结构优化设计

合集下载

结构优化设计知识点总结

结构优化设计知识点总结

结构优化设计知识点总结1. 结构设计的基本原则结构设计是指对建筑物、桥梁、机械等工程结构的构造形式、结构性能和材料的选择等方面的设计。

在进行结构设计时,应该考虑以下基本原则:- 安全原则:结构设计的首要目标是确保结构的安全性,即在正常使用和预期的最坏条件下都能保证结构的完整性和稳定性。

- 经济原则:结构设计需要在满足安全性的前提下,尽可能降低工程造价,减少材料和人力资源的消耗。

- 美观原则:结构设计应该考虑到建筑物的美观性,并且更好地结合环境和功能需求。

2. 结构设计的基本要素结构设计的基本要素包括荷载、构件、材料和连接。

其中,荷载是作用在结构上的外力,主要包括静荷载和动荷载;构件是组成结构的基本单元,通过构件的分布和排列来形成结构稳定的平衡状态;材料是构件所采用的原材料,包括钢材、混凝土、木材等;连接是构件之间的连接方式,包括焊接、螺栓连接等。

3. 结构设计的理论基础结构设计的理论基础主要包括结构力学、材料力学、工程结构静力学、结构可靠性理论等。

结构力学是研究结构内力和变形的学科,通过对结构的受力分析来确定结构的设计方案;材料力学是研究材料在外力作用下变形和破坏的学科,通过对结构材料的强度和刚度进行分析来确定材料的选用和构件的尺寸;工程结构静力学是研究结构受力和变形的学科,通过对结构的受力平衡和变形条件进行分析来确定结构的稳定性和强度;结构可靠性理论是研究结构在设计使用期限内能够满足安全性要求的概率学科,通过对结构的安全性进行可靠性评估来确定结构的设计方案。

4. 结构设计的优化方法结构设计的优化方法主要包括减少结构重量、减少成本、提高结构性能和减少结构体积等。

其中,减少结构重量的方法包括合理选择材料、优化构件尺寸和结构形式等;减少成本的方法包括降低材料和人力成本、减少结构修理和维护费用等;提高结构性能的方法包括提高结构的稳定性、刚度和强度等;减少结构体积的方法包括减小构件尺寸、优化布置和排列方式等。

