固定波长同步荧光法测定污水和污泥苯并(a)芘

固定波长同步荧光法测定污水和污泥苯并(a)芘
固定波长同步荧光法测定污水和污泥苯并(a)芘

固定波长同步荧光法测定污水和污泥的苯并(a)芘

摘要:本文采用δλ=23nm的固定波长同步荧光法测定污泥和水样中的bap,同时测定烟头的bap含量与之对比,探讨了样品浓度对于测定的影响。本方法相对于一般的荧光光度法和用δλ=3nm的同步荧光法,在实验的样品前处理简单方便、污染小,而且具有光谱简化、谱带窄化、光谱重叠程度减少、散射光减少等特点、灵敏度高的特点。实验表明以δλ=23 nm的固定波长同步荧光法测定污水厂出水及污泥的bap含量的方法值得推广使用。

关键词:同步荧光法测定苯并(a)芘

中图分类号:o659.36 文献标识码:a 文章编

号:1674-098x(2012)06(c)-0106-02

苯并(a)芘简称bap,是一种有代表性的强致癌物质,由于它对人体的严重危害,已引起了世界各国卫生和环境组织的高度重视,并

被列为环境污染致癌物检测工作中常规检测项目之一。bap是一种由五个苯环构成的多环芳烃,分子式为,分子量252,易溶于环己烷、咖啡因水溶液、苯和三氯甲烷等有机溶剂,其结构如下。

一般燃烧不充分的烟雾中(煤,沥青等)都含有bap,它还存在于工业污水、空气漂尘、香烟头和污泥等。

经典的荧光分析方法中,采用固定激发波长,扫描发射波长以测

绘荧光物的荧光发射光谱;固定发射波长,扫描激发波长以测绘荧

光激发光谱,然后在合适的激发和发射波长下进行测定。环境样品中bap含量低,一般在ppb级,且与其它多环芳烃类荧光物质共存

实验一,二 原子荧光光谱法测量条件的选择和水样中总砷的测定

实验一原子荧光光谱法测量条件的选择 一、实验目的 1.了解原子荧光光谱仪的基本结构及使用方法; 2.掌握原子吸收光谱分析测量条件的选择方法及测量条件的相互关系及影响,确定各项条件的最佳值。 二、方法原理 原子荧光光谱仪工作原理: 在一定工作条件下,荧光强度I F与被测元素的浓度c成正比,其关系如下: I F = K c 氢化物发生原理: BH4- + H++ 2As3+ +3H2O →2AsH3↑+H2↑+ BO33-生成的AsH3蒸汽在载气的带动下,经过火焰原子化,As原子接受由低压砷灯发出激发光照射,基态砷原子被激发到高能态,当返回到基态时辐射出共振荧光,此荧光经聚光镜聚焦于光电倍增管,实现光电转换,最后得到信号。 在原子荧光光谱分析中测量条件选择得是否正确,直接影响到分析方法的检出限、精密度和准确度。本实验通过砷的原子荧光光谱分析测量条件的选择,如灯电流、载气流量等,确定这些测量条件的最佳值。 三、仪器设备与试剂材料 1.PF6型原子荧光光谱仪(北京普析通用),砷高强度空心阴极灯。 2.试剂: (1)砷标准贮备液(1000u g?mL-1):国家标准。 (2)砷实验工作溶液(1u g?mL-1):由砷标准贮备液1000u g?mL-1逐级稀释得到。 (3)硫脲溶液(100g?L-1):称取硫脲10g,加入80mL蒸馏水,水浴加热溶解,蒸馏水稀至100mL,摇匀。 (4)硼氢化钠-氢氧化钠溶液(15g?L-1):称取5g氢氧化钠溶于200mL蒸馏水,加入15g硼氢化钠并使其溶解,用蒸馏水稀至1000mL,摇匀。 (5)2% 盐酸溶液(v/v):移取20ml HCl(GR),用蒸馏水稀释至1000mL,摇匀。 (6)(1+1)盐酸溶液(v/v)。 四、测量条件的选择 1.10ng?mL-1标准溶液的配制

同步荧光光谱法在环境分析中的应用

同步荧光光谱法在环境分析中的应用 环境分析化学是分析化学的一个新分支。在某种意义上讲,环境科学的发展依赖于环境分析化学的发展。随着人们对环境问题 认识的深入,环保意识的增强,环境分析受到越来越多的重视,已有大量综述性章发表[3]。随着有机化工、石油化工、医药工业的发展,以及农药(杀虫剂、除草剂等) 的大量使用,有机化合物对环境的危害和污染日益严重。目前,有机污染物分析测试的重要对象包括,多环芳烃和有机氯等污染物;与空气污染有关的挥发性有机 物、胺类化合物;与水污染有关的表面活性剂;砷、汞、锡等金属 有机化合物[3]。环境有机物的分析手段很多,其中荧光分析法由 于灵敏度高和选择性较等优良性能而得到广泛的应用。 早在16 世纪人们就观察到了荧光现象。20世纪以来,特别是近几十年,荧光现象在理论和实际应用方面都取得了很大进展,并 建立了荧光分析方法[4]。荧光分析法是通过测量样品的荧光强度,用于定量测定许多无机物和有机物,而又具有灵敏度高、选择性强、试样量少和方法简单等特点的一种很有用的分析手段。正因 为如此,近年来催化荧光法、荧光淬灭法、同步荧光技术以及荧光技术与其他技术联用得以不断涌现和完善,引起了分析界广泛地兴趣和瞩目[4]。本主要就近年来同步荧光光谱法在环境有机污染物分析中的应用作一综述,重点是介绍国内的情况。

