厦门理工学院 线性代数第三节向量与空间参考答案
厦门大学《高等代数(I)》线性方程组部分 练习题及参考答案

单元练习:线性方程组部分一、填空题 每空 1分,共 10分1.非齐次线性方程组 AZ = b (A 为 m ×n 矩阵)有唯一解的的充分必要条件是____________。
2.n +1 个 n 维向量,组成的向量组为线性 ____________ 向量组。
3.设向量组 3 2 1 , ,a a a 线性无关,则常数 l , m 满足____________时,向量组 3 1 2 3 1 2 , , a a a a a a -- - m l 线性无关。
4.设 n 阶矩阵 A 的各行元素之和均为零, 且 r (A ) = n -1则 Ax = 0 的通解为________。
5.若向量组 3 2 1 , , a a a 线性无关,则向量组 3 1 2 3 1 2 , , a a a a a a + + + ____________。
6.已知四元非齐次线性方程组 Ax = b ,r (A ) = 3, 3 2 1 , , h h h 是它的三个解向量,其中T T ) 3 , 1 , 0 , 1 ( , ) 2 , 0 , 2 , 1 ( 3 2 2 1 = + = +h h h h , 则齐次线性方程组的通解为 ____________________________________。
7.设向量组 3 2 1 , , b b b 由向量组 3 2 1 , , a a a 的线性表示式为 ï îï í ì + + - = - + = + - = 3 2 1 3 3 2 1 2 3 2 1 1 a a a b a a a b a a a b ,则 向量组 3 2 1 , ,a a a 由向量组 3 2 1 , ,b b b 的线性表示式为____________。
8.设秩(A ) = r, 秩(B ) = s ,则秩 ÷ ÷ ø ö ç ç è æ B A 0 0 ____________,秩 ÷ ÷ øö ç ç è æ B A ____________ 9.设 A 是 n 阶方阵,秩 (A ) = n -2,则秩 * A ____________。
厦门理工学院线性代数第二章_矩阵及其运算参考答案

第二章 矩 阵系 专业 班 姓名 学号第一节 矩阵及其运算一.选择题1.有矩阵23⨯A ,32⨯B ,33⨯C ,下列运算正确的是 [ B ] (A )AC (B )ABC (C )AB -BC (D )AC +BC 2.设)21,0,0,21(=C ,C C E A T -=,C C E B T 2+=,则=AB [ B ] (A )C C E T+ (B )E (C )E - (D )03.设A 为任意n 阶矩阵,下列为反对称矩阵的是 [ B ] (A )T A A + (B )T A A - (C )T AA (D )A A T4.设n 阶矩阵A ,B ,C ,满足ABAC = E ,则 [ A ] (A )E C A B A TTTT= (B )E C A B A =2222 (C )E C BA =2 (D )E B CA =2二、填空题: 1.=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫⎝⎛-4321028244611652112-⎛⎫ ⎪--⎝⎭2.设⎪⎪⎪⎭⎫ ⎝⎛=432112122121A ,⎪⎪⎪⎭⎫ ⎝⎛----=101012121234B ,则=+B A 3214138725252165⎛⎫ ⎪-- ⎪ ⎪⎝⎭3.=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-12707532113435649⎛⎫⎪ ⎪ ⎪⎝⎭4.=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-204131210131431104126782056-⎛⎫ ⎪--⎝⎭三、计算题:1. 设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A ,⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,求A AB 23-及B A TA AB 23-21322217204292-⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭B A T 058056290⎛⎫ ⎪=- ⎪ ⎪⎝⎭线性代数练习题 第二章 矩 阵系 专业 班 姓名 学号第二节 逆 矩 阵一.选择题1.设*A 是n 阶矩阵A 的伴随矩阵,则 [B ] (A )1-*=A A A (B )1-*=n AA (C )**=A A n λλ)( (D )0)(=**A2.设A ,B 都是n 阶可逆矩阵,则 [ C ] (A )A +B 是n 阶可逆矩阵 (B )A +B 是n 阶不可逆矩阵 (C )AB 是n 阶可逆矩阵 (D )|A +B | = |A |+|B |3.设A 是n 阶方阵,λ为实数,下列各式成立的是 [ C ](A )A A λλ= (B )A A λλ= (C )A A nλλ= (D )A A nλλ=4.设A ,B ,C 是n 阶矩阵,且ABC = E ,则必有 [ B ] (A )CBA = E (B )BCA = E (C )BAC = E (D )ACB = E 5.设n 阶矩阵A ,B ,C ,满足ABAC = E ,则 [ A ] (A )E C A B A TTTT= (B )E C A B A =2222 (C )E C BA =2 (D )E B CA =2二、填空题:1.已知A B AB =-,其中⎪⎪⎭⎫ ⎝⎛-=1221B ,则=A 10.50.51⎛⎫ ⎪-⎝⎭ 2.设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛12643152X ,则X = 21304⎛⎫⎪-⎝⎭3.设A ,B 均是n 阶矩阵,2=A ,3-=B ,则12-*B A = 21123n --4.设矩阵A 满足042=-+E A A ,则=--1)(E A (2)/2A E +三、计算与证明题:1. 设方阵A 满足022=--E A A ,证明A 及E A 2+都可逆,并求1-A 和12-+)(E A1()22A EA E A A E A -=∴--可逆=13(2)()42(32)4A EA E E A E A E A E -+=-+∴-+--可逆=2. 设⎪⎪⎪⎭⎫ ⎝⎛---=145243121A ,求A 的逆矩阵1-A*420136132142||2A A -⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭= 12106.530.51671A --⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭3. 设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A 且满足B A AB 2+=,求 B1(2)(2)A E B A B A E A--==-线性代数练习题 第二章 矩 阵系 专业 班 姓名 学号233(2)110121A E -⎛⎫ ⎪-=- ⎪⎪-⎝⎭10.5 1.5 1.5(2)0.50.5 1.50.50.50.5A E --⎛⎫⎪-=- ⎪ ⎪-⎝⎭033123110B ⎛⎫ ⎪=- ⎪⎪⎝⎭一、把下列矩阵化为等价标准型:1.⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 答案:1 -1 0 2 -3 0 0 1 -2 2 0 0 0 0 0 0 0 0 0 0⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000001000012.⎪⎪⎪⎪⎪⎭⎫⎝⎛------34731038234202173132 答案:1 0 0 0 0 0 1 0 0 2 0 0 1 0 -1 0 0 0 1 4⎪⎪⎪⎪⎪⎫⎛001000001000001二、用矩阵的初等变换,求矩阵的逆矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023 答案:.10612631110104211;10612163111101014211111210123211122011023);|()|(1⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------−→−⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----−→−-则该矩阵的逆为r rA E E A三、已知⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--1643388143131562231X ,求X 答案: 无解线性代数练习题 第三章 矩阵的初等变换与线性方程组系 专业 班 姓名 学号 第三节 矩 阵 的 秩一.选择题1.设A ,B 都是n 阶非零矩阵,且AB = 0,则A 和B 的秩 [ D ] (A )必有一个等于零 (B )都等于n C )一个小于n ,一个等于n (D )都小于n 2.设n m ⨯矩阵A 的秩为s ,则 [ C ] (A )A 的所有s -1阶子式不为零 (B )A 的所有s 阶子式不为零 (C )A 的所有s +1阶子式为零 (D )对A 施行初等行变换变成⎪⎪⎭⎫⎝⎛000sE 3.欲使矩阵⎪⎪⎪⎭⎫⎝⎛12554621231211t s 的秩为2,则s ,t 满足 [ C ](A )s = 3或t = 4 (B )s = 2或t = 4 (C )s = 3且t = 4 (D )s = 2且t = 44.设A 是n m ⨯矩阵,B 是m n ⨯矩阵,则 [ B ] (A )当n m >时,必有行列式0≠||AB (B )当n m >时,必有行列式0=||AB (C )当m n >时,必有行列式0≠||AB (D )当m n >时,必有行列式0=||AB()min(,)()min(,)()min((),())min(,)()||0()||0m n n m m n n m m n n m R A m n R B m n R A B R A R B m n n mR A A R A m A ⨯⨯⨯⨯⨯⨯≤≤≤≤=<⇔⇔≠⇔<⇔=又A 可逆满秩A 不可逆5.设⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫⎝⎛=1010100012P ,则必有=B [ C ](A )21P AP (B )12P AP (C )A P P 21 (D )A P P 12 二.选择题:1.设⎪⎪⎪⎭⎫ ⎝⎛---=443112112013A ,则=)(A R 2 2.已知⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+=12221232121a a a A 的秩为2,则a 应满足 31a a ==-或 三、计算题: 1. 设,求)(A R213114413224422322321837103201032023075230750363732580325800242010320218370121710320012170242003635r r r r r r r r r r r r r r --↔-+↔+⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪------ ⎪ ⎪ ⎪−−−→−−−→ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎛⎫ ⎪- ⎪−−−→−−→ ⎪-- ⎪---⎝⎭4316141032001217000014000016103200121700001400000() 3.r r R A -⎛⎫⎪- ⎪− ⎪⎪⎝⎭⎛⎫ ⎪-⎪−−−→ ⎪ ⎪⎝⎭=故2.设A ⎪⎪⎪⎭⎫ ⎝⎛----=32321321k k k ,问k 为何值,可使 ⑴ 1=)(A R ⑵2=)(A R ⑶3=)(A R21313132(1)212302(1)3(1)103(1)10,()1;10,12312302(1)3(1)02(1)3(1):103(1)003(2)(1)||6(2)(1)r r r r r k r r r k A k k k k k R A k k k k k k k B k k k k B k k k +---+-⎛⎫ ⎪−−−→-- ⎪⎪---⎝⎭-==-≠--⎛⎫⎛⎫ ⎪ ⎪--−−−−→--= ⎪ ⎪ ⎪ ⎪----+-⎝⎭⎝⎭=-+-若则若则若122,||0,60,() 2.62,||0,12,() 3.C R A k C k k R A --=-==≠=-≠-≠≠≠-=则但故若则故且时线性代数练习题 第二章 矩 阵系 专业 班 姓名 学号第三节 分块矩阵一.选择题1.设A ,B 为n 阶矩阵*A ,*B 分别为A ,B 对应的伴随矩阵,分块矩阵⎪⎪⎭⎫ ⎝⎛=B AC 00,则C 的伴随矩阵=*C [D ](A )⎪⎪⎭⎫⎝⎛**B B A A 00 (B )⎪⎪⎭⎫⎝⎛**A A B B 00 (C )⎪⎪⎭⎫⎝⎛**A B B A 00 (D )⎪⎪⎭⎫ ⎝⎛**B A A B 00 解:11111111100||||||0||||||0||||00||||||||,||||,0||||000||||A C B C A B A C C C A B B A B A A B B A A A E A A A B B B E B B B B A A B A A B A B B -*----**-**-*-*-⎛⎫= ⎪⎝⎭=⎛⎫==⎪⎝⎭⎛⎫= ⎪⎝⎭=⇒==⇒=⎛⎫⎛⎫∴= ⎪ ⎪ ⎪⎝⎭⎝⎭二、填空题:1.