(完整版)往复式压缩机的基本知识及原理
ARIEL往复式压缩机简介

5.9 5.65 7.75
8.05
四、压缩机的保护系统
无油流保护 系统
Material..................................................Stainless Steel, Aluminum Temperature Range............................................. -40 F to +185 F Switch Rating..........................................................2.5VA/240 VDC Epoxy Encapsulated............................UL LISTED EL-CAST VFR 641 Alarm/Shutdown......................... Factory default for 3 minute alarm Power.......................................Field Replaceable - Lithium Battery Battery....................................................................... P/N 000505 Alternate Battery..........................................Radio Shack 960-0418 Divider Block Application...............Dropsa/Lincoln/SBCO/Lubriquip Warranty...........................................................................2.5 Years
(2024年)往复式压缩机完整ppt课件

增强安全性
加强安全防护措施、完善安全 管理制度、提高操作人员素质
等。
2024/3/26
19
05 往复式压缩机安 装、调试与验收 规范
2024/3/26
20
安装前准备工作建议
2024/3/26
了解压缩机性能参数
01
在安装前,应仔细了解压缩机的性能参数,包括功率、排气量
、压力等,确保所选压缩机符合实际需求。
实时监测压缩机的运行参数,如压力、温 度、电流等,及时发现异常情况并进行处 理。
2024/3/26
26
常见故障类型及原因分析
机械故障
包括轴承磨损、气阀损坏、活塞环磨 损等,主要是由于长期运行导致的磨 损和疲劳。
电气故障
如电机烧毁、控制系统故障等,通常 是由于电气部件老化、过载或短路等 原因引起的。
往复式压缩机完整ppt课件
2024/3/26
1
目 录
2024/3/26
• 往复式压缩机概述 • 往复式压缩机结构组成 • 往复式压缩机工作原理与性能参数 • 往复式压缩机选型与设计要点 • 往复式压缩机安装、调试与验收规范 • 往复式压缩机运行维护与故障排除方法 • 总结回顾与展望未来发展趋势
2
01 往复式压缩机概 述
2024/3/26
油分离器
分离压缩空气中的 油分。
油冷却器
冷却润滑油,保证 油温稳定。
9
控制系统
控制面板
显示压缩机运行参数,实现远 程控制。
温度传感器
监测气体和润滑油温度,防止 过热。
电动机
提供动力,驱动曲轴旋转。
2024/3/26
压力传感器
监测气体压力,确保安全运行 。
往复式压缩机工作原理

往复式压缩机工作原理往复式压缩机是一种常见的压缩机类型,广泛应用于空调、制冷设备、冷库等领域。
它的工作原理十分简单,但却是实现压缩和冷却的关键。