正常规的化学分析是在样品沉淀、分离、萃取之后通过重量分析、色层析、光分析、电分析等分析技术来完成的,通常需消耗大量的溶剂和时间,并且在取样和处理过程中产生大量污染物,分析成本高。荧光技术灵敏度高,但常规的荧光分析法在实际应用中往往受到限制,对一些复杂混合物分析常遇到光谱互相重叠、不易分辨的困难,需要预分离且操作繁琐。[1] 1971 年L loyd首先提出了用同步荧光光谱技术[2]。和常规荧光分析法相比, 同步荧光分析法具有谱图简化、选择性提高、 光散射干扰减少等特点, 并且不需要预分离、操作简便、节省分 析成本、缩短分析时间, 尤其适合对多组分混合物的分析[2]。该法近几年得到迅速发展和广泛的应用, 出现了许多的新技术, 如 导数恒能量同步荧光法、三维同步荧光法和可变角同步荧光法等[5]。该法已应用于多组分多环芳烃的定性定量分析,环境、药物 分析, 食品、蛋白质、氨基酸、石油产品分析等。 近年来,人们对环境污染物质的分析十分重视,由于环境样品 中微量有机物的系统测定要求尽可能地采用高灵敏度和高选择性 的分析法, 所以在分析方面有较大的困难[2]。同步荧光技术在痕量分析方面尤有前途。酚为环保检测项目之一, 但在普通的荧光 光谱中, 瑞利峰和拉曼峰对荧光峰有干扰,用同步荧光光谱通过筛选最佳波长差,消除了这些因素的干扰,对酚进行了定量测定,并用于大气中酚的测定[2]。杜娟等[6]用同步荧光分析法测定工业及

荧光分析法检测原理及应用举例

1 荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2 荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3 光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1。S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+1=1,电子所处的激发态为单重态, 用S i 表示,由此可推出,S 即为基态的单重态,S 1 为第一跃迁能级激发态的单重 态,S 2 为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+1=3,电子 在激发态中位于第三振动能级,称为三重态,用T i 来表示,T 1 即为第一激发态中 的三重态,T 2 即为第二激发态中的三重态,以此类推。

活性污泥法处理氨氮废水

活性污泥法处理氨氮废水 传统的硝化反硝化脱氮工艺是通过硝化过程使氨氮转化为NO3--N, 然后通过反硝化过程使NO3--N 还原为N2来降低处理水中TN 浓度?国内外的很多研究表明,可以通过控制硝化过程,使微生物氧化氨氮生成中间体NO2--N, 然后利用NO2--N 进行还原反应生成N2,即短程硝化反硝化〔1-2〕?与传统的硝化反硝化相比,短程硝化反硝化具有以下优点〔3〕:可节省供氧量约25%,能耗低;可节省反硝化碳源约40%, 在C/N 值一定的情况下能提高对TN 的去除率;可减少污泥生成量约50%;可减少硝化过程碱的需求量;反应时间短,可减少反应器容积?实验利用低DO 和高pH 作为选择条件实现短程硝化反硝化,并通过改变条件以求寻找短程硝化发生转变的条件,该实验研究具有理论探讨和实践应用的双重意义? 1 材料与方法 1.1 实验装置及流程 实验采用一小型SBR(Sequencing Batch Reactor,序批式间歇反应器),见图1? 图1 实验装置 实验装置的材质为有机玻璃,反应器尺寸为:30 cm×20 cm×30 m,有效水深为20 cm,总有效容积为12 L?采用鼓风微孔曝气,通过转子流量计控制曝气量?每个周期包括进水?曝气?沉淀?排水?闲置5 个阶段? 1.2 实验进水及接种污泥 为稳定和方便控制实验条件,实验采用人工配制模拟氨氮废水,其组成见表1?其中微量元素溶液的组成(g/L) 为:MnCl2·4H2O 0.20,NaMoO4·2H2O0.11,CoCl2·6H2O 0.20,ZnSO4·7H2O 0.10,NiCl2·6H2O0.04,FeCl3·6H2O 0.24?

实验40 微波消解-原子荧光光谱法分析测定电池中汞

原子荧光分析法测定电池中的汞 实验目的 (1).了解原子荧光光谱法测定汞的基本原理和实验方法 (2).掌握原子荧光光度计的基本构造和操作 实验原理 在酸性介质中,用强还原剂硼氢化纳将试样中的汞离子还原为汞原子,其反应方程式为Hg(NO3)2+3NaBH4+HNO3+6H2O → Hg+3HBO2+3NaNO3+11H2 由于汞的挥发性,用氩气将汞蒸气带入原子化器进行测定. 汞空心阴极灯发射出特征光束,照射在汞蒸气上,使汞原子激发而发射荧光.在合理条件下,荧光强度与汞原子浓度呈线性关系. 仪器试剂 仪器 AF2-2202a行双道原子荧光光度计(北京)25mL比色管 试剂 (1).汞标准储备液(1.0mg/mL) (2).中间液(含Hg2+10μg/mL):吸取0.50mL储备液于50mL容量瓶中,用5%HNO3稀释至刻度,摇匀. (3).使用液(含Hg2+ 0.01 μg/mL):吸取中间液0.25mL 于25容量瓶中,用5%HNO3稀释至刻度,摇匀.然后吸取此溶液2.5 mL于25mL容量瓶中,用5%HNO3稀释至刻度,摇匀.(4).1%NaBH4 (5). 5%HNO3 仪器工作条件 AF2-2202a行双道原子荧光光度计仪器测量参数

仪器条件 元素光电倍增 管负高压 /V 原子化器 温度/℃ 原子化器 高度/mm 灯电流/mA 载气流量 /ml.min-1 屏蔽气流 量ml.min-1 Hg 300 200 8 30 400 1000 测量条件 读数时间/s 10 标准校正点 1 延迟时间/s 0.5 标准频率 0 注入量/mL 0.5 测量方式 Std.Cure 重复次数 1 读数方式 Peak area 空白判别值 10 分析液单位 mg.L-1 (μg.mL-1) 断流程序 步骤时间/s 泵转速/rpm 读数 1 6 0 No 2 10 100 No 3 6 0 No 4 16 130 Yes 实验步骤 (1).分析校准曲线制作:分别吸取1.0mL、 1.5mL、 2.0mL、 2.5mL汞标准使用液于4个25mL的比色管中,用5%HNO3稀释至刻度,摇匀.按前表中的参数进行测量,以荧光强度对浓度作图制作分析校准曲线. (2).样品测定:在与分析校准曲线相同条件下分别测定试剂空白和样品的荧光强度.