⎪⎪⎪⎪⎪⎭⎫⎝⎛=5400320000430021A ,则=-1A -2.0000 1.0000 1.5000 -0.5000 0 0 0 0 -2.5000 1.5000 0 0 2.0000 -1.0000⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭A = 42.设⎪⎪⎪⎪⎪⎭⎫⎝⎛=0030001320001200A ,则=2A 6 5 0 00 6 0 00 0 6 50 0 0 6⎛⎫⎪⎪ ⎪ ⎪⎝⎭2OC A B O O C O C CB O A B O B O O BC ⎛⎫=⎪⎝⎭⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭三、计算题:1.设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛-=1141P ,⎪⎪⎭⎫ ⎝⎛-=Λ2001,求11A 11111()P AP P P AP P P P A P P -----=Λ=Λ=Λ 10.20.80.20.2P --⎛⎫= ⎪⎝⎭11111111()()...()A P P P P P P P P ----=ΛΛΛ=Λ 11111002-⎛⎫Λ= ⎪⎝⎭11111A P P -=Λ2. 设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0004300012300000200000100A ,求1-A解:1112*11*21111()r r B r C r O C A B O OCE O A E B O O E B O O E OC E O E O OB O EC O O B A CO --↔-----⎛⎫= ⎪⎝⎭⎡⎤=⎢⎥⎣⎦⎡⎤−−−→⎢⎥⎣⎦⎡⎤−−−→⎢⎥⎣⎦⎛⎫= ⎪⎝⎭1 0 0 0 0.8 -0.2 0 0 0 -0.6 0.4 1 0 0 0 0 0 0.5 0 0 010 0 0 03A -⎛=⎝⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎭3.设⎪⎪⎪⎪⎪⎭⎫⎝⎛-=2200020000340043A ,求8A 及 4A12A O A OA ⎡⎤=⎢⎥⎣⎦ 1234432022A A ⎡⎤=⎢⎥-⎣⎦⎡⎤=⎢⎥⎣⎦4142625006251606416A A ⎡⎤=⎢⎥⎣⎦⎡⎤=⎢⎥⎣⎦ 462500006250000160006416A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦88881612(||||)(25*4)10A A A A ===-=线性代数练习题 第二章 矩 阵系 专业 班 姓名 学号综 合 练 习一.选择题1.设n 阶矩阵A ,B 是可交换的,即AB = BA ,则不正确的结论是 [ B ] (A )当A ,B 是对称矩阵时,AB 是对称矩阵 (B )当A ,B 是反对称矩阵时,AB 是反对称矩阵 (C )2222)(B AB A B A ++=+ (D )22))((B A B A B A -=-+2.方阵A 可逆的充要条件是 [ B ] (A )A ≠ 0 (B )| A | ≠ 0 (C )A * ≠ 0 (D )| A * | >0 3.设n 阶矩阵A ,B ,C 和D 满足E ABCD =,则=-1)(CB [ A ](A )CDADAB (B )DA (C )AD (D )DABCDA 二.填空题:1.已知二阶矩阵M 的伴随矩阵⎪⎪⎭⎫ ⎝⎛=4221*M ,则=M 4221-⎛⎫⎪-⎝⎭ 2.若A ⎪⎪⎪⎪⎪⎭⎫⎝⎛=121106223211043a 可逆,则a 为 6a ≠-三.计算题与证明题:1. 已知)3,2,1(=α,)3/1,2/1,1(=β,设βαT A =,求nA 解: 1()()...()()nTTTTTTT n A αβαβαβαβαβαβαβ-==T βα=1(1,1/2,1/3)233⎛⎫⎪= ⎪ ⎪⎝⎭所以111133132(1,1/2,1/3)311/21/33212/333/21n T n n T n n A αβαβ----==⎛⎫ ⎪= ⎪ ⎪⎝⎭⎛⎫ ⎪= ⎪⎪⎝⎭2.设⎪⎪⎪⎭⎫ ⎝⎛-=101010112A ,⎪⎪⎪⎭⎫ ⎝⎛=020100301B ,A ,B 与X 满足06*1*=++-BA XA AXA ,求X解:*111*1*1|||||||||606060|||||6E AXA XA BA AX XA B AX X B A A A A A A A A A A A A A B -----∴++=++=+++== 由得右乘()X =-得||3A =所以2E 2E A BX A B+=-+-1()X =-() 4 1 12E 0 3 0-1 0 39.0000 -3.0000 -3.00002E 0 13.0000 0 3.0000 -1.0000 12.0000A A ⎛⎫ ⎪+ ⎪⎪⎝⎭⎛⎫ ⎪+ ⎪ ⎪⎝⎭-1()=1()=39-9 6 -24 0 0 -13-3 -24 -8⎛⎫ ⎪ ⎪ ⎪⎝⎭1x=39 3.设n 阶矩阵A 满足062=--E A A ,试证:(1)A 与A -E 都可逆,并求它们的逆矩阵; (2)A + 2E 和A -3E 不同时可逆11()6|||()||6|06)6A A E E A A E E A E A A A A E A E ---=-=≠-=--=可逆可逆((A+2E)(A-3E)=O又(A+2E)与(A-3E)均可逆因此,R((A+2E))=R((A-3E))=n=R((A+2E)(A-3E))=R(O)=0矛盾。
厦门理工学院线性代数第一章行列式答案

线性代数练习题 第一章 行 列 式系专业班 XX 学号第一节 二阶与三阶行列式 第三节 n 阶行列式的定义一.选择题1.假设行列式x52231521 = 0,那么=x [ C ] 〔A 〕2 〔B 〕2- 〔C 〕3 〔D 〕3-2.线性方程组⎜⎛⎜⎰〉=+=+473322121x x x x ,那么方程组的解),(21x x = [ C ]〔A 〕〔13,5〕 〔B 〕〔13-,5〕 〔C 〕〔13,5-〕 〔D 〕〔5,13--〕3.方程093142112=x x根的个数是 [ C ] 〔A 〕0 〔B 〕1 〔C 〕2 〔D 〕34.以下构成六阶行列式展开式的各项中,取“+〞的有 [ AD ] 〔A 〕665144322315a a a a a a 〔B 〕655344322611a a a a a a 〔C 〕346542165321a a a a a a 〔D 〕266544133251a a a a a a5.假设55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,那么l k ,的值及该项的符号为[ B ] 〔A 〕3,2==l k ,符号为正; 〔B 〕3,2==l k ,符号为负; 〔C 〕2,3==l k ,符号为正; 〔D 〕2,3==l k ,符号为负6.以下n 〔n >2〕阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.排列397461t s r 为奇排列,那么r = 2,8,5s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。
线性代数真题答案详解解析

线性代数真题答案详解解析线性代数是大学数学课程中的重要一环,它涉及到向量、矩阵、行列式等多个概念和技巧。
对于学习者来说,理解和掌握线性代数的知识和解题方法是至关重要的。
在准备线性代数考试时,我们经常会遇到一些难题,这时候如果能够找到真题答案的详细解析,会对我们的学习和备考有很大帮助。
接下来,我们将选取一些典型的线性代数真题,并进行详细的解析和分析。
首先,我们来看一个关于向量空间与子空间的题目。
1. 如果一个向量空间V中存在一组线性无关的向量组,那么这组向量组是否一定是V的一个基?答案:不一定。
解析:对于一个向量空间V来说,一个基就是一组极大的线性无关组。
也就是说,它既是线性无关的,又能够生成V中的任意一个向量。
如果一组线性无关的向量组满足了这个条件,那么它就是V的一个基。
但是反过来并不一定成立,也就是说,如果一个向量空间V中存在一组线性无关的向量组,我们不能够确定它一定是V的一个基。
因为它可能并不能够生成V中的所有向量。
接下来,我们转到矩阵的相关题目。
2. 给定一个矩阵A,如果Ax=b有解,那么它一定是唯一解吗?答案:不一定。
解析:对于一个矩阵A来说,如果它满秩,也就是说它的列向量线性无关,那么Ax=b一定有唯一解。
这是因为矩阵满秩保证了解的存在性和唯一性。
但是如果矩阵A不满秩,那么Ax=b可能没有解,或者有无穷多个解。
这是因为矩阵不满秩的话,它的行空间和列空间是存在关系的。
解的存在性和唯一性就会受到影响。
最后,我们来看一个关于行列式的题目。
3. 如果一个n阶矩阵的行列式为0,那么它一定是奇异矩阵吗?答案:是的。
解析:对于一个n阶矩阵来说,如果它的行列式为0,那么我们称之为奇异矩阵。
奇异矩阵的特点是它的行空间和列空间不是满秩的,它存在零特征值。
这与非奇异矩阵相反,非奇异矩阵的行列式不为0,它的行空间和列空间是满秩的,没有零特征值。
所以,如果一个n阶矩阵的行列式为0,我们可以确定它是奇异矩阵。
以上是线性代数真题的详细解析和分析。
线性代数 第4章 向量空间 - 习题详解

第4章 向量空间4.1 向量及其线性组合练习4.11. 设1231031,1,4010ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦求12αα-及12332ααα+-.解 12101011111001011αα-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-=-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦12332ααα+-10330303121432410100202⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+-=+-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦2. 设 1233()2()5()αααααα-++=+,求α. 其中1232104511,,1513101ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦解 由1233()2()5()αααααα-++=+得12362020611525122111(325)31051836669205244αααα⎛⎫⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+-=+-== ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥- ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎝⎭3. 将线性方程组12312312310232x x x x x x x x x ++=⎧⎪-+=⎨⎪+-=⎩写成向量形式及矩阵形式.解 向量形式:123111*********x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+-+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦矩阵形式:123111*********x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦4. 设123,,,αααβ是已知列向量,若122ααβ+=,记矩阵123[,,]A ααα=,求线性方程组Ax β=的一个解.解 由12320αααβ++=得方程组Ax β=的一个解为T [1,2,0]x =5. 问β是否可由向量组4321,,,αααα线性表示?其中(1)12341111121111,,,,1111111111βαααα⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(2)12342111201022,,,,0124231132βαααα-⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦解 (1)令[]123411111111,,,11111111A αααα⎡⎤⎢⎥--⎢⎥==⎢⎥--⎢⎥--⎣⎦由[]111111005/41111201001/41111100101/41111100011/4r A β⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−→⎢⎥⎢⎥---⎢⎥⎢⎥---⎣⎦⎣⎦得Ax β=有唯一解[]T15,1,1,14x =--,从而β可由向量组4321,,,αααα唯一线性表示: 23451114444βαααα=+--(2)令[]123411121022,,,12421132A αααα-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦由[]111221220102200110012420000011132300000r A β-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦得Ax β=无解,从而β不能由向量组4321,,,αααα线性表示.6. 