下面我们将详细介绍往复式压缩机的工作原理。
往复式压缩机主要由活塞、曲轴、连杆、缸体和阀门组成。
当压缩机工作时,曲轴带动连杆和活塞做往复运动。
在活塞上下运动的过程中,通过阀门的开合,使得气体在缸体内发生压缩和排放,从而实现压缩机的工作。
首先,当活塞下行时,缸体内的气体被压缩。
此时,进气阀关闭,排气阀打开,气体被压缩至一定压力。
然后,当活塞上行时,排气阀关闭,进气阀打开,外部低压气体进入缸体。
活塞再次下行时,进气阀关闭,排气阀打开,气体再次被压缩。
如此往复循环,实现了气体的连续压缩和排放。
往复式压缩机的工作原理可以用一个简单的比喻来解释,就像我们在骑自行车时踩踏脚踏板,活塞就像是踏板,曲轴就像是传动链条,连杆就像是踏板与曲轴连接的杆子。
通过这样的比喻,可以更直观地理解往复式压缩机的工作原理。
在往复式压缩机的工作过程中,需要注意气体的压缩比和排气温度。
压缩比过高会导致压缩机功率过大,能耗增加;而排气温度过高则会影响压缩机的工作稳定性和使用寿命。
因此,需要合理设计压缩机的结构和选择合适的工质,以保证压缩机的高效稳定工作。
总的来说,往复式压缩机的工作原理是通过活塞往复运动,实现气体的连续压缩和排放。
它在空调、制冷设备等领域有着广泛的应用,是实现压缩和冷却的重要设备。
通过合理设计和选择,可以使往复式压缩机达到高效稳定的工作状态,为各种制冷设备提供持续稳定的压缩功率。
往复式压缩机工作原理

往复式压缩机工作原理往复式压缩机是一种常见的压缩机类型,广泛应用于空调、冷藏、冷冻等领域。
它通过往复运动来实现气体的压缩,从而提高气体的压力和温度。
在往复式压缩机的工作原理中,主要包括压缩、冷凝、膨胀和蒸发四个过程。
下面我们将详细介绍往复式压缩机的工作原理。
首先,当往复式压缩机开始工作时,气体被吸入压缩机内部的气缸中。
在这个过程中,气缸的活塞向下运动,导致气体被吸入气缸内。
随着活塞的向上运动,气体被压缩,从而提高了气体的压力和温度。
这个过程称为压缩过程,是往复式压缩机实现气体压缩的关键步骤。
接下来,压缩后的气体进入冷凝器,在冷凝器中,气体释放热量,从而降低了气体的温度。
在这个过程中,气体由于散热而冷却成为液体,这个过程称为冷凝过程。
冷凝后的液体通过膨胀阀进入蒸发器,在蒸发器中,液体再次蒸发成为气体,吸收了外界的热量。
这个过程称为蒸发过程。
最后,蒸发后的气体再次被吸入压缩机内部的气缸中,循环往复。
通过这样的循环过程,往复式压缩机不断地将气体压缩、冷凝、膨胀和蒸发,从而实现了气体压缩的目的。
总的来说,往复式压缩机的工作原理是通过往复运动来实现气体的压缩,然后通过冷凝、膨胀和蒸发等过程来提高气体的压力和温度。
这种工作原理使得往复式压缩机成为了许多制冷设备中不可或缺的关键部件。
在实际应用中,往复式压缩机的工作原理对于制冷设备的性能和效率有着重要的影响。
因此,了解往复式压缩机的工作原理对于制冷设备的设计、维护和使用都具有重要意义。
希望通过本文的介绍,读者能够对往复式压缩机的工作原理有一个更加清晰的了解。
往复式压缩机_3

3.14仪表及自动监控系统
压缩机设有较完善的监测和控制仪表,对各级排气压力、温度;冷却 水压力、温度;润滑油供油压力、温度均设有就地仪表,以便操作人 员随时观察压缩机运行工况参数。
对重要运行参数,还设有自动监控保护装置,当压缩机运行参数远离 设计规定值,达到危险工况时,能及时自动发出声光报警信号,并能 自动联锁停机。
3.4 十字头
