概率论与数理统计基础公式大全

概率论与数理统计基础公式大全
概率论与数理统计基础公式大全

概率论与数理统计基础公式大全第一章随机事件和概率

(1)排列组合公式从m个人中挑出n个人进行排列的可能数。从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n

某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n

某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)

顺序问题

(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:

①每进行一次试验,必须发生且只能发生这一组中的一个事件;

②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用来表示。

基本事件的全体,称为试验的样本空间,用表示。

一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,…表示事件,它们是的子集。

为必然事件,?为不可能事件。

不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:

如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。

A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。

-A称为事件A的逆事件,或称A的对立事件,记为。它表示A不发生的事件。互斥未必对立。

②运算:

结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C

分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)

德摩根率:,

(7)概率的公理化定义设为样本空间,为事件,对每一个事件都有一个实数P(A),若满足下列三个条件:

1° 0≤P(A)≤1,

2° P(Ω) =1

3°对于两两互不相容的事件,,…有

常称为可列(完全)可加性。

则称P(A)为事件的概率。

(8)古典概型1°,

2°。

设任一事件,它是由组成的,则有P(A)= =

(9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,

。其中L为几何度量(长度、面积、体积)。

(10)加法公式P(A+B)=P(A)+P(B)-P(AB)

当P(AB)=0时,P(A+B)=P(A)+P(B)

(11)减法公式P(A-B)=P(A)-P(AB)

当B A时,P(A-B)=P(A)-P(B)

当A=Ω时,P( )=1- P(B)

(12)条件概率定义设A、B是两个事件,且P(A)>0,则称为事件A发生条件下,事件B发生的条件概率,记为。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

例如P(Ω/B)=1 P( /A)=1-P(B/A)

(13)乘法公式乘法公式:

更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有…………。

(14)独立性①两个事件的独立性

设事件、满足,则称事件、是相互独立的。

若事件、相互独立,且,则有

若事件、相互独立,则可得到与、与、与也都相互独立。必然事件和不可能事件?与任何事件都相互独立。

?与任何事件都互斥。

②多个事件的独立性

设ABC是三个事件,如果满足两两独立的条件,

P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)

并且同时满足P(ABC)=P(A)P(B)P(C)

那么A、B、C相互独立。

对于n个事件类似。

(15)全概公式设事件满足

1°两两互不相容,,2°,

则有

(16)贝叶斯公式设事件,,…,及满足

1°,,…,两两互不相容,>0,1,2,…,,2°,,

,i=1,2,…n。

此公式即为贝叶斯公式。

,(,,…,),通常叫先验概率。,(,,…,),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。

(17)伯努利概型我们作了次试验,且满足

u 每次试验只有两种可能结果,发生或不发生;

u 次试验是重复进行的,即发生的概率每次均一样;

u 每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影响的。

这种试验称为伯努利概型,或称为重伯努利试验。

用表示每次试验发生的概率,则发生的概率为,用表示重伯努利试验中出现次的概率,

,。

第二章随机变量及其分布

(1)离散型随机变量的分布律设离散型随机变量的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为

P(X=xk)=pk,k=1,2,…,

则称上式为离散型随机变量的概率分布或分布律。有时也用分布列的形式给出:。

显然分布律应满足下列条件:

(1),,(2)。

(2)连续型随机变量的分布密度设是随机变量的分布函数,若存在非负函数,对任意实数,有

则称为连续型随机变量。称为的概率密度函数或密度函数,简称概率密度。密度函数具有下面4个性质:

1°。

2°。

(3)离散与连续型随机变量的关系积分元在连续型随机变量理论中所起的作用与在离散型随机变量理论中所起的作用相类似。

(4)分布函

设为随机变量,是任意实数,则函数

称为随机变量X的分布函数,本质上是一个累积函数。

可以得到X落入区间的概率。分布函数表示随机变量落入区间(–∞,x]内的概

率。

分布函数具有如下性质:

1°;

2°是单调不减的函数,即时,有;

3°,;

4°,即是右连续的;

5°。

对于离散型随机变量,;

对于连续型随机变量,。

(5)八大分布0-1分布P(X=1)=p, P(X=0)=q

二项分布在重贝努里试验中,设事件发生的概率为。事件发生的次数是随机变量,设为,则可能取值为。

,其中,

则称随机变量服从参数为,的二项分布。记为。

当时,,,这就是(0-1)分布,所以(0-1)分布是二项分布的

特例。

泊松分布设随机变量的分布律为

,,,

则称随机变量服从参数为的泊松分布,记为或者P( )。

泊松分布为二项分布的极限分布(np=λ,n→∞)。

超几何分布随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。

几何分布,其中p≥0,q=1-p。

随机变量X服从参数为p的几何分布,记为G(p)。

均匀分布设随机变量的值只落在[a,b]内,其密度函数在[a,b]上为常数,即

a≤x≤b

其他,

则称随机变量在[a,b]上服从均匀分布,记为X~U(a,b)。

分布函数为

a≤x≤b

0,x

1,x>b。

当a≤x1

指数分布,

0, ,

其中,则称随机变量X服从参数为的指数分布。

X的分布函数为

,

x<0。

记住积分公式:

正态分布设随机变量的密度函数为

,,

其中、为常数,则称随机变量服从参数为、的正态分布或高斯

(Gauss)分布,记为。

具有如下性质:

1°的图形是关于对称的;

2°当时,为最大值;

若,则的分布函数为

。。

参数、时的正态分布称为标准正态分布,记为,其密度函数记为

,,

分布函数为

是不可求积函数,其函数值,已编制成表可供查用。

Φ(-x)=1-Φ(x)且Φ(0)=。

如果~ ,则~ 。

(6)分位数下分位表:;

上分位表:。

(7)函数分布离散型已知的分布列为

的分布列(互不相等)如下:

若有某些相等,则应将对应的相加作为的概率。

连续型先利用X的概率密度fX(x)写出Y的分布函数FY(y)=P(g(X)≤y),再利用变上下限积分的求导公式求出fY(y)。

第三章二维随机变量及其分布

(1)联合分布离散型如果二维随机向量(X,Y)的所有可能取值为至多可列个有序对(x,y),则称为离散型随机量。

设=(X,Y)的所有可能取值为,且事件{ = }的概率为pij,,称

为=(X,Y)的分布律或称为X和Y的联合分布律。联合分布有

时也用下面的概率分布表来表示:

Y

X

y1 y2 …yj…

x1p11p12…p1j…

x2p21p22…p2j…

xi pi1……

这里pij具有下面两个性质:

(1)pij≥0(i,j=1,2,…);

(2)

连续型对于二维随机向量,如果存在非负函数,使对任意一个其邻边分

别平行于坐标轴的矩形区域D,即D={(X,Y)|a

则称为连续型随机向量;并称f(x,y)为=(X,Y)的分布密度或

称为X和Y的联合分布密度。

分布密度f(x,y)具有下面两个性质:

(1)f(x,y)≥0;

(2)

(2)二维随

机变量的本

(3)联合分布函数设(X,Y)为二维随机变量,对于任意实数x,y,二元函数

称为二维随机向量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数。

分布函数是一个以全平面为其定义域,以事件的概率为函数值的一个实值函数。分布函数F(x,y)具有以下的基本性质:

(1)

(2)F(x,y)分别对x和y是非减的,即

当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2) ≥F(x,y1);

(3)F(x,y)分别对x和y是右连续的,即

(4)

(5)对于

.

(4)离散型与连续型的关系

(5)边缘分布离散型X的边缘分布为

Y的边缘分布为

连续型X的边缘分布密度为

Y的边缘分布密度为

(6)条件分布离散型在已知X=xi的条件下,Y取值的条件分布为

在已知Y=yj的条件下,X取值的条件分布为连续型在已知Y=y的条件下,X的条件分布密度为

在已知X=x的条件下,Y的条件分布密度为

(7)独立性一般型F(X,Y)=FX(x)FY(y)

离散型有零不独立

连续型f(x,y)=fX(x)fY(y)

直接判断,充要条件:

①可分离变量

②正概率密度区间为矩形

二维正态分布=0

随机变量的函数若X1,X2,…Xm,Xm+1,…Xn相互独立,h,g为连续函数,则:h(X1,X2,…Xm)和g(Xm+1,…Xn)相互独立。

特例:若X与Y独立,则:h(X)和g(Y)独立。

例如:若X与Y独立,则:3X+1和5Y-2独立。

(8)二维均匀分布设随机向量(X,Y)的分布密度函数为

其中SD为区域D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)~U(D)。

例如图3.1、图3.2和图3.3。

y

1

D1

O1 x

图3.1

y

D2

1

1

O 2 x 图3.2 y

D3

d

c

O a b x 图3.3

(9)二维正态分布设随机向量(X,Y)的分布密度函数为

其中是5个参数,则称(X,Y)服从二维正态分布,

记为(X,Y)~N(

由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,即X~N(

但是若X~N(,(X,Y)未必是二维正态分布。

(10)函数分布Z=X+Y 根据定义计算:

对于连续型,fZ(z)=

两个独立的正态分布的和仍为正态分布()。

n个相互独立的正态分布的线性组合,仍服从正态分布。

Z=max,min(X

1,X2,…Xn)

若相互独立,其分布函数分别为,则Z=max,min(X1,X2,…Xn)

的分布函数为:

分布设n个随机变量相互独立,且服从标准正态分布,可以证明它们的平方和

的分布密度为

我们称随机变量W服从自由度为n的分布,记为W~,其中

所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的

一个重要参数。

分布满足可加性:设

t分布设X,Y是两个相互独立的随机变量,且

可以证明函数

的概率密度为

我们称随机变量T服从自由度为n的t分布,记为T~t(n)。

F分布设,且X与Y独立,可以证明的概率密度函数为

我们称随机变量F服从第一个自由度为n1,第二个自由度为n2的

F分布,记为F~f(n1, n2).