已知12341111101121,,,,2324335185a b a ααααβ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(1),a b 取何值时,β不能由4321,,,αααα的线性表示?(2),a b 取何值时,β可由4321,,,αααα唯一线性表示式?并写出表示式. 解 令[]1234,,,A αααα=,考察方程组Ax β=是否有解.[]11111011212224335185A a b a β⎡⎤⎢⎥-⎢⎥=⎢⎥++⎢⎥+⎣⎦1111101121012102252r a b a ⎡⎤⎢⎥-⎢⎥−−→⎢⎥+⎢⎥-+⎣⎦1111101121001000010r a b a ⎡⎤⎢⎥-⎢⎥−−→⎢⎥+⎢⎥+⎣⎦(1)当0,1≠-=b a 时,方程组Ax β=无解,故β不能由4321,,,αααα的线性表示. (2)当1-≠a 时, 继续进行初等行变换[]A β2100011111101121101001001010010101000010rr b a a b a b b a a -⎡⎤⎢⎥⎡⎤+⎢⎥⎢⎥-++⎢⎥⎢⎥⎢⎥−−→−−→+⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥+⎢⎥⎣⎦⎢⎥⎣⎦得方程组Ax β=有唯一解:T21,,,0111b a b b x a a a ++⎡⎤=-⎢⎥+++⎣⎦故β可由4321,,,αααα的唯一线性表示. 表示式为:1234210111b a b ba a a ++=-++++++βαααα 7. 用标准坐标向量证明:如果对任意向量x 有0Ax =,则A 是零矩阵. 证 设12[,,,]n A ααα= 是m n ⨯矩阵. 特别地取(1,2,,)n i x e R i n =∈= ,则0(1,2,,)i i Ae i n α===即A O =.8. 设向量组12,ββ可由向量组123,,ααα线性表示如下:112321232,βαααβααα=+-=-+写出形如(4.5)的矩阵形式.解[][]1212321,,,1111ββααα⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦9. 设123123032204103124,,,,,210111321213αααβββ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥======⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦证明向量组{}123,,βββ可由向量组{}123,,ααα线性表示,但向量组{}123,,ααα不能由向量组{}123,,βββ线性表示. 证 令[]123,,A ααα=,[]123,,B βββ=由[]400111040222004135000000rA B ⎡⎤⎢⎥⎢⎥−−→⎢⎥-⎢⎥⎣⎦知向量组{}123,,βββ可由向量组{}123,,ααα线性表示. 由[]204032022012000210000000rBA ⎡⎤⎢⎥-⎢⎥−−→⎢⎥-⎢⎥⎣⎦知12,αα都不能由向量组{}123,,βββ线性表示,故向量组{}123,,ααα不能由向量组{}123,,βββ线性表示.10. 设12123011131,1,0,2,210111ααβββ-⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦证明向量组{}12,αα与向量组{}123,,βββ等价.方法1 令[][]12123,,,,A B ααβββ==. 由[]101110111300000rA B -⎡⎤⎢⎥−−→-⎢⎥⎢⎥⎣⎦知向量组{}123,,βββ可由向量组{}12,αα线性表示.[]1020.50.50110.50.500000rBA --⎡⎤⎢⎥−−→⎢⎥⎢⎥⎣⎦知向量组{}12,αα可由向量组{}123,,βββ线性表示.所以{}{}12123,,,ααβββ≅.方法2 令T1TT 12T T 23,A B βαβαβ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,则101011rA -⎡⎤−−→⎢⎥⎣⎦,101011000rB -⎡⎤⎢⎥−−→⎢⎥⎢⎥⎣⎦记T T12[1,0,1],[0,1,1]γγ=-=,根据行等价矩阵的行向量组等价,由上知{}{}{}{}121212312,,,,,,ααγγβββγγ≅≅所以{}{}12123,,,ααβββ≅.4.2 向量组的线性相关性练习4.21. 证明:含有零向量的向量组必线性相关. 证 不妨设向量组为{}123,,ααα,其中10α=,则1231000ααα++=根据定义{}123,,ααα线性相关.2. 证明:含两个向量的向量组线性相关的充要条件是它们的分量对应成比例. 问含三个向量的向量组线性相关的充要条件是不是它们对应的分量成比例?证 设112212[,,,],[,,,]T T n n a a a b b b αα== 且{}12,αα线性相关. 于是存在不全为零的数12,k k 使得11220k k αα+=,不妨设10k ≠,从而21221k k k ααα==,即 (1,2,,)i i a kb i n ==即1α与2α的对应分量成比例.反之,如果(1,2,,)i i a kb i n == ,则12k αα=,即1210k αα-=,故{}12,αα线性相关.由三个向量构成的向量组如果对应分量成比例,则显然线性相关. 但线性相关,它们的对应分量不一定成比例. 如123111,,123ααα⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦或1231121,2,3134ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦3. 判别下列向量组的线性相关性: (1)[]12,5Tα=,[]21,3Tα=-(2)[][][]1231,2,3,0,2,5,1,0,2TTTααα=-=-=- (3)[][][]1232,4,1,1,0,1,2,0,1,1,1,3,0,0,1TTTααα==-=解(1) 令1221[,]53A αα-⎡⎤==⎢⎥⎣⎦,由110A =≠,知A 是可逆矩阵,故其列向量组{}12,αα线性无关.(2)类似(1),由 1012200352--=-,得{}123,,ααα线性相关. (3) 易知向量组()()()T T T 1,0,0,1,1,0,0,1,1321===βββ线性无关,而向量组{}123,,ααα是向量组{}123,,βββ的加长向量组,故{}123,,ααα也线性无关.4. 设[][][]1231,1,1,1,2,3,1,3,TTTt ααα===, (1) 问t 为何值时, 向量组321,,ααα线性相关? (2) 问t 为何值时, 向量组321,,ααα线性无关?解 令11112313A t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,计算得5A t =- (1)当5t =时,A 是不可逆矩阵,其列向量组321,,ααα线性相关. (2)当5t ≠时,A 是可逆矩阵,其列向量组321,,ααα线性无关. 5. 证明由阶梯矩阵的非零行构成的向量组一定线性无关. 证 不妨设阶梯矩阵12340000000000T T T T U αααα⊗****⎡⎤⎡⎤⎢⎥⎢⎥⊗**⎢⎥⎢⎥==⎢⎥⎢⎥⊗*⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中0⊗≠. 考察下面方程组112233123000000x x x x x x ααα⊗⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++=++=*⊗⎢⎥⎢⎥⎢⎥**⊗⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥***⎣⎦⎣⎦⎣⎦显然该方程组只有零解,故{}123,,ααα线性无关.4.3 向量组的秩练习4.31. 设[][][][]T T T T12341,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7====αααα求向量组1234,,,αααα的秩及其一个极大无关组, 并把其余向量用所求的极大无关组线性表示.解 1234[,,,]A =αααα12341012234501233456000045670000r --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦因此{}12,αα是{}1234,,,αααα的一个最大无关组,且2132ααα+-=,21432ααα+-=2. 设向量组2123,,2,31311a b ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦的秩为2,求,a b .解 记12342123,,2,31311a b ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦αααα,由于{}1234rank ,,,2=αααα,所以{}341,,ααα线性相关,{}342,,ααα也线性相关.由[]3411212,,2330132111002ra a a a ⎡⎤⎡⎤⎢⎥⎢⎥=−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ααα 得2a =.由[]342122122,,23014113005rb b b ⎡⎤⎡⎤⎢⎥⎢⎥=−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ααα 得5b =.3. 证明极大无关组的定义4.5与定义4.6的等价性.证 (定义4.5⇒定义4.6) 设121,,,r βββ+ 是V 中任意1r +个向量. 由定义4.5(2)知121,,,r βββ+ 可由12,,,r ααα 线性表示,由定理4.9,121,,,r βββ+ 线性相关,即定义4.6(2)成立.(定义4.6⇒定义4.5)设β是V 中任意一个向量. 则12,,,,r αααβ 是1r +个向量,由定义4.6(2),12,,,,r αααβ 线性相关,又12,,,r ααα 线性无关,再由唯一表示定理,β可由12,,,r ααα 线性表示,即定义4.5(2)成立.4.4 矩阵的秩练习4.41. 求下面矩阵的秩(1)1121021120331101⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,(2)123222123333123111a a a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(其中123,,a a a 互不相等). 解 (1)由11211121021102112033002011010000r A ⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−→⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦得()3r A = (2)记123222123333123111a a a A a a a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,由于范德蒙行列式1232221231110a a a a a a ≠,得()3r A = 2. (1)设A 是23⨯矩阵,且rank 2A =,写出A 的等价标准形; (2)设A 是32⨯矩阵,且rank 2A =,写出A 的等价标准形. 解 (1)[]20A E ≅,(2)20E A ⎡⎤≅⎢⎥⎣⎦3. 设22139528A -⎡⎤=⎢⎥-⎣⎦(1)求一个42⨯矩阵B 使得0AB =,且rank 2B =; (2)求一个42⨯矩阵C 使得AC E =,且rank 2C =. 解 (1)求解方程组0Ax =得两个线性无关的解12[1,5,8,0],[1,11,0,8]T T ββ==-令[]1211511,8008B ββ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦则rank 2,B AB O ==,B 即为所求.(2)解1Ax e =得一个解11[5,9,0,0]8Tβ=--,解2A x e =得一个解21[2,2,0,0]8Tβ= 令[]1252921,00800C ββ-⎡⎤⎢⎥-⎢⎥==⎢⎥⎢⎥⎣⎦则2rank 2,C AC E ==,C 即为所求.4. 设m n n m m m A B C ⨯⨯⨯=,若C 是可逆矩阵,则()()r A r B m ==.证 ()()()()m r C r A B r A m r A m===≤⇒= ()()()()m r C r AB r B m r B m ===≤⇒=5. 证明:()()()r A B r A r B +≤+. 方法1 设12[,,,]n A ααα= ,[]12,,,n B βββ= ,(),()r A s r B t ==不妨设{}12,,,t ααα 是A 的列向量组的极大无关组,{}12,,,s βββ 是B 的列向量组的极大无关组. 