料、氨基塑料)和
部分酸酯类橡胶。
(6)双官能团化合物
如烯类(苯乙烯):可作为不饱和树脂的交联剂。
(7)合成树脂
如酚醛树脂,可作为丁基橡胶、乙丙橡胶的交联体系不同,交联机理不同。
硫磺交联
橡胶交联
非硫磺交联
含硫化合物交联 过氧化物交联 金属氧化物交联
精品课件
1、硫磺交联机理
适用于不饱和橡胶、三元乙丙橡胶及不饱和度大于2%的 丁基橡胶。
S+M+ZnO、HSt体系:交联不饱和橡胶RH S:以8硫环形式存在 M:促进剂
B 交联剂
C 交联剂官能团反应 B
D A和
含氯不同的氯化石蜡不可能作哪种助剂( )
A 阻燃剂 滑剂
B 增塑剂 C 抗静电剂
精品课件
D润
下列热稳定剂使用过程中可能产生氯化锌导致 锌烧的是( )
A 铅稳定剂 B 金属皂类 C 有机锡 D 有机辅助稳定剂
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
固 线性 化
体型结构
大 合 成
塑 料
热塑性

塑料
有些作适当交联

纤 不交联 维
精品课件
流变特性 力学性能 耐溶剂性 但不能深度交

9.2 常用交联剂
交联剂是使聚合物交联起来的配合剂。
(1)硫磺
最古老的硫化剂,橡胶工业用的最多。

有机交联剂

有机交联剂

有机交联剂1. 引言有机交联剂是一种在化学反应中起到连接和固化作用的物质。

它们能够通过形成化学键将分子或聚合物链结合在一起,从而增强材料的力学性能和耐久性。

有机交联剂广泛应用于各种领域,包括涂料、胶粘剂、塑料、橡胶、纺织品等。

本文将详细介绍有机交联剂的定义、分类、作用原理以及主要应用领域。

2. 定义和分类2.1 定义有机交联剂是指由碳元素构成,能够与其他分子或聚合物发生化学反应,形成新的共价键并将其连接在一起的化合物。

2.2 分类根据不同的化学结构和功能特点,有机交联剂可以分为以下几类:•热固性交联剂:通过热引发反应进行固化,常见的代表是环氧树脂。

•光固性交联剂:通过紫外线或可见光引发反应进行固化,常见的代表是丙烯酸类物质。

•自由基型交联剂:通过自由基引发反应进行固化,常见的代表是双丙烯酰胺。

•离子型交联剂:通过离子引发反应进行固化,常见的代表是聚乙烯亚胺。

3. 作用原理有机交联剂的作用原理主要包括以下几个方面:3.1 化学键形成有机交联剂能够与其他分子或聚合物发生化学反应,形成新的共价键。

这些共价键能够将不同分子或聚合物连接在一起,形成一个更为稳定和坚固的结构。

3.2 链断裂与重组有机交联剂能够在化学反应中引发链断裂和重组。

通过链断裂和重组过程,有机交联剂可以将材料中的分子或聚合物重新排列和连接,从而增强材料的力学性能和耐久性。

3.3 空间网络形成有机交联剂能够形成空间网络结构。

这种空间网络结构具有高度交织和互相连接的特点,使得材料具有较好的力学性能、热稳定性和耐化学腐蚀性。

4. 应用领域有机交联剂在各个领域都有广泛的应用。

以下是几个主要的应用领域:4.1 涂料有机交联剂在涂料中起到增加涂层硬度和耐久性的作用。

通过与树脂反应,有机交联剂能够形成坚固的化学键,并提供良好的附着力和耐磨性。

4.2 胶粘剂有机交联剂在胶粘剂中起到固化和增强粘接强度的作用。