第四章随机变量的数字特征

(1)一维随机变量的数字特征

离散型连续型

期望

期望就是平均值

设X是离散型随机变量,其分

布律为P( )=pk,k=1,2,…,n,

(要求绝对收敛)

设X是连续型随机变量,其概率

密度为f(x),

(要求绝对收敛)

函数的期望Y=g(X) Y=g(X)

方差

D(X)=E[X-E(X)]2,

标准差

矩①对于正整数k,称随机变量X

的k次幂的数学期望为X的k

阶原点矩,记为vk,即

νk=E(Xk)= , k=1,2, ….

②对于正整数k,称随机变量X

与E(X)差的k次幂的数学

期望为X的k阶中心矩,记

为,即

= ,k=1,2, ….

①对于正整数k,称随机变量X

的k次幂的数学期望为X的k阶

原点矩,记为vk,即

νk=E(Xk)=

k=1,2, ….

②对于正整数k,称随机变量X

与E(X)差的k次幂的数学期

望为X的k阶中心矩,记为,

=

k=1,2, ….

切比雪夫不等式设随机变量X具有数学期望E(X)=μ,方差D(X)=σ2,则

对于任意正数ε,有下列切比雪夫不等式

切比雪夫不等式给出了在未知X的分布的情况下,对概率

的一种估计,它在理论上有重要意义。

(2)期望的性质(1)E(C)=C

(2)E(CX)=CE(X)

(3)E(X+Y)=E(X)+E(Y),

(4)E(XY)=E(X) E(Y),充分条件:X和Y独立;充要条件:X和Y不相关。

(3)方差的性质(1)D(C)=0;E(C)=C

(2)D(aX)=a2D(X);E(aX)=aE(X)

(3)D(aX+b)= a2D(X);E(aX+b)=aE(X)+b

(4)D(X)=E(X2)-E2(X)

(5)D(X±Y)=D(X)+D(Y),充分条件:X和Y独立;

充要条件:X和Y不相关。

D(X±Y)=D(X)+D(Y) ±2E[(X-E(X))(Y-E(Y))],无条件成立。而E(X+Y)=E(X)+E(Y),无条件成立。

(4)常见分布的期望和方差

期望方差0-1分布p

二项分布np

泊松分布

几何分布

超几何分布

均匀分布

指数分布

正态分布

n 2n

t分布0 (n>2)

(5)二维随机变量的数字特征期望

函数的期望==

方差

协方差对于随机变量X与Y,称它们的二阶混合中心矩为X与Y的

协方差或相关矩,记为,即

与记号相对应,X与Y的方差D(X)与D(Y)也可分别记

为与。

相关系数对于随机变量X与Y,如果D(X)>0, D(Y)>0,则称

为X与Y的相关系数,记作(有时可简记为)。

| |≤1,当| |=1时,称X与Y完全相关:

完全相关

而当时,称X与Y不相关。

以下五个命题是等价的:

①;

②cov(X,Y)=0;

③E(XY)=E(X)E(Y);

④D(X+Y)=D(X)+D(Y);

⑤D(X-Y)=D(X)+D(Y).

协方差矩阵

混合矩对于随机变量X与Y,如果有存在,则称之为X与Y的k+l

阶混合原点矩,记为;k+l阶混合中心矩记为:

(6)协方差的性质(i) cov (X, Y)=cov (Y, X);

(ii) cov(aX,bY)=ab cov(X,Y);

(iii) cov(X1+X2, Y)=cov(X1,Y)+cov(X2,Y); (iv) cov(X,Y)=E(XY)-E(X)E(Y).

(7)独立和不相关(i)若随机变量X与Y相互独立,则;反之不真。(ii)若(X,Y)~N(),

则X与Y相互独立的充要条件是X和Y不相关。

第五章大数定律和中心极限定理

(1)大数定律切比雪夫

大数定律设随机变量X1,X2,…相互独立,均具有有限方差,且被同一常数C所界:D(Xi)

特殊情形:若X1,X2,…具有相同的数学期望E(XI)=μ,则上式成为

伯努利大数定律设μ是n次独立试验中事件A发生的次数,p是事件A在每次试验中发生的概率,则对于任意的正数ε,有

伯努利大数定律说明,当试验次数n很大时,事件A发生的频率与概率有较大判别的可能性很小,即

这就以严格的数学形式描述了频率的稳定性。

辛钦大数定律设X1,X2,…,Xn,…是相互独立同分布的随机变量序列,且E(Xn)=μ,则对于任意的正数ε有

(2)中心极限定理列维-林

德伯格定

理设随机变量X1,X2,…相互独立,服从同一分布,且具有相同的数学期望和方差:,则随机变量

的分布函数Fn(x)对任意的实数x,有

此定理也称为独立同分布的中心极限定理。

棣莫弗-拉普拉斯定理设随机变量为具有参数n, p(0

(3)二项定理若当,则

超几何分布的极限分布为二项分布。(4)泊松定理若当,则

其中k=0,1,2,…,n,…。

二项分布的极限分布为泊松分布。第六章样本及抽样分布

(1)数理统计的基本概念总体在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为总体(或母体)。我们总是把总体看成一个具有分布的随机变