建筑结构设计范文示例与优化建议

建筑结构设计范文示例与优化建议

建筑结构设计范文示例与优化建议建筑结构设计是保证建筑物稳定性与耐久性的重要环节。

本文将为您提供一些建筑结构设计范例,并提出一些建议以优化设计过程。

一、建筑结构设计范例示例1. 设计范例一:房屋结构设计设计目标:保证房屋结构稳定,符合国家相关规范要求。

设计过程:1)确定设计载荷:根据建筑用途和规模确定房屋的设计载荷,包括荷载、地震力、风力等。

2)选择合适的结构体系:根据房屋的使用功能和室内布局选择适合的结构体系,如框架结构、剪力墙结构等。

3)设计结构材料:根据房屋的荷载要求和设计寿命选择合适的结构材料,如钢筋混凝土、钢结构等。

4)进行结构分析和计算:使用结构分析软件进行房屋结构的受力分析和核算,保证结构的强度和刚度满足要求。

5)进行构件设计:根据结构分析结果,确定各构件的尺寸和配筋等细节设计,保证结构的稳定性和可施工性。

6)进行施工图设计:绘制出详细的施工图纸,标明各构件的布置与连接方式,便于施工过程中的实施。

2. 设计范例二:大型桥梁结构设计设计目标:确保桥梁结构安全舒适,满足大跨度、大荷载的要求。

设计过程:1)进行交通和地质勘测:考虑桥梁所处的交通条件和地质状况,确定设计参数,如设计荷载、地基承载能力等。

2)选择桥梁结构类型:根据跨度和荷载要求选择适合的桥梁结构类型,如梁桥、拱桥、斜拉桥等。

3)进行结构分析:对桥梁结构进行动力、静力和地震响应等分析,确定结构的稳定性和安全性。

4)进行构件设计:根据结构分析结果设计桥梁各构件,保证结构的强度和刚度满足要求。

5)进行施工图设计:绘制桥梁施工图纸,明确每个构件的尺寸和配筋方式,确保施工过程中的准确实施。

二、建筑结构设计优化建议1. 采用先进的结构分析软件:利用现代化的结构分析软件进行结构的受力分析和计算,可以提高设计的精确性和效率。

2. 结构材料选用优化:选择合适的结构材料,如高强度钢材、高性能混凝土等,可以提高结构的强度和耐久性。

3. 结构体系优化:针对不同建筑用途和功能,选择合适的结构体系,如剪力墙结构、框架结构等,可以提高结构的稳定性和经济性。

深基坑支护结构设计的优化方法8篇

深基坑支护结构设计的优化方法8篇

深基坑支护结构设计的优化方法8篇第1篇示例:深基坑支护是指在进行基坑开挖施工过程中为了防止地基塌方、保护周边建筑物和道路安全而采取的支护措施。

深基坑开挖和支护工程是城市建设中常见的施工项目,而深基坑支护结构设计的优化方法成为了工程领域中的研究热点。

深基坑支护结构设计的优化方法包括多个方面,例如支护结构的选择、设计参数的优化、施工工艺的优化等。

在选择支护结构时,需要考虑地下水位、土质情况、周边建筑物、施工工艺等因素,以便选择最合适的支护结构类型。

设计参数的优化包括墙体厚度、支撑间距、钢筋配筋等参数的优化,以提高支撑结构的安全性和经济性。

而施工工艺的优化可以通过优化施工顺序、采用先进的施工技术等手段来提高深基坑支护工程的施工效率和质量。

在深基坑支护结构设计的优化方法中,最重要的是要充分考虑地质条件和周边环境,以便选择最适合的支护结构类型。

还需要充分利用先进的计算机软件和施工技术,以实现对设计参数和施工工艺的优化。

通过系统的研究和实践,不断改进深基坑支护结构的设计和施工方法,可以有效提高支护结构的安全性和经济性,为城市建设提供更可靠的保障。

在深基坑支护结构设计的优化方法中,需要充分考虑地质条件和周边环境。

地质条件主要包括土质情况、地下水位和地表荷载等因素。

土质情况对支护结构的稳定性和变形有着直接影响,需要通过地质勘察和试验数据来评价土的承载力和变形特性。

地下水位对基坑开挖和支护工程的施工和稳定性都有很大影响,需要根据地下水位情况选择适当的支护结构类型和设计参数。

地表荷载主要包括来自道路、建筑物、地铁等周边结构的荷载,需要通过结构分析和计算来评价其对支护结构的影响。

在选择支护结构类型时,需要充分考虑地质条件和周边环境因素。

深基坑支护结构种类繁多,包括钢支撑、混凝土墙、挡墙、桩墙等各种类型,需要根据具体的地质条件和施工要求来选择最适合的支护结构类型。

钢支撑结构适用于较宽的基坑和较小的变形要求,能够快速安装和拆除,适合于快速施工的项目;混凝土墙结构适用于较深的基坑和较大的变形要求,能够提供较大的稳定性和承载力,适合于长期固定的项目;桩墙结构适应于较软的土层和需要较高的承载能力和变形控制的项目,能够提供较好的抗浪涌能力,适合于复杂环境下的项目。