通过与胶粘剂中的聚合物发生反应,有机交联剂能够形成交联结构,提高胶粘剂的黏附力和耐久性。

海藻酸钠水凝胶氯化钙交联原理

海藻酸钠水凝胶氯化钙交联原理

海藻酸钠水凝胶氯化钙交联原理海藻酸钠水凝胶是一种高分子材料,其具有良好的生物相容性和生物可降解性,因此在生物医学领域得到广泛应用。

而氯化钙是一种常用的交联剂,可以有效地将海藻酸钠水凝胶进行交联,增强其物理性能和稳定性。

本文将从海藻酸钠水凝胶和氯化钙交联原理的角度进行阐述,以期对相关领域的研究者和读者有所启发。

一、海藻酸钠水凝胶的特性海藻酸钠是从海藻中提取的一种多糖类化合物,具有良好的生物相容性和生物可降解性。

它可以在水中形成均匀透明的胶体溶液,并在一定温度下形成稳定的凝胶。

海藻酸钠的凝胶性质主要是由于它分子链间的静电排斥力和分子链内的氢键作用所导致的。

因此,海藻酸钠水凝胶具有良好的柔韧性和可塑性。

二、氯化钙的作用机理氯化钙是一种离子交联剂,可以与海藻酸钠中的阴离子进行交联反应。

在交联过程中,氯化钙中的钙离子与海藻酸钠中的羧基发生离子键的形成,从而使海藻酸钠分子链之间发生交联。

交联后的海藻酸钠水凝胶形成了三维网状结构,增加了凝胶的机械强度和稳定性。

此外,氯化钙还可以通过与海藻酸钠分子链中的羧基形成钙盐的方式来增加凝胶的稳定性。

三、海藻酸钠水凝胶氯化钙交联的应用海藻酸钠水凝胶氯化钙交联后,具有较好的生物相容性和生物可降解性,适合用于组织工程、药物缓释等领域。

在组织工程中,海藻酸钠水凝胶氯化钙交联后可以用作三维支架材料,用于细胞培养和组织修复。

在药物缓释方面,海藻酸钠水凝胶氯化钙交联后可以用作药物缓释载体,实现药物的控制释放。

四、海藻酸钠水凝胶氯化钙交联的优势相比于其他交联方法,海藻酸钠水凝胶氯化钙交联具有以下优势:1. 简单易行:交联过程简单,不需要复杂的设备和条件。

2. 生物相容性好:海藻酸钠水凝胶和氯化钙都是生物相容性较好的材料,对人体无毒副作用。

3. 可控性强:通过调整交联剂的浓度和交联时间,可以控制凝胶的性质和稳定性。

海藻酸钠水凝胶氯化钙交联是一种简单易行、生物相容性好、可控性强的方法,可用于组织工程和药物缓释等领域。

n羟乙基丙烯酰胺交联机理

n羟乙基丙烯酰胺交联机理

n羟乙基丙烯酰胺交联机理
N-羟乙基丙烯酰胺(N-hydroxyethyl acrylamide,NHAM)是一种常用的交联剂,其交联机理如下:
1. 丙烯酰胺(ACM)和N-羟乙基丙烯酰胺(NHAM)在水溶液中经过光照或酶的作用下,发生自由基聚合反应。

2. 生成的聚合物分子链上的丙烯酰胺(ACM)单元,可以在紫外光的照射下发生光交联反应,形成网状结构。

3. N-羟乙基丙烯酰胺(NHAM)的分子链上的N-羟乙基基团,可以与丙烯酰胺(ACM)单元发生反应,形成支链或桥接结构,进一步增强交联后的聚合物网络结构。

4. 当聚合物分子链上的丙烯酰胺(ACM)单元和N-羟乙基丙烯酰胺(NHAM)的N-羟乙基基团均发生交联反应时,可以形成更为复杂的网状结构,从而进一步提高聚合物的机械性能和化学稳定性。

需要注意的是,N-羟乙基丙烯酰胺(NHAM)的交联反应需要一定的条件,如光照、温度、pH值等,同时交联反应的速度和产物的性能也受到反应物浓度、反应温度、催化剂等因素的影响。