显然A B +的列向量可由{}11,,,,,t s ααββ 线性表示,于是()r A B +=()A B +的列秩{}11r ,,,,,()()t s s t r A r B ααββ≤≤+=+证明:)()()(B r A r B A r +≤+ 方法2 由],[],[B A B B A c−→−+得[,][,]r A B B r A B +=,从而(用到例题的结论))()(],[],[)(B r A r B A r B B A r B A r +≤=+≤+6. 用等价标准形定理证明:rank 1m n A ⨯=的充要条件是T A αβ=其中0,0m n R R αβ≠∈≠∈.证 设rank 1A =,由等价标准形定理,存在可逆矩阵,m m n n P R Q R ⨯⨯∈∈,使得1000A P Q ⎡⎤=⎢⎥⎣⎦[]101,0,,00P Q ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦令α是P 的第一列,T β是Q 的第一行,显然0,0αβ≠≠,上式就是T A αβ=.反之,如果TA αβ=()0,0αβ≠≠,则1()()1()1r A r r A α≤≤=⇒=4.5 向量空间练习4.51. 设{}31123123123(,,)|,,,0T V x x x x x x x R x x x R ==∈++=⊂ {}32123123123(,,)|,,,1T V x x x x x x x R x x x R ==∈++=⊂证明1V 是3R 的子空间, 2V 不是3R 的子空间. 证 1V 是齐次线性方程组的解集,2V 是非齐次线性方程组的解集,同例题的证明一样.2. 设343443434,,x x x x V x x x x R R x x ⎧⎫+⎡⎤⎪⎪⎢⎥-⎪⎪⎢⎥==∈⊂⎨⎬⎢⎥⎪⎪⎢⎥⎪⎪⎣⎦⎩⎭证明V 是4R 的子空间,并求V 的维数及V 的一个基.证 把V 中向量改写为34314211111001x x x x x αα⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=+=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则12span(,)V αα=,又{}12,αα线性无关,所以{}12,αα是V 的一个基,dim 2V =.3. 设12342112,1,1,010541αααα----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦求123span(,,)ααα两个不同的基, 并分别求α在所求的基下的坐标.解 易知{}123rank ,,2ααα=,又{}13,αα线性无关,{}23,αα线性无关,所以{}13,αα与{}23,αα都是123span(,,)ααα的基.解方程组1123x x ααα+=得120.5,1x x ==-于是α在基{}13,αα下的坐标是[]0.5,1T-.解方程组1223x x ααα+=得121,1x x ==-于是α在基{}23,αα下的坐标是[]1,1T-.4. 设121211201011,,,01310131ααββ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦证明:1212span(,)span(,)ααββ=. 证 只需证{}{}1212,,ααββ≅由[]12121011013100000000rααββ-⎡⎤⎢⎥-⎢⎥−−→⎢⎥⎢⎥⎣⎦知{}12,ββ可由{}12,αα线性表示. 由[]1212100.50.501 1.50.500000000rββαα⎡⎤⎢⎥⎢⎥−−→⎢⎥⎢⎥⎣⎦知{}12,αα可由{}12,ββ线性表示.所以{}{}1212,,ααββ≅. 5. 已知3R 的两个基为1231111,0,0111ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 及 1231232,3,4143βββ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦求由基123,,ααα到基123,,βββ的过渡矩阵.解 由[]123123100234,,,,,010*********rαααβββ⎡⎤⎢⎥−−→-⎢⎥⎢⎥--⎣⎦得[][]123123234,,,,010101βββααα⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦由基123,,ααα到基123,,βββ的过渡矩阵为234010101P ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦4.6 线性方程组解的结构练习4.61. 求齐次线性方程组1232340x x x x x x -+=⎧⎨-+=⎩ 两个不同的基础解系,并写出通解.解 记系数矩阵为A ,则10010111rA ⎡⎤−−→⎢⎥-⎣⎦同解方程为14234x x x x x =-⎧⎨=-⎩ 分别取3410,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得1201,11x x -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得基础解系为 120111,1001αα-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦分别取3411,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得1201,10x x -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得基础解系为 120110,1101ββ-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦通解为112212,(,)x k k k k R αα=+∈或112212,(,)x k k k k R ββ=+∈2. 求一个齐次线性方程组,使它的基础解系为T T 12[0,1,2,3],[3,2,1,0]ξξ==解 设所求方程组为0=Ax ,由题设()12,0A ξξ=.记()12,B ξξ=,则0=AB 即0=T T A B ,这说明T A 的列都是方程组0=x B T 的解.解方程组0=x B T ,即2341232303230x x x x x x ++=⎧⎨++=⎩ 得基础解系为T )0,1,2,1(1-=α,T )1,0,3,2(2-=α令],[21αα=T A ,即⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=1032012121T T A αα所求方程组为0=Ax ,即⎩⎨⎧=+-=+-03202421321x x x x x x 3. 求下面非齐次方程组的一个解及对应的齐次方程组的基础解系1212341234522153223x x x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩ 解 对增广矩阵初等行变换化最简阶梯形[]1100510108211210110135322300012rA b -⎡⎤⎡⎤⎢⎥⎢⎥=−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦等价方程组为132348132x x x x x =--⎧⎪=+⎨⎪=⎩ 令30x =得方程组的一个解*[8,13,0,2]T η=-对应的齐次方程组的等价方程组为132340x x x x x =-⎧⎪=⎨⎪=⎩ 令31x =得基础解系[1,1,1,0]T α=-4. 设142536A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求使得方程组Ax b =有解的所有向量b . 解 向量b 是A 的列向量的线性组合,即12121425,,36b k k k k R ⎡⎤⎡⎤⎢⎥⎢⎥=+∈⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦5. 设12,,,s ηηη 是非齐次方程组b Ax =的s 个解向量,令112212,,,,s s s k k k k k k R ηηηη=+++∈证明:(1)η是非齐次方程组Ax b =的解的充要条件是121s k k k +++= ; (2)η是齐次方程组0Ax =的解的充要条件是120s k k k +++= . 证 (1) 1122s s k k k ηηη+++ 是b Ax =的解⇔ ()1122s s A k k k b ηηη+++= ⇔ ()12s k k k b b +++= (≠b 0) ⇔ 121s k k k +++=(2) 1122s s k k k ηηη+++ 是0=Ax 的解⇔ ()11220s s A k k k ηηη+++= ⇔ ()120s k k k b +++= (≠b 0) ⇔ 120s k k k +++=6. 设4rank 3m A ⨯=, 321,,ηηη是非齐次方程组b Ax =的3个解向量, 并且T T )4,3,2,1( , )5,4,3,2(321=+=ηηη求方程组b Ax =的通解.解 由3)(4=⨯m A r 知,知0=Ax 的基础解系只含一个向量,取T )6,5,4,3()(2321=+-=ηηηξ则ξ是0=Ax 的基础解系. 从而非齐次方程组b Ax =的通解为1x k ηξ=+,(k R ∈) 7. 设矩阵[]1234,,,=A αααα, 其中432,,ααα线性无关,3212ααα-=, 向量4321ααααβ+++=. 求线性方程组βx A =的通解.解 由假设易知()3r A =,从而0=Ax 的基础解系只含一个向量. 由12312342200=-⇔-++=ααααααα得[1,2,1,0]T ξ=-为0=Ax 的基础解系.由1234+++=ααααβ得[1,1,1,1]T η=为βx A =的一个解. 于是βx A =的通解是,()x k k R ηξ=+∈习题四1. 设βααα,,,,21r 都是n 维向量,β可由r ααα,,,21 线性表示,但β不能由121,,,-r ααα 线性表示,证明:r α可由121,,,,r αααβ- 线性表示.证 因为β可由r ααα,,,21 线性表示,设r r r r k k k k ααααβ++++=--112211又因为β不能由121,,,-r ααα 线性表示,所以0≠r k ,因此11111-----=r rr r r r k k k k k ααβα 即r α可由121,,,,r αααβ- 线性表示.2. 设123123111221,,1,1,,114a a a a a a a αααβββ--⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥======⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦确定常数a , 使向量组321,,ααα可由向量组321,,βββ线性表示, 但向量组321,,βββ不能由向量组321,,ααα线性表示.解 记],,[321ααα=A ,],,[321βββ=B ,由于{}123,,βββ不能由{}123,,ααα线性表示,所以3)(<A r ,从而0)2()1(2=+--=a a A得1=a 或2-=a .当1=a 时,1321βααα===,故321,,ααα可由321,,βββ线性表示,但2β不能由321,,ααα线性表示. 所以1=a 符合题意.当2-=a 时,由[]122112006033000033rBA ---⎡⎤⎢⎥−−→--⎢⎥⎢⎥-⎣⎦知{}123,,ααα不能由{}123,,βββ线性表示,与题设矛盾. 综上,1=a .3. 设121,,,-m ααα (3≥m )线性相关, m ααα,,32 线性无关, 讨论:(1)1α能否由132,,-m ααα 线性表示; (2)m α能否由121,,,-m ααα 线性表示.方法1 (1)因为m ααα,,32 线性无关,故132,,-m ααα 线性无关. 又因为121,,,-m ααα 线性相关,由唯一表示定理,1α可由132,,-m ααα 唯一表示.(2)设m α能由121,,,-m ααα 线性表示112211--+++=m m m αλαλαλα由(1),1α又能由132,,-m ααα 线性表示,故m α也能由132,,,-m ααα 线性表示,从而m ααα,,32 线性相关,这与假设矛盾. 故m α不能由121,,,-m ααα 线性表示.方法2 由假设{}121,,,1m r m ααα-<- ,{}23,,,1m r m ααα=-(1) 由{}{}231231,,,,,m m m r r ααααααα-=≤ {}131,,11m r m ααα-≤+≤-得{}{}23123,,,,,1m m r r m ααααααα==-由唯一表示定理,1α能由132,,-m ααα 唯一表示.(2)由(1),{}121,,,,1m m r m αααα-=- ,而{}121,,,1m r m ααα-<- 故{}{}121121,,,,,,,m m m r r ααααααα--≠m α不能由121,,,-m ααα 线性表示.4. 设nn RA ⨯∈, n R ∈α(0≠α), 0=αk A , 01≠-αk A , 证明向量组{}21,,,,k A A Aαααα-线性无关.证 设0112210=++++--ααααk k A k A k A k k上式两边左乘1-k A得010=-αk A k ,由于01≠-αk A,得00k =,因此011221=+++--αααk k A k A k A k上式两边左乘2-k A ,类似可推出01=k . 