十字头是连接做摇摆运动的连杆与往复运动的活塞杆的机件,它具有 导向作用 。十字头在运动过程中承受侧向力。十字头为双侧圆筒型分 体组合式结构,十字头体和上下两个可拆卸的滑履采用楔槽定位,并 借助螺钉连接成一体。滑履与十字头之间装有调整垫片,由于机身两 侧十字头的侧向力方向相反,为保证十字头与活塞杆运行的同心,制 造厂组装时,已将受力相反的十字头与滑履间垫片数量进行调整,用 户在安装检修时,不应随意调换十字头和增减垫片。十字头是由 ZG230-450制成,上下滑履材料为20号钢,承压表面挂有轴承合金, 并开有油槽以利于润滑油的分布。十字头销为直销型式,固定于十字 头销孔中,销体内分布轴向和径向油孔,用于润滑油的输送。十字头 与活塞杆连接采用液压紧固装置,其工作原理为:通过联接紧固装置, 将活塞杆与十字头进行连接后,用本产品随机所带的手动超高压油泵, 将150MPa压力的油注入紧固装置中的压力体中,利用液体不可压缩 的性质推动环形活塞,迫使活塞杆尾部产生弹性拉伸变形,再将锁紧 螺母锁定后将油泄压,即可达到连接所需的预紧力。连接打压过程中 应注意,油泵压力不得超过150MPa,紧固的全过程需经三次才能完 成,每次间隔1小时,每次紧固方法均相同。
为了改善填料、活塞杆的工作条件,填料设有冷却水道,以带走填料 环与活塞杆摩擦而产生的热量。根据需要,填料上还可设置充氮、漏 气回收及注油等接口;
往复式压缩机结构原理与用途

活塞组
活塞---活塞可分为筒形和盘形 两大类。活塞的材料一般为铝合 金或铸铁。活塞上设有沟槽,沟 槽上装有活塞环和支撑环。
活塞环---活塞环的作用是密封
气缸内的高压气体,防止气体从 活塞和气缸之间的间隙中泄漏。 活塞杆---活塞杆一端与活塞相 连,另一端采用螺纹扭入十字头 中。
活塞组
活塞---活塞可分为筒形和盘形 两大类。活塞的材料一般为铝合 金或铸铁。活塞上设有沟槽,沟 槽上装有活塞环和支撑环。 活塞环---活塞环的作用是密封 气缸内的高压气体,防止气体从 活塞和气缸之间的间隙中泄漏。
活塞杆---活塞杆一端与活塞相
连,另一端采用螺纹扭入十字头 中。
填料函
填料用于密封气缸内的压 润滑油入口
力使之与外部大气压力隔绝。 填料充填在填料涵中。填料涵 由串联的杯形填料组成。每个 杯中充填有分段填料环。
填料的材料通常与活塞环 材料相同——充填聚四氟乙烯 、铜和酚塑料等的石墨。
填料连续摩擦活塞杆,产 生摩擦和热量。通常将润滑油 注入填料中以使此摩擦作用降 至最低程度。
Pd Ps
体积
入口
出口
Pd Ps
体积
入口
出口
Pd Ps
体积
入口
出口
Pd Ps
体积
入口
出口
Pd Ps
体积
入口
出口
Pd Ps
体积
入口
出口
Pd Ps
体积
入口
出口
Pd Ps
体积
入口
出口
Pd Ps
体积
入口
出口
Pd Ps
体积
入口
出口
Pd Ps
体积
入口
往复式活塞式压缩机

往复式活塞式压缩机往复式活塞式压缩机是一种常见的压缩机类型,广泛应用于许多工业领域。
它采用往复活塞的运动方式,通过压缩气体提供动力,将气体压缩后输出。
下面将介绍往复式活塞式压缩机的结构、工作原理以及应用。
往复式活塞式压缩机的结构主要包括气缸、活塞、连杆、曲轴、曲轴箱等部分。
气缸是一个封闭的筒状容器,其中活塞能够做往复运动。
活塞位于气缸内部,通过连杆与曲轴相连。
曲轴位于曲轴箱内,并与连杆相连。
当活塞做往复运动时,通过连杆和曲轴的相互转化,将线性运动转化为旋转运动,从而驱动压缩机的工作。
往复式活塞式压缩机的工作原理是利用气缸和活塞的工作往复运动来压缩气体。
当活塞向气缸内移动时,气缸内的气体被压缩。
随着活塞的继续移动,气体的压力逐渐增大,当达到一定压力时,活塞开始向气缸外移动。
这时,气体受到压缩,压力增大。
通过不断往复的运动,气体被压缩多次,压力也得到多次增大,最终输出到需要的位置。
往复式活塞式压缩机具有许多优点。
首先,它具有结构简单、制造成本低的特点,适用于中小型压缩机。
其次,这种类型的压缩机工作平稳、噪音低,可靠性高。
再次,由于连续压缩的特性,往复式活塞式压缩机输出的气体流量稳定,并且可以根据需要进行调节。
此外,该压缩机具有较高的压缩比和能效,节能效果显著。
往复式活塞式压缩机在许多领域中得到广泛应用。