活性污泥法污水处理

水污染控制工程课程设计城镇污水处理厂设计 指导教师刘军坛 学号 130909221 姓名秦琪宁

目录 摘要 (3) 第一章引言 (4) 1.1设计依据的数据参数 (4) 1.2设计原则 (5) 1.3设计依据 (5) 第二章污水处理工艺流程的比较及选择 (6) 2.1 选择活性污泥法的原因 (6) 第三章工艺流程的设计计算 (7) 3.1设计流量的计算 (7) 3.2格栅 (9) 3.3提升泵房 (9) 3.4沉砂池 (10) 3.5初次沉淀池和二次沉淀池 (11) 3.6曝气池 (15) 第四章平面布置和高程计算 (25) 4.1污水处理厂的平面布置 (25) 4.2污水处理厂的高程布置 (26) 第五章成本估算 (27) 5.1建设投资 (27) 5.2直接投资费用 (28) 5.3运行成本核算 (29) 结论 (29) 参考文献: (30) 致谢 (30)

摘要 本设计采用传统活性污泥法处理城市生活污水,设计规模是200000m3/d。该生活污水氨氮磷含量均符合出水水质,不需脱氮除磷,只考虑除掉污水中的SS、BOD、COD。传统活性污泥法是经验最多,历史最悠久的一种生活污水处理方法。污泥处理工艺为污泥浓缩脱水工艺。污水处理流程为:污水从泵房到沉砂池,经过初沉池,曝气池,二沉池,接触消毒池最后出水;污泥的流程为:从二沉池排出的剩余污泥首先进入浓缩池,进行污泥浓缩,然后进入贮泥池,经过浓缩的污泥再送至带式压滤机,进一步脱水后,运至垃圾填埋场。本设计的优势是:设计流程简单明了,无脱氮除磷的设计,节省了成本,该方法是早期开始使用的一种比较成熟的运行方式,处理效果好,运行稳定,BOD 去除率可达90%以上,适用于对处理效果和稳定程度要求较高的污水,城市污水多采用这种运行方式。 关键词:城市污水传统活性污泥法污泥浓缩

荧光分光光度法测定荧光素钠的含量

荧光分光光度法测定荧光素钠的含量 一、实验目的 1.学习荧光分光光度法测定荧光素钠的分析原理。 2.掌握荧光分光光度计的操作技术和测定荧光素钠的方法。 二、实验原理 荧光分析法,是以溶液中物质分子对光的选择性吸收为基础而建立起来的一类分析方法。 常温下,处于基态的分子吸收一定的紫外可见光的辐射能成为激发态分子,激发态分子通过无辐射跃迁至第一激发态的最低振动能级,再以辐射跃迁的形式回到基态,发出比吸收光波长长的光而产生荧光。 在稀溶液中,荧光强度I F 与物质的浓度c 有以下的关系: 当实验条件一定时,荧光强度与荧光物质的浓度成线性关系: 这是荧光光谱法定量分析的理论依据。 三、仪器及试剂 1.仪器 960荧光分光光度计; LC-UV 紫外检测器; 微量进样器 2.试剂 ① 二氯荧光素(分析纯); ② 荧光素钠 四、操作步骤 1.标准溶液配制 准确称取0.05g 二氯荧光素标样,配制成2500ml 溶液,则此溶液浓度为0.05μm/mL ,分别移取此溶液2.0ml 、4.0ml 、6.0ml 、8.0ml ,于25ml 容量瓶中,bc I I F εφ0303.2=Kc I F =

并用蒸馏水稀释至刻度,摇匀后,待测定各标准溶液的荧光强度。 2.荧光强度测定 (1)荧光光度计操作 开启220V稳压电源至220V; 打开主机电源开关。 检查氙灯电是否开启。 (2)二氯荧光素发光谱的绘制,参数设置如下: ①设定纵坐标 ②设定灵敏度; ③设定扫描速度; ④发射波长EMISSION Wavelength 250.0 nm; ⑤激发波长范围200-350 nm; ⑥将某一浓度的二氯荧光素标液置于试样池中; ⑦扫描得到激发光谱。 (3)标准溶液及样品的测定,参数设置如下: ①设定纵坐标 ②设定灵敏度; ③设定扫描速度; ④设定激发波长EXCITION Wavelength 496.0nm(从激发光谱曲线中)得到; ⑤发射波长范围EMISSION Wavelength 518nm; ⑥将1号标准溶液放入试样池中; ⑦扫描得到荧光光谱。 仪器开始扫描,得到1号标准溶液的荧光强度。其余4各标准溶液和样品液只要重复上述⑥⑦操作,就可以分别得到它们的荧光光谱。按各标液的荧光强度做出I-C工作曲线。 五、数据记录及计算 1.列表