机械结构设计优化案例分析

机械结构设计优化案例分析

机械结构设计优化案例分析在机械工程领域,机械结构设计的优化是提高产品性能和降低成本的关键环节。

通过精心设计和优化,可以使机械结构更加坚固、稳定,以及提高工作效率。

下面我将结合一个实际案例,分析机械结构设计优化的过程和原理。

案例分析:某公司生产的液压缸在使用过程中,出现了频繁故障的问题,导致了生产效率的下降和维修成本的增加。

经过调查和分析,发现液压缸设计存在结构不稳定、材料选用不当等问题。

经过一系列的优化措施,终于解决了问题。

优化步骤:1. 结构分析:首先对液压缸进行了结构分析,发现设计中存在的问题,如承受力不均匀、连接件受力不稳定等。

通过有限元分析软件模拟不同情况下的受力状态,找出结构中容易出现应力集中、疲劳裂纹等问题,为优化设计提供依据。

2. 材料选用:根据结构分析结果,重新选择了耐高温、高强度的材料,提高了液压缸的抗疲劳性能和耐腐蚀性能。

同时,根据实际使用需求,合理选择了材料的硬度和韧性,提高了产品的耐用性和安全性。

3. 结构优化:在重新选用材料的基础上,对液压缸结构进行了优化设计。

通过调整连接件的位置和形状,增加支撑件的数量和大小,优化了受力分布,减少了结构的应力集中,提高了整体的稳定性和强度。

4. 实验验证:优化后的液压缸进行了实验验证,测试其承载能力、耐疲劳性能等指标。

通过实验数据的分析,验证了优化设计的有效性,确保产品在实际工作中能够稳定可靠地运行。

结果与效果:经过以上优化步骤,液压缸的故障率明显下降,生产效率得到了提高,维修成本也减少了。

同时,产品的性能和质量得到了明显提升,提高了用户的满意度和公司的竞争力。

结语:通过以上案例分析,我们可以看到机械结构设计的优化是一个系统工程,需要全面考虑材料、结构、受力等因素,不断调整和完善设计方案,以达到最佳效果。

只有不断迭代优化,才能使产品在市场上立于不败之地。

希望本文能够对机械结构设计优化的理解和实践有所启示。

结构优化设计的方法和进展

结构优化设计的方法和进展

结构优化设计的方法和进展1.遗传算法:遗传算法是一种仿生算法,通过模拟自然界中的遗传和进化过程来获得最优解。

遗传算法通过对候选解进行交叉和变异操作,逐步优化结构,直到找到最优解。

2.拓扑优化:拓扑优化是指通过在结构中添加或删除材料,改变结构的连通性和形状,以达到最优结构的目的。

拓扑优化可以通过使用数学方法,如拓扑学和优化算法,以及物理模型和仿真来实现。

3.材料优化:材料优化是指通过选择合适的材料来达到优化结构的目的。

材料优化可以通过使用材料数据库和模型来评估不同材料的性能,并选择最佳材料来设计结构。

4.多目标优化:多目标优化是指在考虑多个目标函数的情况下进行结构优化。

多目标优化可以通过使用多目标遗传算法、多目标粒子群算法等方法来实现。

1.算法的改进:随着计算机计算能力的提高,结构优化设计的算法也得到了不断地改进和优化。

新的算法可以更快地解空间,获得更好的优化结果。

2.优化目标的多样化:随着对结构性能需求的不断变化,结构优化设计的优化目标也愈加多样化。

除了传统的强度、刚度等主要性能指标外,还出现了对轻质、耐久性、节能等新的优化目标。

3.结构优化与制造的集成:随着制造技术的不断发展,结构优化设计与制造的集成成为趋势。

新的优化设计可以考虑制造工艺和约束条件,以实现更高效的制造过程。

4.多学科优化:结构优化设计越来越多地涉及多学科问题,需要综合考虑不同学科的要求和约束条件。

因此,多学科优化方法得到广泛应用,以解决结构优化设计中的复杂问题。

综上所述,结构优化设计在方法和进展方面都取得了重要的进展。

随着计算能力和制造技术的发展,结构优化设计将会得到更广泛的应用,并在许多领域带来更高效、更可靠的解决方案。

建筑结构优化设计

建筑结构优化设计

感谢您的观看
THANKS
案例四:住宅楼的结构优化设计
总结词
提高居住舒适度与降低成本
详细描述
住宅楼的结构优化设计主要关注提高居住舒适度和降 低成本。通过合理设计建筑结构和隔墙,减少噪音和 振动对居民的影响,提高居住舒适度。同时,也需要 考虑建筑成本的控制,选择经济合理的建筑材料和构 造方式,以降低建筑成本。
05
建筑结构优化设计的挑战 与前景
构件形状优化
通过改变构件的形状,如 圆形、方形等,以适应不 同的建筑需求和场地条件 。
建筑结构材料优化
材料选择
根据结构体系和构件要求,选择 合适的建筑材料,如钢材、混凝
土、木材等。
材料用量优化
通过合理的材料用量配比,降低成 本的同时满足结构的性能要求。
材料性能优化
选择具有优异性能的材料,如高强 度钢、高性能混凝土等,以提高结 构的整体性能。
结构布置
通过合理的结构布置,提 高结构的整体性能,如刚 度、承载能力、稳定性等 。
结构传力路径
确保结构传力路径明确、 直接,以提高结构的抗震 性能和抗风性能。
建筑结构构件优化
构件尺寸优化
通过调整构件的尺寸,如 梁的宽度、柱的高度等, 以实如焊接、螺栓连接等, 以提高结构的整体性和稳 定性。
利于环境保护。
改善建筑经济性
优化设计可以改善建筑的经济性 ,包括提高建筑的节能性能、降 低运营成本等。这有助于提高建 筑的竞争力,促进可持续发展。
建筑结构优化的发展趋势
多目标优化
传统的结构优化主要关注单个目标的优化,如成本最低或重量最轻。然而,在实际工程中,往往需要 同时考虑多个目标,如刚度、强度、稳定性、耐久性、材料消耗等多个因素。因此,多目标优化已成 为结构优化的一个重要研究方向。