在工业生产中,它常用于制造业的气动系统、冷冻系统、空压机等设备中。
在农业领域,往复式活塞式压缩机可用于灌溉装置、喷雾器等设备。
此外,在建筑、石油、化工等行业,也需要使用往复式活塞式压缩机来提供压缩气体。
综上所述,往复式活塞式压缩机是一种常用的压缩机类型,具有结构简单、工作稳定和能效高的特点。
它通过往复活塞的运动方式,将气体压缩后输出。
在许多领域中得到广泛应用,满足各种工业需求。
随着科技的进步,往复式活塞式压缩机将进一步发展和完善,为工业生产提供更加可靠和高效的压缩解决方案。
往复式压缩机工作原理

往复式压缩机工作原理首先,往复式压缩机的工作原理是基于气体的往复压缩过程。
在工作过程中,气体被吸入气缸中,然后通过活塞的上下运动,将气体压缩至较高的压力,最终将压缩气体排出。
1.吸入过程:开始时,活塞处于上死点位置,气缸内的压力低于大气压。
当压力差达到一定程度时,气阀打开,外界空气进入气缸。
同时,活塞下移,气体充满整个气缸。
2.压缩过程:当活塞下移至最低点时,气阀关闭,活塞开始向上运动。
气缸的体积随着活塞运动逐渐减小,从而使气体被压缩。
而在压缩过程中,气体的温度上升,压力也随之增加。
3.排气过程:当活塞上升至最高点时,气阀打开,被压缩的气体通过气阀排出气缸。
在这个过程中,气体的压力保持稳定,并且随着排气的进行而逐渐降低。
4.放空过程:当活塞再次运动至最低点时,气阀关闭,气缸内的气体被释放到外部环境。
此时气缸内的压力与大气压力相等。
这样,往复式压缩机的一个工作循环就完成了。
在实际应用中,往复式压缩机通常需要进行多个循环以实现较高的压缩比。
而对于一些需要较高压缩比的应用,往复式压缩机也可以采用多级压缩的方式,将多个往复式压缩机串联起来,以进一步提高压缩比。
需要注意的是,在往复式压缩机的工作过程中,活塞与气缸之间需要有效的密封,以确保气体不会泄漏。
常见的密封方式包括活塞环、活塞杆密封和气缸垫片。
此外,也要保证气缸内有足够的润滑油来减少活塞与气缸的摩擦。
总的来说,往复式压缩机通过活塞的往复运动来实现气体的压缩。
其工作过程包括吸入、压缩、排气和放空过程。
通过合理的密封和润滑,往复式压缩机可以高效地将气体压缩至所需压力,并广泛应用于冷冻空调、制冷设备、工业生产等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.活塞式压缩机的基本知识及原理活塞式压缩机的分类:(1)按气缸中心线位置分类立式压缩机:气缸中心线与地面垂直。
卧式压缩机:气缸中心线与地面平行,气缸只布置在机身一侧。
对置式压缩机:气缸中心线与地面平行,气缸布置在机身两侧。
(如果相对列活塞相向运动又称对称平衡式)角度式压缩机:气缸中心线成一定角度,按气缸排列的所呈现的形状。
有分L型、V型、W型和S型。
(2)按气缸达到最终压力所需压级数分类单级压缩机:气体经过一次压缩到终压。
两级压缩机:气体经过二次压缩到终压。
多级压缩机:气缸经三次以上压缩到终压。
(3)按活塞在气缸内所实现气体循环分类单作用压缩机:气缸内仅一端进行压缩循环。
双作用压缩机:气缸内两端进行同一级次的压缩循环。
级差式压缩机:气缸内一端或两端进行两个或两个以上的不同级次的压缩循环。
(4)按压缩机具有的列数分类单列压缩机:气缸配置在机身的一中心线上。
双列压缩机:气缸配置在机身一侧或两侧的两条中心线上。
多列压缩机:气缸配置在机身一侧或两侧的两条以上中线上。
活塞式压缩机工作原理:当活塞式压缩机的曲轴旋转时,通过连杆的传动,活塞便做往复运动,由气缸内壁、气缸内的工作容积则会发生周期性变化。
活塞式压缩机的活塞从气缸盖处开始运动时,气缸内的工作容积逐渐增大,这时,气体即沿着进气管,推开进气阀而进入气缸,直到工作容积变到最大时为止,进气阀关闭;活塞式压缩机的活塞反向运动时,气缸内工作容积缩小,气体压力升高,当气缸内压力达到并略高于排气压力时,排气阀打开,气体排出气缸,直到活塞运动到极限位置为止,排气阀关闭。