进而再推出210k k k -=== .5. 设nn RA ⨯∈,n R ∈321,,ααα(01≠α), 如果11αα=A , 212ααα+=A , 323ααα+=A证明321,,ααα线性无关.证 由题设23121)(,)(,0)(ααααα=-=-=-E A E A E A设0332211=++αααk k k两边左乘E A -得02312=+ααk k再左乘E A -得013=αk由01≠α得03=k ,往上逐一代入210,0k k ==. 故321,,ααα线性无关.6. 设向量组12:,,,m S ααα 线性无关, 1β能由S 线性表示, 而2β不能由S 线性表示,证明:(1)向量组122,,,,m αααβ 线性无关.(2)对R k ∈∀, 向量组1221,,,,m k αααββ+ 线性无关.证 (1)由于12,,,m ααα 线性无关,而2β不能由12,,,m ααα 线性表示,故221,,,,βαααm 线性无关. 否则,由唯一表示定理,2β能由12,,,m ααα 唯一表示,与假设矛盾.(2)由(1)122rank[,,,,]1m m αααβ=+再由1β可由12,,,m ααα 线性表示,得1221122[,,,,][,,,,]cm m k αααββαααβ+−−→从而1221rank[,,,,]m k αααββ+= 122rank[,,,,]1m m αααβ=+1221,,,,m k αααββ+ 线性无关.7. 设12,,,,m αααβ nR ∈(0β≠)且0(1,2,,)T i i m βα== , 证明: (1) β不能由12,,,m ααα 线性表示;(2) 如果12,,,m ααα 线性无关, 则12,,,,m αααβ 也线性无关. 证 (1) 反证. 设β可由12,,,m ααα 线性表示1122m m k k k βααα=+++两边左乘Tβ得0Tββ=,这与0β≠矛盾.(2) 反证. 如果12,,,,m αααβ 线性相关,则由唯一表示定理,β由12,,,m ααα 唯一表示. 与(1)矛盾.8. 已知321,,ααα线性无关, 试问常数k m ,满足什么条件时, 向量组{}213213,,k m αααααα---线性无关?方法1设0)()()(313232121=-+-+-ααααααx m x k x整理得0)()()(332221113=-+-+-αααx m x x k x x x由于321,,ααα线性无关,故上式又等价于⎪⎩⎪⎨⎧=-=-=+-000322131x m x x kx x x ⇔ 12310110001x k x m x -⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦312312,,αααααα---m k 线性无关的充要条件是上面方程组只有零解. 即1011010101kmk mk m --=-≠⇔≠- 方法2 记313232121,,ααβααβααβ-=-=-=m k . 写成矩阵形式[][]123123101,,,,1001k m βββααα-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦由例4.14,321,,βββ线性无关⇔101rank 10301k m -⎡⎤⎢⎥-=⎢⎥⎢⎥-⎣⎦⇔1≠mk9. 已知向量组m ααα,,,21 (2≥m )线性无关. 设111322211,,,,ααβααβααβααβ+=+=+=+=--m m m m m试讨论向量组m βββ,,,21 的线性相关性.证 把题设写成矩阵形式[][]1212,,,,,,m m C βββααα=其中100111011011m m⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦C 经计算12,1(1)0,m m C m +⎧=+-=⎨⎩若为奇数若为偶数同上一题完全类似,有两种方法. 结论是m βββ,,,21 线性无关⇔0C ≠⇔m 为奇数时 m βββ,,,21 线性相关⇔0C =⇔m 为偶数时10. 设,m n n p A B ⨯⨯是满足AB O =的两个非零矩阵,证明A 的列向量组线性相关, 且B 的行向量组线性相关.方法1 B 的列向量都是方程组0=Ax 的解,又B 为非零矩阵,说明0=Ax 存在非零解,所以n A r <)(,从而A 的列向量组线性相关.考虑0=TT A B ,又知TB 的列向量组即B 的行向量组线性相关.方法2 由例题,()()r A r B n +≤又()0,()0r A r B >>,所以(),()r A n r B n <<,于是A 的列向量组线性相关,且B 的行向量组线性相关.11. 证明:rank rank rank ⎡⎤=+⎢⎥⎣⎦A O AB O B .方法1 把,A B 用初等行变换化为阶梯矩阵,设12,00r rU U A B ⎡⎤⎡⎤−−→−−→⎢⎥⎢⎥⎣⎦⎣⎦其中12,U U 的行向量都是非零行向量. 则1122000000000000r r U U U U ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥−−→−−→⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦A O OB 显然上式右边也是阶梯形矩阵,从而1122rank rank rank rank U U U U ⎡⎤⎡⎤==+=+⎢⎥⎢⎥⎣⎦⎣⎦O A O A B O O B 的行数的行数方法2 设12rank ,rank r r ==A B ,A 有子式10r A ≠,B 有子式20r B ≠,因此⎡⎤⎢⎥⎣⎦A O OB 有子式1122000r r r r A A B B =≠,从而12rank r r ⎡⎤≥+⎢⎥⎣⎦A O O B又12rank rank rank r r ⎡⎤⎡⎤⎡⎤≤+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A O A O OB O B 所以12rank rank rank r r ⎡⎤=+=+⎢⎥⎣⎦A O AB O B12. 设*A 是n 阶方阵A 的伴随矩阵()2≥n , 证明:,()()1,()10,()1n r A nr A r A n r A n *=⎧⎪==-⎨⎪<-⎩证 当n A r =)(时,0≠A ,由行列式的展开定理:E A A A =*,立即知A *是可逆矩阵,即()r A n *=.当1)(-<n A r 时,A 的所有1-n 阶子式都等于零,这时*A 是零矩阵,故0)(=*A r . 当1)(-=n A r 时,0=A ,由行列式的展开定理0==*E A A A由例题n A r A r ≤+*)()(()1r A *⇒≤再由1)(-=n A r 知A 有一个1-n 阶子式不等于零,故*A 至少有一个元素不为零,因此()0r A *>. 综上,1)(=*A r .13.设rank m n A m ⨯=, 证明存在矩阵m n B ⨯, 使m m n n m E B A =⨯⨯.方法1 由题设m A r n m =⨯)(和例题,对任意的mb R ∈,线性方程组Ax b =都有解. 特别地取b 为标准单位向量12,,,m m e e e R ∈ ,方程组m n i A x e ⨯=(1,2,,)i m =的解记为12,,,n m b b b R ∈ ,令()12,,,n m m B b b b ⨯=则m m n n m E B A =⨯⨯易知()n m r B m ⨯=证法 2 由题设m A r n m =⨯)((此时m n ≤),故只用列变换就可将A 化为标准形,即存在可矩阵n Q 使得()m AQ E O =把Q 分块,()1n mQ B Q ⨯=,则m m n n m E B A =⨯⨯易知()n m r B m ⨯=14. 证明Sylvester 不等式:r()r()r()m n n p n ⨯⨯+-≤A B A B方法1 设r AB r t B r s A r p n n m ===⨯⨯)(,)(,)(由等价标准形定理知有可逆矩阵Q P ,使⎥⎦⎤⎢⎣⎡=000sEPAQ 因此11120()()000sB E s B s PAB PAQ Q B B n s n s -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1()()()r AB r PAB r B ==112()()B t r B r Q B r B -⎡⎤===⎢⎥⎣⎦122()()()()()r B r B r AB r B r n s ≤+=+≤+-移项得r n t s ≤-+,即r()r()r()n +-≤A B AB15. 设rank m n n ⨯=P ,证明rank()rank =PA A . 证法1 记C PA =,则()()()r C r PA r A =≤再由习题13,存在矩阵M 使得MP E =. 在C PA =两边左乘M 得MC A =从而()()()r A r MC r C =≤综上,()()()r C r PA r A ==.证法2 设A 是m n ⨯阶矩阵,()r m =P ,由Sylvester 不等式()()()r A r P r A m =+-≤()()r PA r A ≤从而r()r()=PA A16. 设n 阶矩阵A 满足2A A =,证明()()r A r A E n +-= 证 由()-=A E A O 和例题r()r()n +-≤A E A又[]()r()r ()r r()n ==+-≤+-E A E A A E A综上r()r()n +-=A E A .17. 证明满秩分解定理: 设rank m n A r ⨯=, 则A 有如下分解:m r r n A H L ⨯⨯=其中rank rank H L r ==.方法1 由等价标准形定理,存在可逆矩阵m P 和n Q 使得[]1111000rr r r n m rEE A P Q P E O Q O ----⨯⨯⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦令[]11,r rE H P L E O Q O --⎡⎤==⎢⎥⎣⎦则n r r m L H A ⨯⨯=,且显然有r L r H r ==)()(.方法2 不妨设A 的列向量组的极大无关组为12,,,r ααα ,并记矩阵[]12,,,m r r H ααα⨯=则A 的所有列向量都可由12,,,r ααα 线性表示,即存在矩阵r n L ⨯使得n r r m L H A ⨯⨯=又()()()()m r r n m r r r A r H L r H r r H r ⨯⨯⨯==≤≤⇒=同理()r L r =.18. 证明:r()r()r()r()ABC AB BC B ≥+-. 证 设rank()n k B r ⨯=,B 的满秩分解为B MN =由Sylvester 不等式rank()rank[()()]rank()rank()r ABC AM NC AM NC =≥+- rank()rank()r rank()rank()rank()AMN MNC AB BC B ≥+-=+-19. 设12,V V 都是nR 的子空间, 令{}12121122|,V V V V ααααα+==+∈∈, {}1212|V V V V ααα=∈∈ 且证明12V V +与12V V 都是nR 的子空间. 举例说明{}1212|V V V V ααα=∈∈ 或不是nR 的子空间.证 易(略)20. 证明基的扩张定理定理4.14:设1,,m αα 是nR 的一个线性无关组, m n <, 则存在n m -个向量1,,m n a α+ , 使得11,,,,,m m n αααα+ 成为n R 的一个基.证 由于m n <,故12,,,m ααα 不是nR 的基,从而至少有一个向量1m +α不能由12,,,m ααα 线性表示. 则121,,,,m m +αααα 必线性无关(否则,由唯一表示定理得出矛盾).如果1m n +=,则证毕. 否则,如果1m n +<,同上知,存在向量2m +α使得1212,,,,,m m m ++ααααα 线性无关. 依此类推,得证. 21. 若矩阵()ij n n A a ⨯=满足1(1,2,,)nii ij j j ia a i n =≠>=∑则称A 是严格对角占优矩阵. 证明严格对角占优矩阵必是可逆矩阵.证 反证. 假设A 是不可逆矩阵, 则0Ax =有非零解, 记一个非零解为12(,,,)T n x x x x = . 再记1max 0k i i nx x ≤≤=>考察0Ax =的第k 个方程11220k k kn n a x a x a x +++=即1nkk k kj j j j ka x a x =≠=-∑两边取绝对值111nnnk kk kj j kkjkk kj j j j j kj kj kx a a x x aa a ===≠≠≠≤≤⇒≤∑∑∑这与假设矛盾. 因此A 是可逆矩阵. 22. 证明方程组TTA Ax A b =一定有解.证 只需证方程组系数矩阵的秩与增广矩阵的秩相等. 由例题()T T T T Tr()r()r ,r (,)r()r()⎡⎤=≤=≤=⎣⎦A A A A A A b A A b A A故()T T T r()r ,=A A A A A b从而方程组b A Ax A T T =一定有解.23. 设=Ax 0与=Bx 0都是n 元的齐次方程组, 证明下面三个命题等价: (1)=Ax 0与=Bx 0同解; (2)rank rank rank ⎡⎤==⎢⎥⎣⎦A AB B ; (3)A 的行向量组与B 的行向量组等价. 