结构优化设计方法知识点

结构优化设计方法知识点结构优化设计方法是指通过对结构进行合理的改进和优化,以获得更高的性能和效率。

本文将介绍一些常见的结构优化设计方法的知识点,包括响应面法、灵敏度分析、遗传算法以及拓扑优化方法。

响应面法是一种通过建立数学模型来优化结构设计的方法。

它通过对设计参数进行调整,并通过对结构进行有限元分析,得到结构的响应结果,进而建立响应面模型。

通过分析响应面模型,可以确定结构的最优设计参数。

响应面法具有计算量小、参数敏感性分析快速等优点,适用于对连续参数进行优化设计。

灵敏度分析是一种通过计算结构响应关于设计参数的导数,来评估设计参数对结构性能的影响程度的方法。

通过灵敏度分析可以确定影响结构性能最大的设计参数,并进而调整这些参数,以实现结构的优化设计。

灵敏度分析可以帮助工程师更好地理解结构的性能特点,从而指导结构的优化设计过程。

遗传算法是一种基于遗传学原理的优化算法,适用于复杂结构的优化设计。

遗传算法模拟了自然界中生物进化的过程,通过不断地生成、选择、交叉和变异个体来搜索最优解。

在结构优化设计中,遗传算法可以用于确定结构的拓扑结构和设计参数,以实现结构的优化设计。

遗传算法具有全局搜索能力强、适用于高维问题等优点,广泛应用于结构优化设计中。

拓扑优化方法是一种通过优化结构的形状来减小结构的重量的方法。

拓扑优化方法通过对结构的单元进行添加、删除或者调整,来实现结构拓扑的优化设计。

拓扑优化方法可以帮助工程师找到结构中的关键部位,并通过优化结构拓扑来减小结构的重量,提高结构的性能。

拓扑优化方法广泛应用于航空航天、汽车、建筑等领域。

总结起来,结构优化设计方法包括响应面法、灵敏度分析、遗传算法和拓扑优化方法。

这些方法在结构优化设计中发挥着重要作用,可以帮助工程师更好地优化结构设计,提高结构的性能和效率。

在实际应用中,工程师可以根据具体问题和需求选择合适的方法进行优化设计,以实现结构的优化和提升。

通过灵活应用这些结构优化设计方法,我们可以不断改进工程结构的设计,为各行业的发展提供支持。

结构工程中混凝土结构的优化设计

结构工程中混凝土结构的优化设计摘要:本文通过对结构工程中混凝土结构的优化设计进行研究和探讨,旨在提高混凝土结构的性能和效率,为工程实践提供指导和借鉴。

文章将从设计理论、材料选用、结构布局等方面展开讨论,总结出优化设计的关键要点,并对未来研究方向进行展望。

关键词:结构工程;混凝土结构;设计研讨引言:混凝土结构是现代建筑工程中广泛应用的重要结构形式,其设计优化对于确保工程安全、降低成本、提高效率具有至关重要的意义。

通过深入研究混凝土结构优化设计的相关理论和方法,可以进一步完善结构的性能和可靠性,提高工程质量并延长结构的使用寿命。

本文将围绕混凝土结构的优化设计展开论述,希望为相关领域的研究和实践提供一定的参考价值。

一、优化设计的背景与意义1.1 混凝土结构优化设计的定义混凝土结构优化设计是指在满足结构功能和安全性要求的前提下,通过合理选取材料、截面尺寸、构件布局等参数,使结构在各项性能指标(如承载力、刚度、耐久性等)达到最佳状态的设计过程。

该设计方法旨在使结构在成本、质量和效益等方面实现最佳平衡,提高结构的整体性能和经济性。

1.2 优化设计在结构工程中的作用优化设计在结构工程中扮演着至关重要的角色。

通过优化设计,可以有效降低结构的自重,减少材料的使用量,提高结构的抗震性能和承载能力,延长结构的使用寿命,同时也能降低施工难度和工期,节约建设成本,实现可持续发展。