当活塞式压缩机的活塞再次反向运动时,上述过程重复出现。
总之,活塞式压缩机的曲轴旋转一周,活塞往复一次,气缸内相继实现进气、压缩、排气的过程,即完成一个工作循环。
活塞式压缩机的基本结构活塞式压缩机基本原理大致相同,具有十字头的活塞式压缩机,主要有机体、曲轴、连杆、十字头、气缸、活塞、填料、气阀等组成。
1、机身:主要由中体、曲轴箱、主轴瓦(主轴承)、轴承压盖及连接和密封件等组成。
曲轴箱可以是整体铸造加工而成,也可以是分体铸造加工后组装而成。
主轴承采用滑动轴承,安装时应注意上下轴承的正确位置,轴承盖设有吊装螺孔和安装测温元件的光孔。
2、曲轴:曲轴是活塞式压缩机的主要部件之一,传递着压缩机的功率。
其主要作用是将电动机的旋转运动通过连杆改变为活塞的往复直线运动。
3、连杆:连杆是曲轴与活塞间的连接件,它将曲轴的回转运动转化为活塞的往复运动,并把动力传递给活塞对气体做功。
连杆包括连杆体、连杆小头衬套、连杆大头轴瓦和连杆螺栓。
4、十字头:十字头是连接活塞与连杆的零件,它具有导向作用。
十字头与活塞杆的连接型式分为螺纹连接、联接器连接、法兰连接等。
大中型压缩机多用联接器和法兰连接结构,使用可靠,调整方便,使活塞杆与十字头容易对中,但结构复杂。
5、气缸:气缸主要由缸座、缸体、缸盖三部分组成,低压级多为铸铁气缸,设有冷却水夹层;高压级气缸采用钢件锻制,由缸体两侧中空盖板及缸体上的孔道形成泠却水腔。
气缸采用缸套结构,安装在缸体上的缸套座孔中,便于当缸套磨损时维修或更换。
气缸设有支承,用于支撑气缸重量和调整气缸水平。
6、活塞:活塞部件是由活塞体、活塞杆、活塞螺母、活塞环、支承环等零件组成,每级活塞体上装有不同数量的活塞环和支承环,用于密封压缩介质和支承活塞重量。
活塞环采用铸铁环或填充聚四氟乙烯塑料环;当压力较高时也可以采用铜合金活塞环;支承环采用四氟或直接在活塞体上浇铸轴承合金。
活塞与活塞杆采用螺纹连接,紧固方式有直接紧固法,液压拉伸法,加热活塞杆尾部法等,加热活塞杆尾部使其热胀产生弹性伸长变形,将紧固螺母旋转一定角度拧至规定位置后停止加热,待杆冷却后恢复变形,即实现紧固所需的预紧力。
活塞杆为钢件锻制成,经调质处理及表面进行硬化处理,有较高的综合机械性能和耐磨性。
活塞体的材料一般为铝合金或铸铁。
7、填料:密封填料是由数组密封元件构成,每组密封元件主要由径向密封环、切向密封环、阻流环和拉伸弹簧组成。
为减轻各组密封元件的工作负担,当密封压力较高时,在靠近气缸侧处设有节流环。
当密封气体属易燃易爆性质时,在密封填料中设有漏气回收孔,用于收集泄漏的气体并引至系统。
有油润滑时,密封填料中设有注油孔,可注入压缩机油进行润滑, 无油润滑时,不设注油孔。
8、气阀气阀是压缩机的一个重要部件,属于易损件。
它的质量及工作的好坏直接影响压缩机的输气量、功率损耗和运转的可靠性。
气阀包括吸气阀和排气阀,活塞每上下往复运动一次,吸、排气阀各启闭一次,从而控制压缩机并使其完成吸气、压缩、排气等工作过程。
气阀主要由阀座、阀片、弹簧、升程限制器和将它们组为一体的螺栓,螺母等组成。
排气阀的结构与吸气阀基本相同,两者仅是阀座与升程限制器的位置互换,吸气阀升程限制器靠近气缸里侧,排气阀则是阀座靠近气缸内侧。
环状阀因其阀片为薄圆环而得名,阀座与升程限制器上都有环形或孔形通道,供气体通过。
阀片与阀座上的密封口贴合形成密封。
升程限制器上有导向凸台,对阀片升降起导向作用。
活塞式压缩机的型号表示法4M40——148/320型压缩机:4列、M型活塞推力40×104N 额定排气量(换算到吸入状态下)148m3/min额定排气压力320x105Pa(32MPa)。
压缩机实际工作中存在的问题(1)余隙与膨胀实际工作的压缩机,必须存在一定的余隙容积,包括活塞运动到止点时与盖端之间的间隙和阀座下面的空间及其它死角。