证 记(I )=Ax 0,(II )=Bx 0,(III )=⎧⎨=⎩Ax Bx 0(1)⇒(2) 由于(I )的解都是(II )的解,所以(I )的解也都是(III )的解. 又显然(III )的解都是(I )的解. 因此,(I )与(III )同解. 同样的道理,(II )与(III )也是同解的. 因此它们基础解系所含向量个数相等,即()()r r r n n n ⎛⎫-=-=- ⎪⎝⎭A AB B于是()()r r r ⎛⎫== ⎪⎝⎭A AB B(2)⇒(3) 命题(2)等价于()()()T T T T r r r ,==A B A B由定理4.3,TA 的列向组与TB 的列向量组等价. 即A 的行向量组与B 的行向量组等价.(3)⇒(1) 这是显然.24.设B A ,均是n 阶的方阵,证明)()(B r AB r =的充要条件是方程组0)(=x AB 与方程组0=Bx 同解.证 (⇒)显然0=Bx 的解必是0)(=x AB 的解. 又)()(B r AB r =,0=Bx 的基础解系也是0)(=x AB 的基础解系. 所以,方程组0)(=x AB 与方程组0=Bx 同解.(⇐)易25. 若n 阶矩阵[]121,,,,n n A αααα-= 的前1n -个列向量线性相关,后1n -个列向量线性无关,12n βααα=+++ ,证明:(1)方程组Ax β=必有无穷多解;(2)若T 12(,,,)n k k k 是Ax β=的任一解,则1n k =. 证 (1)由12n βααα=+++ , 知(1,1,,1)T x = 是Ax β=的一个解. 又()1r A n =-,故Ax β=有无穷多解.(2)121,,,n ααα- 线性相关,存在不全为零的数121,,,n l l l - 使1122110n n l l l ααα--++=说明()121,,,,0Tn l l l - 是0Ax =基础解系. Ax β=的通解为()()121(1,1,,1),,,,0,,,1T TT n k l l l -+=⨯⨯26. 设线性方程组(I)⎪⎩⎪⎨⎧=+++=+++m n mn m m n n bx a x a x a b x a x a x a 221111212111 (II)⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++100221122*********m m m nm n n m m y b y b y b y a y a y a y a y a y a证明:方程组(I )有解⇔方程组(II )无解.证 记方程组(I )为=Ax b ,则方程组(II )可写成T T 1⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭A y b 0易知TTT r r()1r()11⎛⎫=+=+ ⎪⎝⎭A A A b0 这样(II)无解⇔TT T TT T r r 1r()1r 11⎛⎫⎛⎫⎛⎫=+⇔+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A A A A b b b 0 ()T T r()r r()r ⎛⎫⇔=⇔=⇔ ⎪⎝⎭A A A A b b (I )有解27. 设线性方程组(I) ⎪⎩⎪⎨⎧=+++=+++m n mn m m n n bx a x a x a b x a x a x a 221111212111(II) ⎪⎩⎪⎨⎧=+++=+++022111221111m nm n n m m y a y a y a y a y a y a(III) 02211=+++m m y b y b y b证明:方程组(I )有解⇔方程组(II )的解都是方程组(III )的解.证 记n m ij a A ⨯=)(,T n x x x x ),,,(21 =,T m y y y y ),,,(21 =,T m b b b b ),,,(21 =则三个方程可写为(I) b Ax =,(II) 0=y A T ,(III) 0=y b T因此(I)有解⇔],[)(b A r A r =⇔⎥⎦⎤⎢⎣⎡=T T Tb A r A r )((由例5.2)⇔(II )的解都是(III )的解28. 设齐次方程组123423412422000x x x x x cx cx x cx x +++=⎧⎪++=⎨⎪++=⎩ 解空间的维数是2, 求其一个基础解系.解 由dim N()r()n =-A A 知,系数矩阵的秩r()422=-=A .221212101222010110100(1)(1)r c c A c c cc c c c --⎛⎫⎛⎫⎪ ⎪=−−→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭由r()2=A ,得1c =. 原方程组的等价方程组为13234x x x x x =⎧⎨=--⎩ 取3410,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 得一个基础解系为T T 12(1,1,1,0),(0,1,0,1)=-=-αα29. 设四元齐次线性方程组(I) ⎩⎨⎧=-=+004221x x x x还知道另一齐次线性方程组(II)的通解为T T k k )1,2,2,1()0,1,1,0(21-+求方程组(I )与(II )的公共解.解法1 将方程组(II)的通解T T k k x )1,2,2,1()0,1,1,0(21-+=212122(,2,2,)T k k k k k k =-++代入组方程组(I)得到关于21,k k 的线性方程组2121212220020k k k k k k k k -++=⎧⇔+=⎨+-=⎩ 令k k =2,则k k -=1,故方程组(I)与方程组(II)的公共解为T T T k k k x )1,1,1,1()1,2,2,1()0,1,1,0(21-=-+=(R k ∈)解法2 易求方程组(I)的基础解系为T )0,1,0,0(1=α,T )1,0,1,1(2-=α其通解为3142x k k αα=+令两个方程组的通解相等T T k k x )1,2,2,1()0,1,1,0(21-+=T k )0,1,0,0(3=T k )1,0,1,1(4-+得关于4321,,,k k k k 的方程组⎪⎪⎩⎪⎪⎨⎧=-=-+=-+=+-0020********2142k k k k k k k k k k 解之得k k k k k k k k ===-=4321,,,因此两个方程组公共解为T T T k k k x )1,1,1,1()1,2,2,1()0,1,1,0(-=-+-=30. 设n n ij a A ⨯=)(, 0≠A , 证明:n r <时, 齐次方程组⎪⎩⎪⎨⎧=+++=+++0022111212111n rn r r n n x a x a x a x a x a x a 的一个基础解系为T jn j j j A A A ),,,(21 =ξ,(n r j ,,1 +=) 其中jk A 为A 的),(k j 元的代数余子式(n k j ,,2,1, =).证 由行列式展开定理02211=+++jn in j i j i A a A a A a (n r j r i ,,1;,,1 +==)所以j ξ(n r j ,,1 +=)是齐次方程组的解(共r n -个).由0≠A ⇒齐次方程组系数矩阵的秩为r ,所以齐次方程组基础解系所含向量个数为r n -. 再由0≠A n A r =⇒)(*⇒*A 的r n -个行向量的转置n r ξξ,,1 +线性无关.综上可知,n r ξξ,,1 +是齐次方程组的一个基础解系.31. 设rank m n A r ⨯=, *η是非齐次方程组b Ax =的一个特解, 12,,,n r ξξξ- 是其对应的齐次方程组0=Ax 的一个基础解系. 证明{}****12,,,,n r ηηαηαηα-+++是Ax b =解集V 的一个极大无关组, 从而rank 1V n r =-+.证 记{}****12,,,,n r T ηηαηαηα-=+++显然T 中的向量都是b Ax =的解,即T V ⊂.下面证明T 线性无关. 设0)()()(12211=++++++++---ηξηξηξηr n r n r n k k k k把上式整理为0)(1212211=+++++++++----ηξξξr n r n r n r n k k k k k k k上式两边左乘A 得0)(121=+++++--b k k k k r n r n由0≠b 得0121=+++++--r n r n k k k k往上代入得02211=+++--r n r n k k k ξξξ由r n -ξξξ,,,21 线性无关性得021====-r n k k k再往上代入又得01=+-r n k . 这说明T 是线性无关的向量组.下面再证明V 中的任一向量都可由T 线性表示. 由于V 中的任一向量都可写为r n r n k k k x --++++=ξξξη 2211即)()()()1(221121r n r n r n k k k k k k x ---+++++++----=ξηξηξηη这说明V 中的任一向量都可由T 线性表示. 综上,向量组T 是Ax b =解集V 的一个极大无关组,rank r()1S n =-+A .32. 已知T T T 111121,2221222,212,2(,,),(,,,),,(,,,)n n n n n n n b b b b b b b b b ===βββ是方程组1111221,222112222,221122,2200 0n n n nn n n n n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的基础解系. 证明T T T 111121,2221222,212,2(,,),(,,,),,(,,,)n n n n n n n a a a a a a a a a ===ααα是方程组1111221,222112222,221122,22000n n n nn n n n n b x b x b x b x b x b x b x b x b x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的基础解系.证 记矩阵T 1T 2T n ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ααA α ,T 1T 2T n ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ββB β则方程组(I )和(II )可分别写为(I )=Ax 0 和 (II )=Bx 0(2n∈x R )因为12,,,n βββ 是方程组=Ax 0的基础解系,所以r ()2n n n =-=A ,从而12,,,n ααα 线性无关. 而且,12,,,n βββ 线性无关,r()n =B . 因此,方程组=Bx 0的基础解系所含解向量的个数为2r()n n -=B .由假设()T T 12,,,n =⇒=⇒=A βββO AB O BA O()T 12,,,n ⇒=⇒=BA O B αααO知12,,,n ααα 是方程组=Bx 0的n 个线性无关的解. 因此,12,,,n ααα 就是方程组=Bx 0的一个基础解系.。
(完整)空间向量与立体几何知识点和习题(含答案),推荐文档

由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.,取直线l的方向向量a,则向量及一个向量a,那么经过点A以向量用空间向量刻画空间中平行与垂直的位置关系:的方向向量分别是a,b,平面α ,β 的法向量分别是,k∈R;0;0;,k∈R;k∈R;=0.用空间向量解决线线、线面、面面的夹角问题:,b是两条异面直线,过空间任意一点分别是二面角的两个半平面α ,β 的法向量,则〈根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分.掌握空间向量的线性运算及其坐标表示..掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂.理解直线的方向向量与平面的法向量..能用向量语言表述线线、线面、面面的垂直、平行关系..能用向量方法解决线线、线面、面面的夹角的计算问题.建立空间直角坐标系,设法证明存在实数k ,使得RS k PQ =如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,1(3,0,2),B 1(0,4,2),E (3,4,0).PA 1, ∴),34,0,0()2,00(32321===AA AP ⋅)同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(2要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0)N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,,2,0),=(2,2,0),=(-1,1,4),=(-1,EF AK OG 本文下载后请自行对内容编辑修改删除,:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0)C (0,2,0),N (2,2,1).),1,0,2(),2,1,0(=CN 所成的角为θ ,则CN ,52||||cos ==⋅CN AM CN AM θ∴异面直线AM 和CN 所成角的余弦值是⋅52取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .B P ∥MA ,B Q ∥NC ,所成的角.6,522=+==QC PC PQ Q空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成ABC -A 1B 1C 1的底面边长为a ,侧棱长为利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),取A 1B 1的中点D ,则,连接AD ,C ⋅))2,2,0(a a D ),2,0,0(),0,,0(),0,0,231a AA a AB a ==,011=⋅AA DC 本文下载后请自行对内容编辑修改删除,PB的中点D,连接CD,作AE⊥PB于E.,PA⊥AC,2,∴CD⊥PB.DC夹角的大小就是二面角A-PB-C的大小.,0(),0,0,2(),0,-==CP CB =(a 1,a 2,a 3),(b 1,b 2,b 3).