量(或随机向量)。

个体总体中的每一个单元称为样品(或个体)。

样本我们把从总体中抽取的部分样品称为样本。样本中所含的样品数称为样本容量,一般用n表示。在一般情况下,总是把样本看成

是n个相互独立的且与总体有相同分布的随机变量,这样的样本

称为简单随机样本。在泛指任一次抽取的结果时,表示n个随

机变量(样本);在具体的一次抽取之后,表示n个具体的数值

(样本值)。我们称之为样本的两重性。

样本函数和统计量设为总体的一个样本,称

()

为样本函数,其中为一个连续函数。如果中不包含任何未知参数,则称()为一个统计量。

常见统计量及其性质样本均值

样本方差

样本标准差

样本k阶原点矩

样本k阶中心矩

,,

,,

其中,为二阶中心矩。

(2)正态总体下的四大分布正态分布设为来自正态总体的一个样本,则样本函数

t分布设为来自正态总体的一个样本,则样本函数

其中t(n-1)表示自由度为n-1的t分布。

设为来自正态总体的一个样本,则样本函数

其中表示自由度为n-1的分布。

F分布设为来自正态总体的一个样本,而为来自正态总体的一个样本,则样本函数

其中

表示第一自由度为,第二自由度为的F分布。

(3)正态总

体下分布的

性质

与独立。第七章参数估计

(1)点估计矩估计设总体X的分布中包含有未知数,则其分布函数可以表成它的k阶原点矩中也包含了未知参数,即。又设为总体X的n个样本值,其样

本的k阶原点矩为

这样,我们按照“当参数等于其估计量时,总体矩等于相应的样本矩”的原

则建立方程,即有

由上面的m个方程中,解出的m个未知参数即为参数()的矩估计量。若为的矩估计,为连续函数,则为的矩估计。

极大似然估计当总体X为连续型随机变量时,设其分布密度为,其中为未知参数。又设为总体的一个样本,称

为样本的似然函数,简记为Ln.

当总体X为离型随机变量时,设其分布律为,则称

为样本的似然函数。

若似然函数在处取到最大值,则称分别为的最大似然估计值,相应的统计量称为最大似然估计量。

若为的极大似然估计,为单调函数,则为的极大似然估计。

(2)估计量的评选标准无偏性设为未知参数的估计量。若E ()= ,则称为的无偏估计量。

E()=E(X),E(S2)=D(X)

有效性设和是未知参数的两个无偏估计量。若,则称有效。

一致性设是的一串估计量,如果对于任意的正数,都有

则称为的一致估计量(或相合估计量)。

若为的无偏估计,且则为的一致估计。

只要总体的E(X)和D(X)存在,一切样本矩和样本矩的连续函数都是相应

总体的一致估计量。

(3)区间估计置信区间

和置信度

设总体X含有一个待估的未知参数。如果我们从样本出发,找出两个

统计量与,使得区间以的概率包含这个待估参数,即

那么称区间为的置信区间,为该区间的置信度(或置信水平)。

单正态总

体的期望

和方差的

区间估计

设为总体的一个样本,在置信度为下,我们来确定的置信区间。具

体步骤如下:

(i)选择样本函数;

(ii)由置信度,查表找分位数;

(iii)导出置信区间。

已知方差,估计均值(i)选择样本函数

(ii) 查表找分位数

(iii)导出置信区间

未知方差,估计均值(i)选择样本函数

(ii)查表找分位数

(iii)导出置信区间

方差的区间估计(i)选择样本函数

(ii)查表找分位数

(iii)导出的置信区间

第八章假设检验

基本思想假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是不会发生的,即小概率原理。

为了检验一个假设H0是否成立。我们先假定H0是成立的。如果根据这个假定导

致了一个不合理的事件发生,那就表明原来的假定H0是不正确的,我们拒绝接受

H0;如果由此没有导出不合理的现象,则不能拒绝接受H0,我们称H0是相容的。

与H0相对的假设称为备择假设,用H1表示。

这里所说的小概率事件就是事件,其概率就是检验水平α,通常我们取α=0.05,

有时也取0.01或0.10。

基本步骤假设检验的基本步骤如下:

(i) 提出零假设H0;

(ii) 选择统计量K;

(iii) 对于检验水平α查表找分位数λ;

(iv) 由样本值计算统计量之值K;

将进行比较,作出判断:当时否定H0,否则认为H0相容。

两类错误第一类错误当H0为真时,而样本值却落入了否定域,按照我们规定的检

验法则,应当否定H0。这时,我们把客观上H0成立判为H0

为不成立(即否定了真实的假设),称这种错误为“以真当假”

的错误或第一类错误,记为犯此类错误的概率,即

P{否定H0|H0为真}= ;

此处的α恰好为检验水平。

第二类错误当H1为真时,而样本值却落入了相容域,按照我们规定的检

验法则,应当接受H0。这时,我们把客观上H0。不成立判为

H0成立(即接受了不真实的假设),称这种错误为“以假当真”

的错误或第二类错误,记为犯此类错误的概率,即

P{接受H0|H1为真}= 。

两类错误的关系人们当然希望犯两类错误的概率同时都很小。但是,当容量n

一定时,变小,则变大;相反地,变小,则变大。取定

要想使变小,则必须增加样本容量。

在实际使用时,通常人们只能控制犯第一类错误的概率,即给

定显著性水平α。α大小的选取应根据实际情况而定。当我们

宁可“以假为真”、而不愿“以真当假”时,则应把α取得很小,

如0.01,甚至0.001。反之,则应把α取得大些。

单正态总体均值和方差的假设检验

对应样本

否定域

条件零假设统计量

函数分布

已知N(0,1)