在实际应用中,需要根据具体需求和条件进行优化和控制交联反应的条件和成分。

交联剂的原理

交联剂的原理

哎呀,说起交联剂的原理,这可真是个技术活儿,不过我尽量用大白话给你讲讲,希望能让你听得明白。

首先,咱们得知道啥是交联剂。

交联剂,说白了,就是能让两个或者多个分子手拉手,连成一片的那种东西。

就像你小时候玩的那种塑料小球,中间有洞,用棍子一穿,几个小球就连在一起了。

交联剂在化学里的作用,就有点像那个棍子。

咱们举个例子,比如说橡胶。

橡胶这玩意儿,你肯定不陌生,轮胎、鞋底、橡皮擦,都是橡胶做的。

但是,你知道为啥橡胶能那么有弹性吗?这就跟交联剂有关系了。

橡胶分子,就像是一条条长长的蛇,平时懒洋洋的,没什么力气。

但是,你一加热,一加压,这些蛇就活跃起来了,开始扭来扭去。

这时候,如果咱们加点交联剂,就像是给这些蛇之间搭个桥,让它们手拉手,连成一片。

这样一来,橡胶分子就不再是单独的蛇了,而是变成了一张网,有弹性,有韧性。

这个交联的过程,其实挺有意思的。

你想想,本来是软趴趴的一团,加了点东西,就变得有弹性了。

这就像是你小时候玩的橡皮泥,一开始软软的,但是你一揉,一捏,它就变得有形状了。

而且,交联剂的种类还挺多的,不同的交联剂,效果也不一样。

有的交联剂,能让橡胶变得更硬,更耐磨;有的交联剂,能让橡胶变得更软,更舒适。

这就像是你做饭,不同的调料,做出来的味道也不一样。

总的来说,交联剂的原理,就是通过连接分子,改变材料的性质。

这就像是你用胶水把两张纸粘在一起,纸就变得更结实了。

虽然听起来挺简单的,但是实际上,这里面的化学反应还是挺复杂的。

不过,咱们也不需要搞得太清楚,只要知道,交联剂就像是化学里的“胶水”,能让分子手拉手,连成一片,就行了。

好了,关于交联剂的原理,我就说这么多了。

希望这个例子,能让你对交联剂有个直观的理解。

你要是还有什么不懂的,咱们再慢慢聊。

聚碳化二亚胺交联剂交联机理

聚碳化二亚胺交联剂交联机理

聚碳化二亚胺交联剂交联机理聚碳化二亚胺(polymerizable cyanoacrylate,PCA)交联剂是一种常用的化学交联剂,其交联机理主要包括链延长、交联和硬化三个阶段。