优化设计是结构工程领域中不可或缺的技术手段,为建筑物的安全、美观、经济提供了重要保障。

二、影响混凝土结构优化设计的因素2.1 设计理论与准则在混凝土结构的优化设计中,设计理论与准则起着至关重要的作用。

设计理论是指对结构受力、变形和稳定性等基本原理的认识和应用,而设计准则则是根据国家相关标准和规范制定的具体设计规定。

只有充分理解和遵守设计理论与准则,才能确保混凝土结构的安全可靠,经济合理。

2.2 材料性能与选用材料性能与选用直接影响着混凝土结构的优化设计。

钢结构优化设计要点

钢结构优化设计要点本文旨在探讨钢结构优化设计的要点,以帮助工程师更好地进行钢结构设计。

1. 材料选择钢结构的优化设计首先要考虑材料的选择。

合适的材料选择能够提高结构的强度和稳定性,减少成本并满足设计要求。

在选择材料时,需要考虑以下几个因素:- 强度:选择具有足够强度的材料,以确保结构在受力情况下不发生塑性变形或破坏。

- 耐候性:钢结构可能暴露在室外环境中,所以需要选择具有良好耐候性的材料来抵御腐蚀和氧化。

- 可焊性:选材时需要考虑材料的可焊性,以确保施工过程中能够进行有效的焊接。

2. 结构优化在进行钢结构设计时,优化结构的重点是要尽可能减少材料的使用量和减轻结构的自重。

以下是一些常用的结构优化技巧:- 减小截面尺寸:通过减小截面尺寸来减少材料的使用量。

可以使用计算机辅助设计软件进行截面优化,找到最佳的截面形状和尺寸。

- 减少冗余杆件:通过分析结构的受力情况,可以找到冗余杆件并进行优化。

冗余杆件是指负载情况下没有或很少承受受力的杆件,可以考虑去掉或减小这些杆件的截面尺寸。

- 采用合理的构造形式:选择合理的构造形式可以减轻结构的自重,提高结构的整体性能。

例如,采用空心结构、桁架结构或简支结构等。

3. 试验验证在进行钢结构优化设计后,需要进行试验验证以确保设计的准确性和稳定性。

试验验证是对设计方案进行实际加载和受力测试,验证设计的可行性和性能。

通过试验验证可以发现设计中的问题并进行必要的调整和改进。

在进行试验验证时,需要注意以下几点:- 严格按照试验方案进行操作,确保试验的准确性和可重复性。

- 对试验结果进行分析和评价,找出设计中存在的问题并采取相应的措施。

- 试验验证结果应与设计要求相符合,如果有差异或问题,需对设计方案进行调整和改进。

4. 结论钢结构优化设计要点包括合理的材料选择、结构优化技巧的应用和试验验证的重要性。

通过合理的设计和优化,可以提高钢结构的性能,达到减少材料使用量、降低成本和满足设计要求的目的。

建筑结构优化设计与性能分析

建筑结构优化设计与性能分析建筑结构是建筑物的骨架,它不仅承载着建筑物的重量,还要能够抵御各种外部力的作用。

优化设计和性能分析是建筑结构设计中非常重要的一环。

首先,建筑结构的优化设计是指通过调整结构的形状和材料,使得结构在满足强度和刚度要求的前提下,尽可能地降低结构的重量。

这样不仅可以节约材料和成本,还可以减轻建筑物对地基的压力,提高整个建筑的稳定性。

在实际设计中,可以通过参数化设计和优化算法来进行结构的优化设计。

参数化设计可以将结构的形状和尺寸参数化,方便进行优化算法的应用。

而优化算法则可以通过多次迭代计算,来找到最优的结构形态和材料。

其次,建筑结构的性能分析是指对结构的强度、刚度、振动特性等进行分析和评估。

通过性能分析,可以了解结构在不同荷载下的变形和应力分布情况,进而判断结构的安全性能以及所需的增强措施。

性能分析可以采用有限元分析方法,通过建立结构的有限元模型,对结构的力学行为进行计算。

在性能分析中,还可以考虑结构的多目标优化设计,如同时考虑结构的安全性、经济性和美观性等方面。

建筑结构的优化设计和性能分析是相互关联的。

优化设计的目标是降低结构的重量,而性能分析的目标是评估结构的安全性能。

结构的优化设计可以通过性能分析来验证,确定优化的方向和措施。