未知

未知

全国历自学考试概率论与数理统计(二)试题与答案

全国2011年4月自学考试概率论与数理统计(二) 课程代码:02197 选择题和填空题详解 试题来自百度文库 答案由王馨磊导师提供 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=5 1, P (B )=5 3, 则P (A ∪B )= ( B ) A .253 B .2517 C .5 4 D .2523 3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936 解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8 解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4 )3(2 e 2 π21)(+-= x x f , 则E (X ), D (X )分别为 ( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为? ??≤≤≤≤=,,0, 20,20,),(其他y x c y x f 则常数 c = ( A ) A .4 1 B .2 1 C .2 D .4 解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为 则称 (X ,Y )服从区域D 上的均匀分布,

统计学期末复习-公式汇总

统计报表 专门调查 普查 抽样调查 典型调查 重点调查 按调查的组织方式不同分为 按调查时间是否连续分为 按调查单位的范围大小分为 全面调查 非 全面调查 一次性调查 经 常性调查 统计学复习 第一章 1.“统计”的三个涵义:统计工作、统计资料、统计学 2.三者之间的关系:统计工作和统计资料是工作与工作成果的关系; 统计资料和统计学是实践与理论的关系 3.统计学的特点:数量性,总体性,具体性,社会性(广泛性) 4.统计工作的过程一般分为统计调查、统计整理和统计分析三个阶段 5.总体与总体单位的区分:统计总体是客观存在的,在同一性质基础上结合起来的许多个别单位的整体,构成总体的这些个别单位称为总体单位。(总体或总体单位的区分不是固定的:同一个研究对象,在一种情况下是总体,在另一种情况下可能成了总体单位。) 6.标志:总体单位所具有的属性或特征。 A 品质标志—说明总体单位质的特征,不能用数值来表示。如:性别、职业、血型色彩 B 数量标志—标志总体单位量的特征,可以用数值来表示。如:年龄、工资额、身高 指标:反映社会经济现象总体数量特征的概念及其数值。 指标名称体现事物质的规定性,指标数值体现事物量的规定性 第二章 1.统计调查种类 2.统计调查方案包括六项基本内容: 1)确定调查目的;(为什么调查) 2)确定调查对象与调查单位;(向谁调查) 调查对象——社会现象的总体 调查单位——调查标志的承担者(总体单位) 填报单位——报告调查内容,提交统计资料 3)确定调查项目、拟定调查表格;(调查什么) 4)确定调查时间和调查期限 5)制定调查的组织实施计划; 6)选择调查方法。

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

概率论与数理统计公式整理超全免费版

第1章随机事件及其概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? =1 ln ax b C a ++ 2.()d ax b x μ+?=11 ()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +? =21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5.d () x x ax b +?=1ln ax b C b x +-+ 6.2 d () x x ax b +?=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +? =21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9.2 d ()x x ax b +? = 211ln ()ax b C b ax b b x +-++ 的积分 10.x C + 11.x ?=2 2(3215ax b C a -+ 12.x x ?=2223 2 (15128105a x abx b C a -+ 13.x =22 (23ax b C a - 14.2x =2223 2(34815a x abx b C a -+

15 . =(0) (0) C b C b ?+>< 16 . 2a b - 17 .x =b +18 .x =2a x -+ (三)含有22x a ±的积分 19.22d x x a +?=1arctan x C a a + 20.22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21.22 d x x a -? =1ln 2x a C a x a -++ (四)含有2(0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23.2 d x x ax b +? =2 1ln 2ax b C a ++ 24.22d x x ax b +?=2d x b x a a ax b -+? 25.2d ()x x ax b +?=2 2 1ln 2x C b ax b ++ 26.22d ()x x ax b +? =21d a x bx b ax b --+?

统计学主要计算公式72485

统计学主要计算公式(第三章) 1 11 1k i i k i i k i k i i i f f f f ====?? ? ???? ? ? ?? ? ? ???? ?? ?∑ ∑ ∑ ∑ ∑ N i i=1i i 一、算术平x 简单x=N x 均数加权x=频数权数x=x 1i i H i i i i m m x m m x x = = ∑∑∑∑二、调和平均数 ? = ?? ? ? =?? G G 简单x 三、几何平均数加权x 11/2/2m e m m e m f S M L i f f S M U i f -+?-=+ ??? ? -?=-???∑∑下限公式四、中位数上限公式 1012 20 12d M L i d d d M U i d d ? =+??+?? ?=-??+? 下限公式五、众数上限公式

() ()x x x x f f AD AD ? -?? ? -??? ∑ ∑∑六、平均差简单=N 加权= σ σ σ σ ??? ???? ??? ??? ????? ??? 七、标准差简单加权 简捷公式 简单 加权 100%100% AD AD V x V x σσ ? ??? ? ???? 平均差系数=八、离散系数标准差系数= 统计学主要计算公式(第五章) ( )( ) 11n n s s t t n αα α α αα σ σ μμμμμμ--?±±?? ?? ±±?? ? ?±±??22 22 22 一、参数估计(随机抽样)1.总体均值估计-单总体 正态总体,方差已知 =x z =x z 正态总体,方差未知=x =x 非正态总体,足够大=x z =x z