活性污泥法污水处理

水污染控制工程课程设计 城镇污水处理厂设计 指导教师刘军坛 姓名秦琪宁 目录 摘要 (3) 第一章引言...................................... 1.1设计依据的数据参数........................................................................................ 1.2设计原则............................................................................................................ 1.3设计依据............................................................................................................ 第二章污水处理工艺流程的比较及选择错误!未定义书 签。 2.1 选择活性污泥法的原因................................................................................... 第三章工艺流程的设计计算.. (7) 3.1设计流量的计算 (7) 3.2格栅 (9) 3.3提升泵房............................................................................................................ 3.4沉砂池 (10) 3.5初次沉淀池和二次沉淀池 (11) 3.6曝气池 (15) 第四章平面布置和高程计算 (25) 4.1污水处理厂的平面布置 (25) 4.2污水处理厂的高程布置 (26) 第五章成本估算 (27) 5.1建设投资 (27) 5.2直接投资费用 (28) 5.3运行成本核算 (29) 结论 (29) 参考文献: (30) 致谢 (30)

原子荧光光谱仪操作步骤及原理分析2012

氢化物(蒸气)发生 -原子荧光 原子荧光的发展史 ●原子荧光谱法(AFS)是原子光谱法中的一个重要分支。从其发光机理看属于一种原子发 射光谱(AES),而基态原子的受激过程又与原子吸收(AAS)相同。因此可以认为AFS是AES和AAS两项技术的综合和发展,它兼具AES和AAS的优点。 ●1859年Kirchhoof研究太阳光谱时就开始了原子荧光理论的研究,1902年Wood等首 先观测到了钠的原子荧光,到20世纪20年代,研究原子荧光的人日益增多,发现了许多元素的原子荧光。用锂火焰来激发锂原子的荧光由BOGROS作过介绍,1912年WOOD 年用汞弧灯辐照汞蒸气观测汞的原子荧光。Nichols和Howes用火焰原子化器测到了钠、锂、锶、钡和钙的微弱原子荧光信号,Terenin研究了镉、铊、铅、铋、砷的原子荧光。 1934年Mitchll和Zemansky对早期原子荧光研究进行了概括性总结。1962年在第10次国际光谱学会议上,阿克玛德(Alkemade)介绍了原子荧光量子效率的测量方法,并予言这一方法可能用于元素分析。1964年威博尼尔明确提出火焰原子荧光光谱法可以作为一种化学分析方法,并且导出了原子荧光的基本方程式,进行了汞、锌和镉的原子荧光分析。 ●美国佛罗里达州立大学Winefodner教授研究组和英国伦敦帝国学院West教授研究 小组致力于原子荧光光谱理论和实验研究,完成了许多重要工作。 ● 20世纪70年代,我国一批专家学者致力于原子荧光的理论和应用研究。西北大学杜 文虎、上海冶金研究所、西北有色地质研究院郭小等均作出了贡献。尤其郭小伟致力于氢化物发生(HG)与原子荧光(AFS)的联用技术研究,取得了杰出成就,成为我国原子荧光商品仪器的奠基人,为原子荧光光谱法首先在我国的普及和推广打下了基础。 幻灯片3 国外AFS仪器发展史 *1971年Larkins用空心阴极灯作光源,火焰原子化器,采用泸光片分光,光电倍增管检测。测定了A u、B i、Co、H g、M g、N i 等20多种元素; *1976年Technicon公司推出了世界上第一台原子荧光光谱仪AFS-6。该仪器采用空心阴极灯作光源,同时测定6个元素,短脉冲供电,计算机作控制和数据处理。由于仪器造价高,灯寿命短,且多数被测元素的灵敏度不如AAS和ICP-AES,该仪器未能成批投产,被称之为短命的AFS-6。 *20世纪80年代初,美国Baird公司推出了AFS-2000型ICP-AFS仪器。该仪器采用脉冲空心阴极灯作光源,电感耦合等离子体(ICP)作原子化器,光电倍增管检测,12道同时测量,计算机控制和数据处理。该产品由于没有突出的特点,多道同时测定的折衷条件根本无法满足,性能/价格比差,在激烈的市场竞争中遭到无情的淘汰。 *20世纪90年代,英国PSA公司开始生产HG-AFS。

活性污泥法实验

活性污泥实验 一、 实验目的 1、观察完全混合活性污泥处理系统的运行,掌握活性污泥处理法中控制参数(如污泥负荷、泥龄、溶解氧浓度)对系统的影响; 2、加深对活性污泥生化反应动力学基本概念的理解; 3、掌握生化反应动力学系数K 、Ks 、Vmax 、Y 、Kd 、a 、b 等的测定。 二、 实验原理 活性污泥好氧生物处理是指在有氧参与的条件下,微生物降解污水中的有机物。整个过程包括微生物的生长、有机底物降解和氧的消耗,整个过程变化规律如何正是活性污泥生化反应动力学研究的内容,活性污泥生化反应动力学内容包括: (1)底物的降解速度与有机底物浓度、活性污泥微生物量之间的关系; (2)活性污泥微生物的增殖速度与有机底物浓度、活性污泥微生物量之间的关系; (3)有机底物降解与氧需。 1、底物降解动力学方程 Monod 方程: S Ks S V dt dS +=- max (1) Vmax-------有机底物最大比降解速度, Ks-----------饱和常数, 在稳定条件下,对完全混合活性污泥系统中的有机底物进行物料平衡: 0)(=++-+dt dS V Se Q R Q Se Q R Q So (2) 整理后,得

dt dS V Se So Q - =-)( (3) 于是有 S Ks S V Xt Se So XV Se So Q +=-=-max )( (4) 而M F Xt Se So XV Se So Q /)(=-=-,F/M 为污泥负荷。 完全混合曝气池中S=Se ,所以(4)式整理后可得 max 11max V Se V Ks Se So t X +=- (5) (5)式为一条直线方程,以Se 1 为横坐标,Xt Se So -(污泥负荷)为纵坐标,直 线的斜率为 max V Ks ,截距为max 1 V ,可分别求得max V 、Ks 。 又因为在低底物浓度条件下,Se<