=1,得).0,2,1(-=a 得取b 3=1,得⎪⎩⎪⎨⎧=+-=,0,02321b b b 3如图建立空间直角坐标系.,由已知可得A (0,0,0),),0,23,0(),0,23,21(a C a a B -),0,0,21(),,0,0a BC a =∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .,0PAC .的中点,DE ∥BC ,∴E 为PC 的中点.⋅)21,43,0(),21,3a a E a a ⊥平面PAC ,(B)θ >ϕ(D)θ <ϕ中,E,F,G,H分别为所成角的大小是______.6,且对角线与底面所成角的余弦值为D1中,AA1=2AB,则异面直线1本文下载后请自行对内容编辑修改删除,的底面是直角梯形,∠BAD=90°,,PA⊥底面ABCD,PD所成的角为θ ,则cosθ =______.C1D1中,AA1=2AB=4,点平面角的余弦值.中,底面ABCD是边长为OA的中点,N为BC的中点.OCD;所成角的大小.平面角的余弦值.习题1和平面α ,下列命题正确的是( α (B)若a ∥α (B)38000(D)4000cm 2的正方形,另外两个侧面都是有一个内角为( )(C)223本文下载后请自行对内容编辑修改删除,C11;平面角的余弦值.PA⊥AB,PA⊥AC,AB⊥AC MAB;C ;ABB 1;的体积.中,底面ABCD 为矩形,SD ⊥底面SD =2.点M 在侧棱SC 上,∠的中点;的平面角的余弦值.练习1-3D .42本文下载后请自行对内容编辑修改删除,,0),E (0,2,1),A 1).4∴A 1C ⊥BD ,A 1C ,0=⊥平面DBE .是平面DA 1E 的法向量,则,得n =(4,1,-2).14,,22(),0,22,0(-D P =-=),2,22,0(OD OP n =(x ,y ,z ),则⋅OP n 本文下载后请自行对内容编辑修改删除,是CA 和平面α 所成的角,则∠,CO =1.3=AO ABO =∠BAO =45°,∴=AO BO ).1,0,0(),0,3,0(),C A ).1,3,0(-=AC 是平面ABC 的一个法向量,取x =1,得=+=-,03,033z y y x 1=n 是平面β 的一个法向量.AB 1=E ,连接DE .四边形A 1ABB 1是正方形,是BC 的中点,∴DE ∥A 平面A 1BD ,∴A 1C ∥平面⊄解:建立空间直角坐标系,设AB =AA 1=1,⋅-)1,0,21(),01B 是平面A 1BD 的一个法向量,,01=D B 取r =1,得n 1=(2,0,1).0=1234是直三棱柱,∴BB 1⊥平面A 1B 1C 1⊥平面BCC 1B 1,∴BC 1⊥A 1⊥B 1C ,∴BC 1⊥平面A 1B 1C 分别为A 1C 1、BC 1的中点,得MN 平面A 1ABB 1,∴MN ⊄MH .MH ∥A 1B 1,,∴MH ⊥平面BCC 1B 1,∴的体积==⋅⋅∆3111MH S V B BC A (,0,0),则B (22,),12,12,2(λλ++--=BM 故.60 >=BM |.BA BM =解得λ =,)12()1222λλ+++-的中点.,0,0)得AM 的中点22(G 本文下载后请自行对内容编辑修改删除,。
线性代数课后答案(高等教育出版社)

第一章行列式1.利用对角线法则计算下列三阶行列式:(1)38114112---;解38114112---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(3)222111cbacba;解222111cbacba=bc2+ca2+ab2-ac2-ba2-cb2=(a-b)(b-c)(c-a).4.计算下列各行列式:(1)71125102214214;解7112510221421411423102211021473234-----======cccc34)1(143102211014+-⨯---=143102211014--=014171721099323211=-++======cccc.(2)265232112131412-;解265232112131412-265321221341224--=====cc412321221341224--=====rr321221341214=--=====rr.(3)efcfbfdecdbdaeacab---;解efcfbfdecdbdaeacab---ecbecbecba d f---=a b c d e fa d fbc e4111111111=---=.(4)dcba111111---.解dcba111111---dcbaabarr11111121---++=====dcaab1111)1)(1(12--+--=+111123-+-++=====cdcadaabdcccdadab+-+--=+111)1)(1(23=abcd+ab+cd+ad+1.6. 证明:(1)1112222bbaababa+=(a-b)3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((ab a a b a b +--==(a -b)3 .(2)yx z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++bz ay by ax x byax bx az z bx az bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x byax x z bx az z y b y by ax z x bx az y z bz ay x a +++++++=22z y x yx z x z y b y x z x z y z y x a 33+=y x z xz y z y x b y x z x z y z y x a 33+=y x z xz y z y x b a )(33+=.8. 计算下列各行列式(Dk 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0;解a a a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开))1()1(10 00 0000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a ann n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=an -an -2=an -2(a2-1).(2)x a a a x aa ax D n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ;解 将第一行乘(-1)分别加到其余各行, 得ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0 ,再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a](x -a)n第二章 矩阵及其运算 1. 计算下列乘积:(5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a11x1+a12x2+a13x3 a12x1+a22x2+a23x3 a13x1+a23x2+a33x3)⎪⎪⎭⎫⎝⎛321xx x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.2. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫ ⎝⎛--=150421321B , 求3AB -2A 及A TB . 解⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z1, z2, z3到x1, x2, x3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x . 4. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(3)(A +B)(A -B)=A2-B2吗? 解 (A +B)(A -B)≠A2-B2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A2-B2.5. 举反列说明下列命题是错误的:(1)若A2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A2=0, 但A ≠0. (2)若A2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A ,⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求Ak .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A kk k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ .用数学归纳法证明:当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k kk k k k k k k k A λλλλλλ0002)1(121.8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明BTAB 也是对称矩阵. 证明 因为A T =A , 所以 (BTAB)T =BT(BTA)T =BTA TB =BTAB , 从而BTAB 是对称矩阵. 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫⎝⎛--=1225.(3)⎪⎪⎭⎫⎝⎛---145243121; 解⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a1a2⋅ ⋅ ⋅an ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 10011211 .12. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .19.设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 20. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A8(5E -6A +A2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114. 21. 设Ak =O (k 为正整数), 证明(E -A)-1=E +A +A2+⋅ ⋅ ⋅+Ak -1.证明 因为Ak =O , 所以E -Ak =E . 又因为 E -Ak =(E -A)(E +A +A2+⋅ ⋅ ⋅+Ak -1), 所以 (E -A)(E +A +A2+⋅ ⋅ ⋅+Ak -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A2+⋅ ⋅ ⋅+Ak -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由Ak =O , 有E =(E -A)+(A -A2)+A2-⋅ ⋅ ⋅-Ak -1+(Ak -1-Ak) =(E +A +A2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A2+⋅ ⋅ ⋅+Ak -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A2+⋅ ⋅ ⋅+Ak -1.22. 设方阵A 满足A2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A2-A -2E =O 得 A2-A =2E , 即A(A -E)=2E ,或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A2-A -2E =O 得A2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或 EA E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A2-A -2E =O 得A2-A =2E , 两端同时取行列式得 |A2-A|=2, 即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A2, |A +2E|=|A2|=|A|2≠0, 故A +2E 也可逆. 