概率论与数理统计(经管类)公式

概率论与数理统计必考知识点 一、随机事件和概率 1、随机事件及其概率 运算律名称 表达式 交换律 A B B A +=+ BA AB = 结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()( 分配律 AC AB C B A ±=±)( ))(()(C A B A BC A ++=+ 德摩根律 B A B A =+ B A AB += 2、概率的定义及其计算 公式名称 公式表达式 求逆公式 )(1)(A P A P -= 加法公式 )()()()(AB P B P A P B A P -+=+ 条件概率公式 ) () ()(A P AB P A B P = 乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P = 全概率公式 ∑== n i i i A B P A P B P 1 )()()( 贝叶斯公式 (逆概率公式) ∑∞ == 1 ) ()() ()()(i i j j j j A B P A P A B P A P B A P 伯努利概型公式 n k p p C k P k n k k n n ,1,0,)1()(=-=- 两件事件相互独立相应 公式 )()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ; 1)()(=+A B P A B P 二、随机变量及其分布 1、分布函数性质 )()(b F b X P =≤ )()()(a F b F b X a P -=≤< 2、离散型随机变量 分布名称 分布律 0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P k k 二项分布),(p n B n k p p C k X P k n k k n ,,1,0,)1()( =-==-

概率论与数理统计考研复习资料

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 1.A ?B(事件B 包含事件A )事件A 发生必然导致事件B 发生. 2.A ∪B(和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A -B(差事件)事件A 发生而B 不发生. 5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A = B A B A = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n , P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ?B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) . (5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n ()()() () +∑ + ∑ - ∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 111 21 …+(-1)n-1P(A 1A 2…A n ) 四.等可能(古典)概型 1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率 1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0). 2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)= ()()i n i i B A P B P ∑=1

统计学公式汇总,推荐文档

第三章统计整理 第四章总量指标和相对指标

第五章平均指标和变异指标

= ∑(x -x)2 n :标准差 p:成数 2 :方差 标准差:开()根号 方差:不开()根号∑(x -x)2 f =∑f =p(1 -p) 2 =∑(x -x) 2 n ∑(x -x)2 f 2 =∑ f V = x V平均差系数

第六章动态数列

第七章统计指数

第八章 抽样调查 公式名称 数学公式 说明 2 n 平均数u = (1- ) x n N 不重复 1、不重置抽样比重置抽样多加个 (1 - n ),此项为修正系数。 N 2、公式中的标准差和成数 P 一般用样本的标准差 s 和成数 p 来代替。 抽样 成数: u = P (1 - P ) (1 - n ) p n N 抽样平均误差 平均数: u = x n 重复 成数: u = P (1 - P ) 抽样 p n 平均数: x - ? ≤ X ≤ x + ? x x 抽样极 重复抽样, ? = t x n ? = t P (1 - P ) ; p n 2 n 不重复抽样, ? = t (1- ) x n N ? = t P (1 - P ) (1 - n ) p n N 区间估计 限误差 成数: x - ? p ≤ X ≤ x + ? p 样本数的确定 平均数: n = t 22 x ? x 2 重复抽样 公式中的标准差和成数 P 一般用样本的标准差 s 和成数 p 来代替。 t 2 P (1 - P ) 成数: n p = ?2p

《概率论与数理统计》基本名词中英文对照表

《概率论与数理统计》基本名词中英文对照表英文中文 Probability theory 概率论 mathematical statistics 数理统计 deterministic phenomenon 确定性现象 random phenomenon 随机现象 sample space 样本空间 random occurrence 随机事件 fundamental event 基本事件 certain event 必然事件 impossible event 不可能事件 random test 随机试验 incompatible events 互不相容事件 frequency 频率 classical probabilistic model 古典概型 geometric probability 几何概率 conditional probability 条件概率 multiplication theorem 乘法定理 Bayes's formula 贝叶斯公式 Prior probability 先验概率 Posterior probability 后验概率 Independent events 相互独立事件 Bernoulli trials 贝努利试验 random variable 随机变量

probability distribution 概率分布 distribution function 分布函数 discrete random variable 离散随机变量distribution law 分布律hypergeometric distribution 超几何分布 random sampling model 随机抽样模型binomial distribution 二项分布 Poisson distribution 泊松分布 geometric distribution 几何分布 probability density 概率密度 continuous random variable 连续随机变量uniformly distribution 均匀分布exponential distribution 指数分布 numerical character 数字特征mathematical expectation 数学期望 variance 方差 moment 矩 central moment 中心矩 n-dimensional random variable n-维随机变量 two-dimensional random variable 二维离散随机变量joint probability distribution 联合概率分布 joint distribution law 联合分布律 joint distribution function 联合分布函数boundary distribution law 边缘分布律

(完整版)高等数学常用公式大全

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥L 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot(2 A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a -