各类荧光素的发射激发波长

Probe Ex(nm) Em(nm) MW Notes  Reactive and conjugated probes  Hydroxycoumarin 325 386 331 Succinimidyl ester  Aminocoumarin 350 445 330 Succinimidyl ester  Methoxycoumarin 360 410 317 Succinimidyl ester  Cascade Blue 375;400 423 596 Hydrazide  Lucifer yellow 425 528 NBD 466 539 294 NBD-X  R-Phycoerythrin (PE) 480;565 578 240 k PE-Cy5 conjugates 480;565;650 670 aka Cychrome, R670, Tri-Color, Quantum Red PE-Cy7 conjugates 480;565;743 767 APC-Cy7 conjugates 650;755 767 PharRed  Red 613 480;565 613 PE-Texas Red  Fluorescein 495 519 389 FITC; pH sensitive  FluorX 494 520 587 (AP Biotech)  BODIPY-FL 503 512 TRITC 547 572 444 TRITC  X-Rhodamine 570 576 548 XRITC  Lissamine Rhodamine B 570 590 PerCP 490 675 Peridinin chlorphyll protein

同步荧光分析法测定生物蛋白质

实验题目:测定生物样品中的蛋白质(同步荧光法) 1.实验原理:蛋白质是一类重要的生物大分子,它是构成生命体最重要的物质基础之一。蛋白质的定量测定是临床检验中诊断疾病及检查治疗效果的重要指标。因此,蛋白质定量测定在化学、生物、医药、食品等各相关学科中已经成为一个非常热门的研究课题。 血清白蛋白是动物和人体血浆中重要的载体蛋白,它能和许多种内源或外源化合物产生作用,承载着将药物运输到达靶点产生药效和储存药物延长药效等重要作用,对研究药物的药效和药理及临床用药有重要意义。蛋白质测定较常用的经典方法有凯氏定氮法、Lowry法、考马斯亮蓝法、紫外分光光度法b1等,其中,凯氏定氮法因其适用样品广泛,测试结果准确,是常用分析有机化合物含氮量的经典方法之一。近来又发展了一些新方法如荧光光度法、化学发光法和共振光散射法[等。同步荧光光谱法自1971年被提出以来,由于其与常规荧光分析法相比具有灵敏度高、选择性好、光谱简化、谱带窄化及可减小散射光影响等优点,已成功地应用于多组分的同时测定以及生物分子的研究中。 2.仪器与试剂:FP-6500荧光分光光度计(日本分光公司);T-6紫外一可见分光光度计(北京普析通用仪器公司);PB.10型酸度计(北京赛多利斯仪器系统公司);BS.110S型电子天平(北京赛多利斯天平公司);脱氧尿苷1.0×10。3 mol/L水溶液;人血清白蛋白(HSA,华兰生物工程公司)4.0×10。5 mol/L水溶液,在冰箱中保存(1~4 oC);pH 7.4的%s.HCI 缓冲溶液;考马斯亮蓝溶液(溶液中含0.0l%考马斯亮蓝G-250,4.7%乙醇,8.5%磷酸);0.5 mol/L的NaCl水溶液。所用试剂均为分析纯,实验用水均为二次去离子水。 3. 实验方法:于10 mL比色管中依次加入:pH 7.4的Tris.HCl缓冲溶液2.0 mL,0.5 mol/L的NaCI溶液2.0 IllL,一定体积的HSA标准溶液,1.0×10。mol/L的脱氧尿苷溶液O.2 mL,用水定容至刻度,摇匀,用1 cm石英吸收池,在△入=50 Rnm时扫描体系的同步荧光光谱。 4.注意事项:1)加入顺序的影响:考察了各种不同的物质加入顺序对体系同步荧光强度的影响。当加入顺序为Tris--HCI--NaCl--Deoxyuridine时体系的同步荧光强度最高、且稳定性最好。 2)反应时间和稳定性:在上述实验条件下,考察了反应时间对体系同步荧光强度的影响。结果表明,在室温下,该反应在5 min内即可完成,且体系的同步荧光强度至少在5 h内基本不变。 3)线性范围、回归方程、检出限:在最佳实验条件下,以体系的同步荧光强度对HSA浓度绘制标准工作曲线,线性回归方程为IsF=13.60246+211.19154×107 C(HSA)(mol/L),相关系数为R=0.9991。测定的浓度范围在2.76~524.4微克每毫升之间。根据IUPAC的定义,对11份空白溶液进行平行测定,计算了方法的检出限为0.11毫克每毫升。

X射线荧光光谱仪结构和原理

X射线荧光光谱仪结构和原理 第一章 X荧光光谱仪可分为同步辐射X射线荧光光谱、质子X射线荧光光谱、全反射X射线荧光光谱、波长色散X射线荧光光谱和能量色散X射线荧光光谱等。 波长色散X射线荧光光谱可分为顺序(扫描型)、多元素同时分析型(多道)谱仪和固定道与顺序型相结合的谱仪三大类。顺序型适用于科研及多用途的工作,多道谱仪则适用于相对固定组成和批量试样分析,固定道与顺序式相结合则结合了两者的优点。 X射线荧光光谱在结构上基本由激发样品的光源、色散、探测、谱仪控制和数据处理等几部分组成。 §1.1 激发源 激发样品的光源主要包括具有各种功率的X射线管、放射性核素源、质子和同步辐射光源。波长色散X射线荧光光谱仪所用的激发源是不同功率的X射线管,功率可达4~4.5kW,类型有侧窗、端窗、透射靶和复合靶。能量色散X射线荧光光谱仪用的激发源有小功率的X射线管,功率从4~1600W,靶型有侧窗和端窗。靶材主要有Rh、Cr、W、Au、Mo、Cu、Ag等,并广泛使用二次靶。现场和便携式谱仪则主要用放射性核素源。 激发元素产生特征X射线的机理是必须使原子内层电子轨道产生电子空位。可使内层轨道电子形式空穴的激发方式主要有以下几种:带电粒子激发、电磁辐射激发、内转换现象和核衰变等。商用的X射线荧光光谱仪中,目前最常用的激发源是电磁辐射激发。电磁辐射激发源主要用X射线管产生的原级X射线谱、诱发性核素衰变时产生的γ射线、电子俘获和内转换所产生X射线和同步辐射光源。 §1.1.1 X射线管 1、X射线管的基本结构 目前在波长色散谱仪中,高功率X射线管一般用端窗靶,功率3~4KW,其结构示意图如下:

主要荧光素一览表

(1)荧光素类 Fluorescein 标准荧光素(Reference standard)之一,在其基础上进行结构改造,可产生一系列荧光素衍生物。 Fluorescein适用于Argon-ion Laser的488nm光谱线,有相对高的荧光吸收,较好的荧光产率以及良好的水溶性。标记蛋白时通常不会产生蛋白沉淀。 与其他荧光素类衍生物一样,Fluorescein具有光淬灭率高,pH敏感性强与发射波谱宽的缺点。 主要应用于聚焦激光扫描微阵列(Confocal laser scanning microscopy)和流式细胞计应用(Flow cytometry)。 FITC 异硫氰酸荧光素,Fluorescein isothiocyanate,是荧光素衍生物的一种,5-FITC较6-FITC更经常使用。 FITC的异硫氰酸基能与氨基反应,可用于标记氨基修饰DNA,一旦形成,产物极为稳定。适用于Argon-ion Laser的488nm光谱线,Abs/Em=492/519nm(pH=)。与蛋白的结合力也强。 FITC具有荧光素衍生物的普遍特性。在水中易变坏,不能长久保存。 FITC-Oligo 广泛用于杂交探针;FITC-多肽用于Edman降解蛋白测序;FITC也经常被用于蛋白电泳检测(即使是毛细管电泳)和荧光能量激发转移测试。 FAM 羧基荧光素,Carboxyfluorescein,是荧光素衍生物的一种,5-FAM较6-FAM更经常使用。 Carboxyfluorescein-5-succimidyl ester,即5-FAM(NHS)广泛存在于荧光标记试剂盒。 与FITC相比,FAM与氨基反应更快,产物也更稳定,但FITC结合蛋白的量更大且进程更易于控制。 FAM也适用于Argon-ion Laser的488nm光谱线,Abs/Em=492/518nm(pH=),具有荧光素衍生物的普遍特性,在水中稳定。 5-FAM主要应用于DNA自动测序中,标记其中的d/ddCTP(PE公司),也经常用于PCR产物定量,核酸探针等。

原子荧光光谱法测定茶叶中的se含量

原子荧光光谱法测定茶叶中的se 含量 1 实验目的 ①握茶叶前处理的方法 ②进一步掌握原子荧光光度计的使用方法 2. 实验原理 3 实验仪器及试剂 AF-610A 原子荧光光度计一台Se 空芯阴极灯一个烘箱 浓HNO3 高氯酸20%HCl 铁氰化钾2%KBH4 (混酸为浓盐酸与高氯酸体积比为4:1) 100ml 容量瓶4 个烧杯若干表面皿一个25ml 比色管9 个(0-6 号标准系列,两个样品,测平行) 4 样品配置过程: 4.1 样品处理 前处理:取一定的茶叶,在60 C烘箱内烘干,用研钵研磨研碎,称取约 0.5 克的粉末,两份,分别放入两个小烧杯中,分别加入8ml 浓硝酸和2ml 高氯酸,另外设置一个空白样,即不加茶叶,只加8ml 浓硝酸和2ml 高氯酸,放置,过夜。 样品的消解:将放置过夜的三个小烧杯放在加热板上加热消解,直到冒出高氯酸的白烟,在加入少量硝酸和双氧水将残渣溶解,在加热沸腾,直到没有气泡。将三个小烧杯的溶液进行过滤,除掉不溶的残渣,将过滤后的溶液分别转移至25ml 容量瓶中标号为样品1 、样品2 和样品空白。 移取10ml 的样品1 放入25ml 的比色管中,定容,移取两份,作为对照。样品2 也是移取两份10ml 于两个25ml 的比色管中,样品空白移取一份。 4.2 标准样系列已经配置好。

4. 3测定标准系列按从小到大的浓度顺序进行测定,然后记录荧光信号值, 在测定样品空白,记录信号值,在分别测定样品,记录荧光信号。 5数据处理及分析. 实验数据如下表 样品信号记录表

结论:实验所用茶叶硒元素含量很低为ng 级,因此可忽略不计,故认为该茶叶中不含硒元素。 总结:此次实验过程我们小组设计的标准系列有点大,应该缩小系列间的浓度梯度,这样可能得出的结果更准确。但是不可否认,这次我们的标准系列做得还是比较好的,这点可以从曲线上看出来。