留此间隙的目的是为了避免因活塞杆、活塞的热膨胀和弹性变形而引起的活塞与气缸的碰撞,同时以可防止气体带液而发生事故。
防止液击的方法在设计上,每级压缩冷却后析出的冷凝液在设计上设置分离器进行气液分离。
余隙内的气体是排不出去的,当活塞离开而返回运动时,这部分气体(排出时的压力)开始膨胀,直至压力降至吸气入开始时的压力,新鲜气体才能进入。
可见余隙的存在,使气缸的实际吸入量小于气缸的行程容积,即减少了新鲜气体的吸入量,降低了生产能力。
因此,余隙容积在保证运行可靠的基础上,应尽量减小。
(2)气阀的阻力损失通道和气阀不可能绝对光滑曲折,所以气体通过气阀和管道时,必须会产生阻力损失。
因此气缸内的吸入压力总低于管道中的压力,气缸内实际排出压力总是高于排出管道的压力。
(3)气体温度升高压缩机工作一段时间后,气缸各部分温度基本为一稳定值,它高于气体的吸入温度,低于排出温度。
而气体每一循环中,传热情况是不断变化的。
如压缩开始时气体温度较气缸温度低,于是气体自气缸吸取热量而提高本身温度,随着压缩机过程的进行,气体温度高于气缸温度。
(气体加热后体积会产生膨胀)所以每经一级压缩后的气体都须经冷却器冷却后才进行下一级压缩。
(4)泄漏:(化工压缩的气体大多属有毒有害气体和易燃易爆气体,若泄漏发生轻则影响环境,重则爆炸着火。
)气体泄漏的主要途径是经气阀、活塞环和填料处泄漏。
1、气阀泄漏:气体得不到充分压缩就排出,吸气时又漏到气缸中如此反复循环(此时泄漏阀门压盖迅速升温),影响了下一级的吸收,本级吸收的新鲜气体就减少。
2、活塞环泄漏:如活塞环断裂、磨损过大时,压缩时气体会漏到吸气端或平衡缸,吸气时又漏回来。
串气影响打气量。
3、填料泄漏:填料磨损过大时,高压气体就会从填料处大量泄漏到大气中。
二、压缩机主要参数(一)转速(n):单位为转/分,指由曲轴每分钟的转数。
(二)行程(s):单位为毫米,指活塞从近止点到远止点的间距,也等于曲拐轴与主轴中心距的两倍。
(三)活塞平均速度(C平):单位为米/秒,活塞运动中速度是变化的,在始点(如外止点)时为零,然后逐渐加速,在中点时为最大,然后逐渐降速,到终点(内死点)又为零,返行时亦如此。
活塞平均速度大则机器轻巧。
但气体流速大,惯过力如未平衡好则振动大,易损件寿命受到影响,目前一般C平=3~5米/秒。
(四)压力比(ε);是指进出口压力之比,即ε=P2/P1。
由于气缸内有余隙容积总是不可避免的。
当压缩比ε越高时,排出压力越高,残留的气体膨胀后所占的容积也就越大,使得吸入气体量减少,效率降低。
如果采用多级压缩可使每一级压力比ε减小,从而提高各级气缸容积利用率,但压缩机级数的选择是根据多方面因素来考虑的。
在实际上,多级压缩的每级压缩比为2.5~3.5。
(五) 排气量(Q):在压缩机排气端测得的单位时间内排出的气体体积,换算到压缩机吸气条件(压力、温度、湿度)下的数值称为排气量,以V表示。
单位为米3/分。
(六)功率与效率:活塞压缩机消耗的功率包括有:压缩气体的功耗,气缸中气阀等阻力损失与各种机械摩擦等功耗。
压缩气体的功耗由于和气体的热力性能有关,当气缸冷却十分完善,气体在气缸中气流速度很慢时,气体在受压缩时所产生的热都及时传走,因而几乎是等温压缩过程,此时消耗功率最省。
当气缸冷却很不好,气流速度又快,气体在压缩时所产生的热全部无法散失,则接近绝热压缩过程,此时功耗最大、实际活塞式压缩机压缩过程和介于两者之间,属于多变过程。
(七)活塞力(P)、单位为吨,压缩机活塞杆、曲轴、连杆等尺寸主要是根据活塞力来设计的故障分析及处理措施压缩机组在运行现场发生了排气量不足,压力.温度异常的现象,其原因及排除措施:压缩机在正常运转过程中,各运动机构都有一种正常的响声,当某些机件发生故障时,将发现不正常的响声,可以根据异常响声找出发生故障的部位,从而采取排除措施。