概率论与数理统计公式定理整理汇编

概率论与数理统计公式集锦 一、随机事件与概率

二、随机变量及其分布 1、分布函数性质 ()()(),()()() ()k k x x x P X x F x P X x P a X b F b F a f t dt 2、离散型随机变量及其分布 3、连续型随机变量及其分布

4、随机变量函数Y=g(X)的分布 离散型:()(),1,2,j i i j g x y P Y y p i L , 连续型:①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y 单调 三、多维随机变量及其分布 1、离散型二维随机变量及其分布 分布律:(,),,1,2,i j ij P X x Y y p i j L 分布函数(,)i i ij x x y y F X Y p 边缘分布律:()i i ij j p P X x p ()j j ij i p P Y y p 条件分布律:(),1,2,ij i j j p P X x Y y i p L ,(),1,2,ij j i i p P Y y X x j p L 2、连续型二维随机变量及其分布 ①分布函数及性质 分布函数: x y dudv v u f y x F ),(),( 性质:2(,) (,)1,(,),F x y F f x y x y ((,))(,)G P x y G f x y dxdy ②边缘分布函数与边缘密度函数 分布函数: x X dvdu v u f x F ),()(密度函数: dv v x f x f X ),()( y Y dudv v u f y F ),()( du y u f y f Y ),()( ③条件概率密度 y x f y x f x y f X X Y ,)(),()(, x y f y x f y x f Y Y X ,) () ,()(

概率论与数理统计基本知识

概率论与数理统计基本知识点 一、概率的基本概念 1.概率的定义: 在事件上的一个集合函数P ,如果它满足如下三个条件: (1)非负性 A A P ?≥,0)( (2)正规性 1)(=ΩP (3)可列可加性 若事件,...,2,1,=n A n 两两互斥 则称P 为概率。 2.几何概型的定义: 若随机试验的样本空间对应一个度量有限的几何区域S ,每一基本事件与S 内的点一一对应,则任一随机事件A 对应S 中的某一子区域D 。(若事件A 的概率只与A 对应的区域D 的度量成正比,而与D 的形状及D 在S 中的位置无关。)==(每点等可能性)则称为几何概型。 的度量 对应区域的度量 对应区域S D )()()(Ω=Ω= A m A m A P 3.条件概率与乘法公式: 设A,B 是试验E 的两个随机事件,且0)(>B P ,则称) () ()|(B P AB P B A P = 为事件B 发生的条件下,事件A 发生的条件概率。(其中)(AB P 是AB 同时发生的概率) 乘法公式:)|()()|()()(B A P B P A B P A P AB P == 4.全概率公式与贝叶斯公式: (全概率公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则有∑== n i i i A B P A P B P 1 )|()()(。 (贝叶斯公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则∑== =?n k k k i i A B P A P A B P A P B A P n i 1 ) |()() |()()|(,,...,2,1。 5.事件的独立性: 两事件的独立性:(定义)设A 、B 是任意二事件,若P(AB)= P(A)P(B),则称事件A 、B 是相互独立的。(直观解释)A 、B 为试验E 的二事件,若A 、 B 的发生互不影响。 二、随机变量和分布函数:

高等数学积分公式大全

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2 d () x x ax b +? =21ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++

9. 2 d () x x ax b +? =211ln ()ax b C b ax b b x +-++ 的积分 10 . x ? C + 11 .x ? =2 2 (3215ax b C a - 12 .x x ? =2223 2(15128105a x abx b C a -++ 13 . x ? =22 (23ax b C a - 14 . 2x ? =222 3 2(34815a x abx b C a -++ 15 .? (0) (0) C b C b ?+>< 16 . ? =2a bx b -- 17 . x ? =b ?18. 2d x x ? =2a + (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a +

自考概率论与数理统计基础知识.

一、《概率论与数理统计(经管类)》考试题型分析: 题型大致包括以下五种题型,各题型及所占分值如下: 由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。 7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

《概率论与数理统计》习题 第五章 数理统计的基本概念

第五章 数理统计的基本概念 一. 填空题 1. 设X 1, X 2, …, X n 为来自总体N(0, σ2 ), 且随机变量)1(~) (22 1 χ∑==n i i X C Y , 则常数 C=___. 解. ∑=n i i X 1 ~ N(0, n σ2 ), )1,0(~1 N n X n i i σ ∑= 所以 2 1,1σ σ n c n c = = . 2. 设X 1, X 2, X 3, X 4来自正态总体N(0, 22)的样本, 且2 43221)43()2(X X b X X a Y -+-=, 则a = ______, b = ______时, Y 服从χ2分布, 自由度为______. 解. X 1-2X 2~N(0, 20), 3X 3-4X 4~N(0, 100) )1,0(~2022 1N X X -, )1,0(~1004343N X X - 20 1 ,20 1 = = a a ; 100 1,100 1 = = b b . Y 为自由度2的χ2分布. 3. 设X 1, X 2, …, X n 来自总体χ2(n)的分布, 则._____)(______,)(==X D X E 解. 因为X 1, X 2, …, X n 来自总体χ2(n), 所以 E(X i ) = n, D(X i ) = 2n (i = 1, 2, …, n) ,)(n X E = 22) ()(2 2 1=?= =∑=n n n n X D X D n i i 二. 单项选择题 1. 设X 1, X 2, …, X n 为来自总体N(0, σ2 )的样本, 则样本二阶原点矩∑==n i i X n A 1 2 21的方差为 (A) σ2 (B) n 2 σ (C) n 42σ (D) n 4 σ 解. X 1, X 2, …, X n 来自总体N(0, σ2), 所以