由 A2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E ⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201; 解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r2+(-2)r1, r3+(-3)r1. )~⎪⎪⎭⎝--231(下一步: r2÷(-1), r3÷(-2). )~⎪⎪⎭⎫⎝⎛--131121(下一步: r3-r2. )~⎪⎪⎭⎫⎝⎛--331121(下一步: r3÷3. )~⎪⎪⎭⎫⎝⎛--131121(下一步: r2+3r3. )~⎪⎪⎭⎫⎝⎛-11121(下一步: r1+(-2)r2, r1+r3. )~⎪⎪⎭⎫⎝⎛111.(3)⎪⎪⎪⎭⎫⎝⎛---------1243323221453334311;解⎪⎪⎪⎭⎫⎝⎛---------1243323221453334311(下一步: r2-3r1, r3-2r1, r4-3r1. )~⎪⎪⎪⎭⎫⎝⎛--------1010566388434311(下一步: r2÷(-4), r3÷(-3) , r4÷(-5). )~⎪⎪⎪⎭ ⎝---2210022********(下一步: r1-3r2, r3-r2, r4-r2. )~⎪⎪⎪⎭⎫ ⎝⎛---00000000002210032011.3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z1, z2, z3到x1, x2, x3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛323513123; 解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123 ~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/12/1121112/33/26/71故逆矩阵为⎪⎪⎪⎪⎭⎫⎝⎛----2121211233267.(2)⎪⎪⎪⎭⎫⎝⎛-----1212321122123.解⎪⎪⎪⎭⎫⎝⎛-----11111212321122123~⎪⎪⎪⎭⎫⎝⎛----131111225941212321~⎪⎪⎪⎭⎫⎝⎛--------214311112111212321~⎪⎪⎪⎭⎫⎝⎛-------10612431111111212321~⎪⎪⎪⎭⎫⎝⎛----------1061263111`1221111121~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010*********故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211. 5. (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫⎝⎛-=132321B , 求X 使XA =B . 解 考虑A TXT =BT . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(TTB A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r , 所以⎪⎪⎭⎫⎝⎛---==-417142)(1TTTB A X , 从而⎪⎭⎫⎝⎛---==-4741121BA X . 9. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫⎝⎛-0000001000001010001100001,此矩阵的秩为4, 其第2行和第3行是已知向量.12. 设⎪⎪⎭⎫ ⎝⎛----=32321321k k k A , 问k 为何值, 可使 (1)R(A)=1; (2)R(A)=2; (3)R(A)=3.解⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R(A)=1; (2)当k =-2且k ≠1时, R(A)=2;(3)当k ≠1且k ≠-2时, R(A)=3. P106/1.已知向量组A : a1=(0, 1, 2, 3)T , a2=(3, 0, 1, 2)T , a3=(2, 3, 0, 1)T ;B : b1=(2, 1, 1, 2)T , b2=(0, -2, 1, 1)T , b3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示.证明 由 ⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r知R(A)=R(A , B)=3, 所以B 组能由A 组线性表示. 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B知R(B)=2. 因为R(B)≠R(B , A), 所以A 组不能由B 组线性表示.4. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ;(2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A , 所以R(A)=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为22200043012||≠=-=B ,所以R(B)=3等于向量的个数, 从而所给向量组线性相无关.5. 问a 取什么值时下列向量组线性相关?a1=(a , 1, 1)T , a2=(1, a , -1)T , a3=(1, -1, a)T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R(A)<3, 此时向量组线性相关.9.设b1=a1+a2, b2=a2+a3, b3=a3+a4, b4=a4+a1, 证明向量组b1, b2, b3, b4线性相关. 证明 由已知条件得a1=b1-a2, a2=b2-a3, a3=b3-a4, a4=b4-a1, 于是 a1 =b1-b2+a3=b1-b2+b3-a4 =b1-b2+b3-b4+a1, 从而 b1-b2+b3-b4=0,这说明向量组b1, b2, b3, b4线性相关.11.(1) 求下列向量组的秩, 并求一个最大无关组:(1)a1=(1, 2, -1, 4)T , a2=(9, 100, 10, 4)T , a3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a ,知R(a1, a2, a3)=2. 因为向量a1与a2的分量不成比例, 故a1, a2线性无关, 所以a1, a2是一个最大无关组.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组:(1)⎪⎪⎪⎭⎫ ⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~r r r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125,所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫ ⎝⎛---14011313021512012211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---141131302151201221113142~r r r r --⎪⎪⎪⎭⎫ ⎝⎛------22201512015120122112343~r r r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211,所以第1、2、3列构成一个最大无关组.13. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T 的秩为2, 求a , b .解 设a1=(a , 3, 1)T , a2=(2, b , 3)T , a3=(1, 2, 1)T , a4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a ,而R(a1, a2, a3, a4)=2, 所以a =2, b =5.20.求下列齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ;解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A , 于是得⎩⎨⎧+=-=43231)4/1()4/3(4xx x x x . 取(x3, x4)T =(4, 0)T , 得(x1, x2)T =(-16, 3)T ; 取(x3, x4)T =(0, 4)T , 得(x1, x2)T =(0, 1)T .因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x .解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A , 于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(xx x x x x . 取(x3, x4)T =(19, 0)T , 得(x1, x2)T =(-2, 14)T ; 取(x3, x4)T =(0, 19)T , 得(x1, x2)T =(1, 7)T . 因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .26. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ;解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B .与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=2 13 843231x x x x x .当x3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=0 43231x x x x x .当x3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x .解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x .当x3=x4=0时, 得所给方程组的一个解 η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x .分别取(x3, x4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系 ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .。
09级《线性代数与空间解析几何》试题B参考答案

《线性代数与空间解析几何》试题(B)参考答案与评分标准(100221)一、单项选择(每小题2分,共10分)1.C2.A3.B4.D5.C 二、填空题(每小题2分,共12分)1.800,2.O,3. 4,4. 20y z +=,5. 4I -,6. 5. 三、计算题(每小题10分,共30分)1.解 123111111111001/2(,,,)022102210101/2110102120011A αααβ----⎛⎫⎛⎫⎛⎫⎪ ⎪⎪==→→→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,6 分向量组秩为3,8 分 1231122βααα=-+ 10分2.解 2111||432(1)(3)003I A λλλλλλ+---=-=---,特征值为1231,3λλλ===4 分21121011,422001,2(0)0020000I A k k λξ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=-→=≠ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭当时特征向量,6 分 411101/213,3402013,6(0)0000002I A k k λξ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=→-=≠ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当时特征向量,8 分 A A 只有两个线性无关的特征向量,因此不可与对角矩阵相似。
10 分3.解 二次型对应的矩阵11212t A t -⎛⎫ ⎪= ⎪ ⎪-⎝⎭153 分 212110,10||11t P P t t t =>==->⇔<,5 分311412(54)005125t P tt t t -==-+>⇔-<<-8 分 故二次型为正定的充要条件为405t -<<。
10 分四、计算题(每小题8分,共24分)1.解 22(23)()2||||3||||9u v a b a b a a b b ⋅=+⋅-=+⋅-=-,222||||()()||||2||||3v a b a b a a b b =-⋅-=-⋅+=, ⋅=-=Pr j ||||v u v v u (3+3+2)2.解 110(1,1,2)111i j ks ==---,3 分 1(0,3,1)n = , 1112(5,1,3)031i j kn s n =⨯=--=-6 分 所求的平面方程 5360x y z -+-=。