常见荧光素

常见荧光素: (1)异硫氰酸荧光素 (fluorescein isothiocyanate, FITC) :FITC纯品为黄色或橙黄色结晶粉末,易溶于水和酒精溶剂。有两种异构体,其中异构体Ⅰ型在效率、稳定性与蛋白质结合力等方面都更优良。FITC分子量为389.4,最大吸收光波长为490~495nm,最大发射光波长为520~530nm,呈现明亮的黄绿色荧光。FITC在冷暗干燥处可保存多年,是目前应用最广泛的荧光素。其主要优点是人眼对黄绿色较为敏感,通常切片标本中的绿色荧光少于红色。 (2)四乙基罗丹明 (rhodamine, RB200) :RB200为橘红色粉末,不溶于水,易溶于酒精和丙酮,性质稳定,可长期保存。最大吸收光波长为 570nm,最大发射光波长为595~600nm,呈现橘红色荧光。 (3)四甲基异硫氰酸罗丹明 (tetramethyl rhodamine isothiocynate, TRITC):TRITC为罗丹明的衍生物,呈紫红色粉末,较稳定。最大吸收光波长为 550nm,最大发射光波长为620nm,呈现橙红色荧光,与FITC的翠绿色荧光对比鲜明,可配合用于双重标记或对比染色。因其荧光淬灭慢,也可用于单独标记染色。(4)镧系:镧系螯合物某些3价稀土镧系元素如铕(Eu3)、铽(Tb3)、铈(Ce3)等的螯合物经激发后也可发射特征性的荧光,其中以Eu3 应用最广。Eu3螯合物的激发光波长范围宽,发射光波长范围窄,荧光衰变时间长,最适合用于分辨荧光免疫测定。 (5)藻红蛋白(P-phycoerythrin,PE):PE是在红藻中所发现的一种可进行光合作用的自然荧光色素,分子量为240kD的蛋白,最大吸收峰为564 nm,当使用488 nm激光激发时其发射荧光峰值约为576 nm,对于单激光器的流式细胞仪来说,推荐使用585±21nm的带通滤光片,双激光器的流式细胞仪推荐使用575±13nm的带通滤光片。FL2探测器检测PE。 (6)多甲藻叶绿素蛋白(peridinin chlorophyll protein,PerCP):PerCP 是在甲藻和薄甲藻的光学合成器中发现的,是一种蛋白复合物,分子量约为 35kD,最大激发波长的峰值在490nm附近,当被488nm氩离子激光激发后,发射光的峰值约为677nm。FL3探测器检测PerCP。 (7)碘化丙啶( propidium iodide,PI):可选择性地嵌入核酸(DNA、RNA)的双螺旋碱基对中。在对DNA染色时,需用RNase对细胞进行处理,以排除RNA

简述活性污泥法污水处理新工艺详细说明

简述活性污泥法污水处理新工艺详细说明伴随着经济发展和城市化进程的不断推进,城市环境问题日益突出,给自然环境造成了巨大的压力。由于在相当长的一段时期,人们对环境污染的后果缺乏认识,致使城市环境污染问题日益严重。用污泥处理设备处理造纸厂白液,可回收白液中的纸浆,提高造纸厂回收率。若都用振动脱水机对酿酒厂的酒槽和造纸厂的白液进行脱水处理,对废弃物的回收再利用和消除污染公害,具有十分重要的意义。 活性污泥法污水处理机械设备的设计 活性污泥是当前应用最为广泛的一种生物处理技术。活性污泥就是生物絮凝体,上面栖息、生活着大量的好氧微生物,这种微生物在氧分充足的环境下,以溶解型有机物为食料获得能量、不断生长,从而使污水得到净化。该方法主要用来处理城市污水和低浓度的有机工业污水。所用设备一般由曝气池、二沉池、污泥回流和剩余污泥排出系统构成,曝气池是其中最主要的系统。 活性污泥法的基本流程 由初沉池、曝气池、二沉池、供氧装置以及回流设备组成。由初沉池流出的污水与二沉池底部流出的回流污泥混合后进入 曝气池,并在曝气池充分曝气,使活性污泥处于悬浮状态,并与

污水充分接触,同时保持曝气池好氧条件,保证好氧微生物的正常生长和繁殖。污水中的可溶性有机物在曝气池内被活性污泥吸附、吸收和氧化分解,使污水得到净化。二次沉淀的作用:一是将活性污泥与已被净化的水分离;二是浓缩活性污泥,使其以较 高的浓度回流到曝气池。二沉池的污泥也可以部分回流至初沉池,以提高初沉效果。 活性污泥法的工艺 曝气池实际上是一种生化反应器,是活性污泥系统的核心设备,活性污泥系统的净化效果,在很大程度上取决于曝气池的功能是否能够正常发挥。混合液的流态曝气池可分为推流式、完全混合式和二池结合型三类。严格来说,推流式和完全混合式只具理论上的意义,工程实践中曝气池的构造和曝气方式密切相关。根据曝气方式的不同,曝气池又可分为鼓风曝气式曝气池和机械曝气式曝气池。 污水处理的主要任务就是用各种方法将生活污水和生产废 水中所含的污染物分离出来,或将其转化为无害的物质,从而使污水得以净化。按其作用原理可将污水处理方法分为不溶态污染物的分离技术(简称为物理法)、污染物的化学转换技术(简称化 学法)、溶解态污染物的物理化学转换技术(简称物化法)、污染 物的生物化学转换技术(简称生化法)等4大类。而按照处理程度