最新《统计学原理》常用公式汇总及计算题目分析

《统计学原理》常用公式汇总及计算题目分析 第一部分常用公式 第三章统计整理 a)组距=上限-下限 b)组中值=(上限+下限)÷2 c)缺下限开口组组中值=上限-1/2邻组组距 d)缺上限开口组组中值=下限+1/2邻组组距 第四章综合指标 i.相对指标 1.结构相对指标=各组(或部分)总量/总体总量 2.比例相对指标=总体中某一部分数值/总体中另一部分数值 3.比较相对指标=甲单位某指标值/乙单位同类指标值 4.强度相对指标=某种现象总量指标/另一个有联系而性质不同的现 象总量指标 5.计划完成程度相对指标=实际数/计划数 =实际完成程度(%)/计划规定的完成程度(%) ii.平均指标

1.简单算术平均数: 2.加权算术平均数或 iii.变异指标 1.全距=最大标志值-最小标志值 2.标准差: 简单σ= ;加权σ= 3.标准差系数: 第五章抽样估计 1.平均误差: 重复抽样: 不重复抽样: 2.抽样极限误差 3.重复抽样条件下: 平均数抽样时必要的样本数目

成数抽样时必要的样本数目 4.不重复抽样条件下: 平均数抽样时必要的样本数目 第七章相关分析 1.相关系数 2.配合回归方程y=a+bx 3.估计标准误: 第八章指数分数 一、综合指数的计算与分析 (1)数量指标指数

此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。 ( - ) 此差额说明由于数量指标的变动对价值量指标影响的绝对额。 (2)质量指标指数 此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。 ( - ) 此差额说明由于质量指标的变动对价值量指标影响的绝对额。 加权算术平均数指数= 加权调和平均数指数= (3)复杂现象总体总量指标变动的因素分析 相对数变动分析: = × 绝对值变动分析:

微积分公式与定积分计算练习大全

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼ ()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1 ln x x '= ⑿ () 1log ln x a x a '= ⒀ ( )arcsin x '= ⒁( )arccos x '= ⒂ ()21arctan 1x x '=+ ⒃() 21arccot 1x x '=-+⒄()1 x '= ⒅ '= 二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v ''' -??= ??? 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±??? ? (2)()() ( ) ()n n cu x cu x =??? ? (3)()() () ()n n n u ax b a u ax b +=+??? ? (4) ()()() ( ) ()() ()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) ()() ! n n x n = (2) ()() n ax b n ax b e a e ++=? (3) ()() ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π??+=++??? ??? ??(5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6) () () () 1 1! 1n n n n a n ax b ax b +???=- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则

统计学常用公式汇总

《统计学原理》常用公式汇总 组距=上限-下限组中值=(上限+下限)÷2 缺下限开口组组中值=上限-1/2邻组组距缺上限开口组组中值=下限+1/2邻组组距 111平均指标 1.简单算术平均数: 2.加权算术平均数 或 iii.变异指标 1.全距=最大标志值-最小标志值 2.标准差: 简单σ= ;加权σ= 3.标准差系数: 第五章抽样估计 1.平均误差:重复抽样: 不重复抽样: 2.抽样极限误差 3.重复抽样条件下:平均 数抽样时必要的样本数目 成数抽样时必要的样本数目 4.不重复抽样条件下:平均数抽样时必要的样本数目 第七章相关分析 1.相关系数 2.配合回归方程y=a+bx

3.估计标准误: 第八章指数分数一、综合指数的计算与分析 (1)数量指标指数 此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。 ( - ) 此差额说明由于数量指标的变动对价值量指标影响的绝对额。 (2)质量指标指数 此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。 ( - ) 此差额说明由于质量指标的变动对价值量指标影响的绝对额。 加权算术平均数指数= 加权调和平均数指数= (3)复杂现象总体总量指标变动的因素分析 相对数变动分析: = × 绝对值变动分析: - = ( - )×( - ) 第九章动态数列分析 一、平均发展水平的计算方法:

(1)由总量指标动态数列计算序时平均数 ①由时期数列计算 ②由时点数列计算 在间断时点数列的条件下计算: a.若间断的间隔相等,则采用“首末折半法”计算。公式为: b.若间断的间隔不等,则应以间隔数为权数进行加权平均计算。公式为: (2)由相对指标或平均指标动态数列计算序时平均数 基本公式为: 式中:代表相对指标或平均指标动态数列的序时平均数; 代表分子数列的序时平均数; 代表分母数列的序时平均数; 逐期增长量之和累积增长量 二. 平均增长量=─────────=───────── 逐期增长量的个数逐期增长量的个数 (1)计算平均发展速度的公式为: (2)平均增长速度的计算 平均增长速度=平均发展速度-1(100%)

相关文档
最新文档