本文将对PCA交联剂的交联机理进行详细的介绍,包括其化学结构、交联反应过程、影响因素等方面的内容。

一、PCA交联剂的化学结构PCA交联剂的化学结构含有α-氰基丙酸酯官能团,其通式为:R-CHOH-C≡N,其中R为取代基。

PCA交联剂中的α-氰基丙酸酯官能团在受到引发剂或其他活性物质的作用下,可以发生聚合反应,形成交联网络结构。

二、PCA交联剂的交联反应过程1.链延长阶段PCA交联剂的链延长是指PCA单体分子中的α-氰基丙酸酯官能团发生聚合反应,形成更长的线性或分支链。

在此阶段,PCA单体的α-氰基丙酸酯官能团通过开环聚合的方式发生反应,形成较长的线性或分支链。

2.交联阶段PCA交联剂的交联是指已形成的链延长产物之间发生化学键的形成,形成三维交联结构。

在此阶段,PCA单体的α-氰基丙酸酯官能团之间通过双键开环聚合反应,形成较为牢固的交联结构,从而使得材料的性能得到提高。

3.硬化阶段PCA交联剂的硬化是指交联结构的形成过程,形成了稳定的三维网络结构,使得材料的物理性能得到显著提高。

在此阶段,PCA交联剂的交联结构逐渐形成,形成了稳定的三维网络结构,使得材料的硬度、耐磨性、抗拉伸性等性能得到提高。

三、PCA交联剂的影响因素PCA交联剂的交联机理受到多个因素的影响,包括单体分子结构、引发剂种类、交联剂浓度等方面的因素。

1.单体分子结构PCA交联剂的单体分子结构对其交联机理起着至关重要的作用。

不同的单体分子结构会导致不同的聚合反应速率、交联密度和交联结构形貌,从而影响最终材料的性能。

2.引发剂种类引发剂对PCA交联剂的聚合反应起着至关重要的作用。

不同种类的引发剂会导致不同的聚合速率和交联密度,从而影响最终材料的性能。

常用的引发剂包括过氧化物、活性氢化合物、阳离子引发剂等。

交联作用及交联剂分析

交联作用及交联剂分析

交联作用及交联剂分析交联作用是指在物质中存在着的长链分子之间形成交联连接的现象,通过交联作用可以增强材料的机械强度、热稳定性、耐腐蚀性和耐老化性等。

交联剂是引入到聚合物分子中,使分子间发生交联反应的化合物。

常见的交联剂有硫、过氧化物、辐射、环氧化合物、异氰酸酯、二硫醚、双四元盐等。

交联作用可以通过物理交联和化学交联两种方式实现。

物理交联一般是通过热处理或溶剂处理来实现。

在高温或溶剂条件下,聚合物链之间会发生交联反应,形成3D网络结构。

物理交联可以逆转,即通过网络结构的破坏和修复使材料的物理性质发生可逆变化。

化学交联是通过交联剂引发的化学反应来实现的。

交联剂会引发聚合物链之间的共价键形成,形成3D网络结构。

化学交联是不可逆的,交联后的材料具有较高的热稳定性和耐化学品侵蚀性。

交联剂的选择要根据聚合物的特性和所需的性能来确定。

下面介绍几种常见的交联剂和其应用:1.硫交联剂:硫可以与聚合物中的双键反应,引发交联反应。

硫交联常用于橡胶材料的制备,如天然橡胶和丁苯橡胶。

2.过氧化物交联剂:过氧化物可以通过自由基反应引发聚合物链之间的交联。

过氧化肼是一种常用的过氧化物交联剂,常用于聚乙烯、聚丙烯等聚烯烃的交联。

3.辐射交联剂:辐射交联是利用高能射线(如电子束或γ射线)对聚合物进行辐射照射,形成自由基引发聚合反应,从而实现聚合物链之间的交联。

辐射交联常用于电线电缆、管道、热缩套管等领域。

4.环氧化合物交联剂:环氧化合物可以与聚合物中的羟基或胺基反应,形成环氧树脂结构,并与聚合物分子交联。

环氧化合物交联剂常用于涂料、胶粘剂和复合材料等领域。

总之,交联作用和交联剂在材料科学和工程中具有重要的应用价值。

深入研究交联作用的机理和交联剂的选择,可以为材料的性能改进和新材料的开发提供指导和支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