总砷的测定——原子荧光光谱法

总砷的测定——氢化物原子荧光光度法 1 范围 本方法规定了乳制品中总砷的测定方法。 2 原理 试样经消解后,加入硫脲使五价砷预还原为三价砷,再加入硼氢化钠或硼氢化钾还原成砷化氢,由氩气载入石英原子化器中分解为原子态砷,在特制砷空心阴极灯的发射光激发下产生原子荧光,其荧光强度在固定条件下与被测液中的砷浓度成正比,与标准系列比较定量。 3 试剂 3.1 盐酸(优级纯)。 3.2 硝酸(优级纯)。 3.3 过氧化氢(30%)。 3.4 氢氧化钠(氢氧化钾)溶液(5g/L)。 3.5 还原剂(硼氢化钠(硼氢化钾)溶液)称取硼氢化钠(硼氢化钾)10.0g,溶于氢氧化钠(氢氧化钾)溶液(5g/L)1000ml中,混匀。此液于冰箱冷藏可保存10天。 3.6 载流液5%HCL(V/V):量取50ml浓盐酸(优级纯),用去离子水定容至1000ml(酸的纯度达不到要求时可适当降低其浓度)。 3.7 5%硫脲+5%抗坏血酸混合溶液:称取硫脲、抗坏血酸各5g溶于100ml水中,现配现用。 3.8 砷标准使用液(100μg/L): 吸取1ml浓度为1000μg/ml的标准储备液于100ml容量瓶中,用5%硝酸定容至刻度,浓度为10μg/ml。 吸取1ml浓度为10μg/ml的标准使用液于100ml容量瓶中,用5%盐酸定容至刻度,浓度为100μg/L。现配现用。 4 仪器 所用玻璃仪器均需以硝酸(1+5)浸泡过夜,用水反复冲洗,最后用去离子水冲洗干净。 4.1 原子荧光光度计(砷阴极空心灯)。 4.2 微波消解仪。 5 分析步骤 5.1 试样消解 称取0.5g奶样于消解罐中,加硝酸(优级纯)3ml,过氧化氢(30%)2ml,按设定程序微波消解。消解结束后取出冷却,将消解好的样品转移至25ml容量瓶,并用超纯水多次润洗,然后再加入5ml硫脲-抗坏血酸(5%),用超纯水定容至刻度。静置30分钟,检测前摇匀。

水溶性CdTePCdS量子点荧光探针同步荧光法测定DNA

第52卷第2期 2006年4月 武汉大学学报(理学版) J.W uhan Univ.(N at.Sci.Ed.)V ol.52N o.2  A p r.2006,129~132 收稿日期:2005209222 通讯联系人 E 2mail :cai _lin @w https://www.360docs.net/doc/f515524278.html, 基金项目:国家自然科学基金资助项目(20275027);湖北省教育厅科学技术研究重点项目(D 200524005)作者简介:徐 靖(19662),女,博士生,郧阳医学院副教授,现从事动态分子光谱及动力学分析的研究. E 2mail :x uj ingw h @https://www.360docs.net/doc/f515524278.html, 文章编号:167128836(2006)022******* 水溶性CdT ePCdS 量子点荧光探针 同步荧光法测定D NA 徐 靖1,2,赵应声1,吴新国1,蔡汝秀1 (1.武汉大学化学与分子科学学院,湖北武汉430072;2.郧阳医学院公共与管理学院,湖北十堰442000) 摘 要:以巯基丙酸(HS —CH 2CH 2COO H )为稳定剂,水相合成了核壳型Cd TePCdS 量子点(QDs ).当固定波长差为240nm 时,Cd TePCdS 量子点的同步荧光最大发射位于338nm.基于DNA 对量子点荧光的猝灭效应,将 Cd TePCdS 量子点作为荧光探针建立了一种简便快速测定DNA 的同步荧光分析法.详细研究了p H 值、量子点浓 度、离子强度、温度等条件对量子点同步荧光及DNA 测定的影响.该方法测定ctDNA 的线性范围为50.0~750.0μg/L ,检出限为16μg/L ,9次重复测定500μg/L ctDNA 的相对标准偏差为2.0%.该方法用于合成样品的测定,结果满意. 关 键 词:Cd TePCdS ;核壳型量子点;DNA ;荧光探针;同步荧光中图分类号:O 657.32 文献标识码:A 近年来,半导体量子点(QDs )的研究引起了广 泛的关注[1~4].半导体量子点的激发光谱宽,呈连续分布,发射光谱对称且半峰宽窄,不同大小的半导体量子点能被单一波长的光激发而发出不同颜色的荧光.这就使得在复杂体系中同时研究多种生物分子成为可能.与传统的有机荧光染料相比,半导体量子点还具有不易发生光漂白,荧光量子产率高及斯托克斯位移大等优点,因此可望作为荧光探针应用于生物体系中[2~5].水相合成的半导体量子点由于具有良好的亲水性和生物相容性,其合成及应用成为极具吸引力的研究新热点[6~8]. 核酸作为遗传信息的载体,一直是化学和生命科学中重要的研究领域.核酸的定量分析是核酸研究的基础.荧光分析法因其简便快速、灵敏度高,成为核酸分析的最重要手段之一[9,10].由于核酸无内源荧光,故其测定必须应用量子产率高的荧光探针.核酸分子的检测灵敏度主要取决于核酸探针的检测灵敏度.某些能与核酸发生某种嵌插作用的有机染料如二苯并咪唑、溴化乙啶及其二聚体[10]等常用作核酸荧光探针.但是有机荧光染料易于发生光漂白现象,而使其信号强度减弱,从而限制了在痕量核酸检测中的应用.本文以巯基丙酸(HS —C H 2C H 2 COO H )为稳定剂,水相合成了核壳型Cd TePCdS 量子点.核壳体系可以有效地钝化核微粒表面的非 辐射复合中心,减少核心半导体在导带的捕获态,从而显著提高荧光量子产率,增强光稳定性[11,12].由于在量子点的外面包覆了一层巯基丙酸,借助于其外端的羧基,能与生物分子的氨基相作用,从而达到直接与生物分子结合的目的[6,7].Cd TePCdS 量子点具有宽而连续的激发光谱和狭窄对称的发射光谱,最大发射波长位于578nm.当固定波长差为240nm 时,其同步荧光最大发射位于338nm.与荧光发射光谱相比,该量子点的同步荧光光谱的峰形更窄,更对称,荧光强度也更强,与DNA 作用后量子点的同步荧光强度显著降低.基于DNA 对量子点荧光的猝灭效应,将Cd TePCdS 量子点作为荧光探针建立了一种简便快速测定DNA 的等波长差同步荧光分析法,并对量子点与DNA 之间的结合方式进行了初步讨论. 1 实验部分 1.1 试剂与仪器 小牛胸腺DNA (ctDNA )为华美公司产品,贮备

相关文档
最新文档