同时,性能分析也可以借鉴优化设计的思路,对结构进行合理的加强和优化。

在实际的工程项目中,建筑结构的优化设计和性能分析是必不可少的环节。

它们可以通过计算机辅助设计软件进行,如CAD、PKPM、ABAQUS等。

这些软件不仅可以实现结构的优化设计和性能分析,还可以对结构进行可视化展示,方便设计师和工程师进行沟通和协作。

总之,建筑结构的优化设计和性能分析是建筑设计中非常重要的一环。

通过优化设计,可以实现结构的轻量化和节约材料的目标;通过性能分析,可以评估结构的安全性能并进行优化加强。

在实际工程中,利用计算机辅助设计软件对建筑结构进行优化和分析,可以提高设计效率和质量,同时也带动了建筑行业的数字化转型和创新发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构优化设计
作者:赵忠伟
来源:《城市建设理论研究》2013年第29期
摘要:随着有限元理论的迅猛发展和日趋成熟,特别是计算机技术的广泛应用,基于ANSYS参数化设计语言APDL的结构优化设计越来越体现出它强大的生命力,这无疑给建筑结构的优化设计注入了新的活力。

本文的优化设计思想,可以推广到其它结构形式,可对其它类型结构优化起到借鉴作用。

关键词:ANSYS参数化语言 APDL 钢结构优化设计
中图分类号:TU3 文献标识码:A
1.引言
结构优化设计理论已有近四十年的发展历史,目前在一些重要的结构(如飞机结构)上已经得到了应用,这也引起了土木和建筑工程界人士的广泛关注,寻求建筑结构优化设计的理论、方法一直在紧张有序的进行当中。

由于传统的优化方法,例如准则法、数学规划法以及两者的结合(即所谓的混合法)等静态优化方法都是基于代数方程模型的;最优控制理论中的动态规划优化方法是基于微分方程或差分方程模型的。

而这些传统数学模型的描述能力和求解方法有相当的局限性,使得最优化理论和方法在实际应用中受到了很大的限制,存在着局部最优解、维数灾难、不确定性等问题,这些困难需要寻求新的优化设计方法,才能得到最终解决。

随着有限元理论的迅猛发展和日趋成熟,特别是计算机技术的广泛应用,基于ANSYS参数化设计语言APDL的结构优化设计越来越体现出它强大的生命力,这无疑给建筑结构的优化设计注入了新的活力。

ANSYS是一种运用广泛的通用有限元分析软件,其有限元分析过程主要包括:建立分析模型并施加边界条件、求解计算和结果分析3个步骤。

对于某一有限元模型来说,当分析结果表明需要修改设计时,就必须修改有限元模型的几何尺寸或改变载荷状况,建立新的有限元模型,然后再重复以上分析过程。

这种/设计)分析)修改设计)再分析)再修改0的过程,在有限元分析中存在着大量的重复性工作,将直接影响设计的效率。

而运用ANSYS提供的参数化设计语言(APDL),通过结构设计参数的调整,则可以自动完成上述循环功能,进行优化设计,从而大大减少修改模型和重新分析所花的时间。

2.结构优化设计的基本理论
2.1结构优化设计概念
假定→分析→搜索→最优设计一般被归纳为结构优化分析过程的流程。

而这其中优化分析的核心部分为搜索过程。

在包括满足各种给定条件的前提下,是否达到最优是结构优化设计最先对设计方案进行的判断。

如果没能达到,但又为了使得预定的最优指标能逐步达到,就需要遵循某一设定的规则进行修改。

而以数学规划为基础,进行数学模型建立,并对计算方法进行选择,使得工程结构设计问题转化为数学问题,然后在多种可行性设计中运用计算机选择出相对属于最优设计的方案,这也正是结构优化设计的主要任务。

2.2结构优化设计的数学模型
设计变量、目标函数和约束条件是结构优化设计的主要要素:。

其数学模型的一般表达式为
求设计变量
使目标函数
满足约束条件
3.基于APDL的钢结构优化设计
3.1APDL语言简介和使用
APDL是指ANSYS 参数化设计语言,是使得某些功能或建模可以自动完成的脚本语言之一。