字体交联剂作用机理,因高分子化合物的结构和交联剂的种类不同而不同,这里仅就一些典型的交联剂的交联作用来进行讨论.
1.无机交联剂
1硫黄
用硫黄作为橡胶的硫化剂,到目前仍是橡胶硫化的主要方法.工业用硫黄的品种很多,有硫黄粉、不溶性硫、胶体硫、沉淀硫黄、升华硫黄、脱酸硫黄等,不过它们的分子结构都是由八个硫原子组成的环状分子,并且以冠形结构而稳定地存在.
但是这种环状硫在一定的条件下,可以发生异裂,生成离子,也可以发生均裂,生成自由基.
这些离子或自由基可以引起橡胶分子进行离子型或自由基交联反应.但这些反应都相当复杂,对它们的机理虽有很多研究,但还没有形成统一看法.这里仅就比较一致的意见,对自由基反应机理作简要介绍.
·,这在纯硫的情况下,环状硫在159℃时,可以均裂成活泼的自由基,或者叫双基硫·S
8
种双基硫可以引发另外环状硫的均裂,也可以分解成为硫原子数多于8或小于8的双基硫.
这些双基硫可以引发橡胶分子发生自由基链式反应,而生成橡胶分子链自由基.然后这些自由基可以与双基硫结合,生成多硫侧基.多硫侧基与橡胶分子自由基结合,就终止了链式反应,这样将橡胶分子链交联起来.
用来交联橡胶大分子链的,主要是多硫交联键,也称桥键.
除了分子链间发生交联外,还可能在分子内产生环状结构一般是五个或六个原子组成的环.有人提出单用硫黄硫化天然橡胶所得网状结构如下式所示:
但单纯用硫黄来硫化橡胶时,硫黄用量大,硫化时间长,所得硫化胶性能不好,因此工业一般不用单纯硫黄来进行硫化,而且要另外加一些硫黄促进剂、活性剂等,这在以后讨论.
2氧化锌、氧化镁
氧化锌、氧化镁一般是作为硫黄促进剂来使用,但对于某些橡胶,又可作硫化剂来使用.
例如,在氯丁橡胶聚合过程中,除1,4-聚合外,一般还有少量约1.5%是1,2-聚合,结构如下:
1、4-聚合体
1、2-聚合体
在硫化时,1,2-聚合体的双键位置可以发生位移.
由Ⅱ可知,氯原子是与烯丙基相连的,这里的氯原子非常活泼,用氧化锌来硫化时,就是由这个氯原子与氧化锌反应,结果形成醚型交联结构.
2.有机交联剂
有机交联剂的交联作用,大致可分成三种类型.
1交联剂引发自由基反应
交联剂可分解产生自由基,自由基又可引发高分子自由链式反应,从而导致高分子的C—C交联.这里的交联剂实际是引发剂的作用.常用的是有机过氧化物
a用过氧化异丙苯硫化天然橡胶.过氧化异丙苯在受热情况下,分解成苯异丙氧自由基,这个自由基引发橡胶分子链的自由基反应,从而导致橡胶分子链的C—C交联.
b用过氧化苯甲酰硫化硅橡胶甲基硅橡胶.过氧化苯甲酰在受热时,分解产生苯甲酰氧自由基,此自由基可以引发硅橡胶分子的自由基反应,从而导致硅橡胶分子的C—C交联.
用过氧化苯甲酰使聚工烯进行交联.这也是自由基反应,这里不作论述.
由于有机过氧化物在酸性介质中易分解,因此在使用有机过氧化物时,应尽量不使用酸性物质作填料,要吴加填料时,应严格控制pH值.此外,伴随交联反应而来的,不可能有高分子的解聚反应,应该注意.
2交联剂官能团与高分子反应
利用交联剂分子中的官能团主要是双官能团、多官能团、C=C等与高分子化合物发生反应,并将高分子的大分子链交联起来.a用二元胺固化环氧树脂.利用二元胺的氨基与环氧树脂分子中的环氧基进行反应,并将环氧树脂大分子链交联起来,成为体型分子,而使其固化.
b用叔丁基酚醛树脂硫化天然橡胶成丁基橡胶.叔丁基酚醛树脂两端的羟基与天然橡胶分子中α氢进行缩合反应,结果使橡胶交联而成为体型结构
3交联剂引发自由基反应和交联剂官能基反应相结合
自由基引发剂和官能团化合物可配合使用.例如:用有机过氧化物和不饱和单体来使不饱和聚酯进行交联.由于有机过氧化物的引发作用,使不饱和单体中的C=C键与不饱和聚酯中的C=C键发生自由基加反应,从而将聚酯的大分子交联起来.。

相关文档
最新文档