它提供如参数、宏、标量、向量及矩阵运算、分支、循环、重复以及访问ANSYS 有限元数据库等一般程序语言的功能,同时其可以实现参数交互输入、消息机制、界面驱动和运行应用程序等,因此它也提供简单界面定制功能。

为了扩展了传统有限元分析范围以外的能力,它可以根据指定的函数、变量设定程序的输入,同时选它使用户对任何设计和分析属性有控制权,也就是说其为了为用户提供了自动完成繁琐循环的功能而运用了建立智能分析的手段,从而为优化设计运行繁琐的迭代提供了可能和高效率,具体为参数、函数、分支与循环、重复、宏等功能。

3.2优化基本原理
优化方法采用复形法。

复形法优化是一个运用较多且较为成熟的非线性数学规划方法,其基本思路来源于无约束优化算法的单纯形法。

而无约束优化算法的单纯形法就是复合形法的基本思路的来源。

3.3优化设计流程
为了将有限元法与优化方法结合起来,可以采用基于APDL语言的ANSYS优化设计模块(OPT)来实现。

基本流程图如图1所示。

图1ANSYS软件优化设计程序流程图
3.4APDL优化程序关键技术
首先建立钢框架结构参数化有限模型。

参数是指APDL中的变量与数组。

参数化模型的建立,便于模型的修改,也便于设置优化设计变量。

其次建立钢框架结构优化设计模型。

下面是部分优化命令:
/POST1!进入后处理器
*GET,V,SSUM,,ITEM,EVOL!提取结构体积,赋予参数V
……
/OPT!进入优化设计器
OPANL,1.LGW!指定分析文件
OPVAR,W1,DV,.1,.4!定义设计变量
OPVAR,TW1,DV,0.005,0.02
OPVAR,TY1,DV,0.005,0.02
……
OPVAR,MS1,SV,0,225750!定义状态变量
OPVAR,SS1,SV,0,125000
……
OPVAR,V,OBJ,,,.01!定义目标函数
OPKEEP,ON!要求保留最优设计序列时的数据库和结果文件
OPTYPE,SUBP!使用零阶方法
OPFRST,40!最大40次迭代
OPEXE!运行优化
4.优化设计实例分析
本文以单跨单层钢框架结构厂房为例,跨度为 12m,层高为4.5m,框架梁、柱均采用焊接H 型钢截面且翼缘采用焰切边,材质均为Q235 钢。

为简便起见,取恒荷载为0.5kN/m2,活荷载为2.0kN/m2。

通过APDL 优化程序,得出用钢量约为18.2kg/m2。

优化前后的结果对比分析见表1。

表1 优化前后结果分析
5.结语
本文首先论述了进行钢框架结构优化研究的意义,介绍了优化算法(复形法)和ANSYS 中的APDL语言。

并通过与实际工程相结合,并分别采用复形法和有限元软件ANSYS优化模块,同时以最低化用为优化的目的,使一平面钢结构的梁柱截面尺寸得到优化并进行相应的分析。

通过理论分析与结果的分析比较,证实了该优化方法是可行的,不仅能明显降低工程造价,促进钢结构的普及和推广。

而由设计实例可知,基于ANSYS 的二次开发语言APDL 语言建立的钢结构优化设计模块操作方便,优化程序可自定义优化过程和控制性变量,适应了不同的结构类型和荷载组合,具有很强的灵活性。

本文的优化设计思想,可以推广到其它结构形式,可对其它类型结构优化起到借鉴作用。

参考文献:
[1] 王富强,芮执元,魏兴春.基于APDL语言的结构优化设计[J]. 科学技术与工程. 2006(21)
[2] 赵霞,邰英楼.基于ANSYS的结构设计优化[J]. 辽宁工程技术大学学报. 2006(S2)
[3] 陈珂,张茂.基于ANSYS的参数化设计与分析方法[J]. 机械工程师. 2007(01)
[4] 王学文,杨兆建,段雷.ANSYS优化设计若干问题探讨[J]. 塑性工程学报. 2007(06)
[5] 刘丽贤,马国鹭,赵登峰.基于APDL的ANSYS网格划分及应用[J]. 重庆科技学院学报(自然科学版). 2008(05)
[6] 王峰,丁晓红,陈建来.ANSYS参数化有限元技术在板壳结构拓扑优化设计中的应用[J]. 机械设计与制造. 2008(01)。

相关文档
最新文档