2012年高考专题复习第4单元-曲线运动 万有引力与航天-物理-新课标★
高考物理一轮总复习【课件】第四章 曲线运动 万有引力与航天2-4-1

[答案] ×
课
时
跟
考
3.曲线运动不可能是匀加速运动( )
点
互 动
[答案] ×
踪 训 练
探
究
4.合运动的速度一定比每一个分运动的速度都大( )
[答案] ×
第8页
必修1 第1章 第1讲
高考总复习·课标版·物理
基 础
5.两个分运动的时间一定与它们合运动的时间相等
知
识
回 顾
[答案] √
()
课
6.只要两个分运动是直线运动,合运动一定是直线运动
基
础 知
各个分运动与合运动总是同时开始,
识
等时性 同时结束,经历时间相等(不同时
回 顾
的运动不能合成)
等效性
各分运动叠加起来与合运动有相同 的效果
课 时 跟
考 点 互
各分运动与合运动,是指同一物体
踪 训
同一性 参与的分运动和实际发生的运动,
练
动 探
不是几个不同物体发生的不同运动
究
第17页
必修1 第1章 第1讲
础
知 识
则物体在 M 点受到的恒力与速度方向夹角为钝角,物体由 M
回
顾 到 N 运动过程中会出现速度方向与恒力方向之间夹角为锐
角,所以物体的速度先减小后增大.
课 时
跟
考 点
[答案] D
互
踪 训 练
动
探
究
第15页
必修1 第1章 第1讲
高考总复习·课标版·物理
考点二 合运动与分运动问题
基
1.合运动与分运动的关系
匀速圆周运动、角速度、 线速度、向心加速度Ⅰ 匀速圆周运动的向心力Ⅱ 离心现象Ⅰ 万有引力定律及其应用Ⅱ 环绕速度Ⅱ
高考物理一轮总复习【课件】第四章 曲线运动 万有引力与航天2-4-4

课 时
考 点 互
下;其二是为物体随地球自转提供向心力 F 向=mω2自r,从合力 与分力的关系来看,重力 mg 和向心力 F 向是万有引力的两个
跟 踪 训 练
动
探 究
效果力,即分力. 若从力产生的原因(力的性质)来分析地面上
物体的受力情况,则物体只受到万有引力和地面的支持力,不
能同时再分析重力.
第21页
课 时
考 点 互 动 探 究
船舱内王亚平受到地球的引力,则下列关系式中正确的是
() A.g′=0
B.g′=Rr22g
跟 踪 训 练
C.F=mg
D.F=Rr mg
第29页
必修1 第1章 第1讲
C.8F
D.16F
[解析] F=G2mr122,其中 m1=43πr3·ρ,F′=G4mr222,其
跟 踪 训 练
探
究 中 m2=43π(2r)3·ρ.解得 F′=16F.
[答案] D
第17页
必修1 第1章 第1讲
高考总复习·课标版·物理
2.(多选)如右图所示,三颗质量
均为 m 的地球同步卫星等间隔分布在
基
础 知
在北极上空高出地面 h 处测量,
识
回 顾
GRM+mh2=F1
课
考 点
则FF10=R+R2h2
互 动
当 h=1.0%R 时,
时 跟 踪 训 练
探
究
FF10=R+R2h2=1.0112≈0.98
第27页
必修1 第1章 第1讲
高考总复习·课标版·物理
(2)在赤道上小物体随地球自转做匀速圆周运动,受到万
高考总复习·课标版·物理
基
础 知
高三物理复习 4 曲线运动(含2012年高考真题)

专题4 曲线运动1(2012上海卷).如图,斜面上a、b、c三点等距,小球从a点正上方O点抛出,做初速为v0的平抛运动,恰落在b点.若小球初速变为v,其落点位于c,则()(A)v0<v<2v0(B)v=2v0(C)2v0<v<3v0(D)v>3v0答案:A解析:根据平抛运动的规律可知若小球落在b点,有x=v0t b,t b=,若落在c点,则2x=vt c,而t c=,显然t c>t b,所以v0<v<2v0,即A正确.2.(2012全国新课标).如图,x轴在水平地面内,y轴沿竖直方向.图中画出了从y轴上沿x 轴正向抛出的三个小球a、b和c的运动轨迹,其中b和c是从同一点抛出的,不计空气阻力,则A.a的飞行时间比b的长B.b和c的飞行时间相同C.a的水平速度比b的小D.b的初速度比c的大答案:BD解析:平抛运动的时间是由下落高度决定的,高度相同,时间一样,高度高,飞行时间长.A 错,B正确.水平位移由速度和高度决定,由得C错D正确.3.(2012上海卷).图a为测量分子速率分布的装置示意图.圆筒绕其中心匀速转动,侧面开有狭缝N,内侧贴有记录薄膜,M为正对狭缝的位置.从原子炉R中射出的银原子蒸汽穿过屏上的S缝后进入狭缝N,在圆筒转动半个周期的时间内相继到达并沉积在薄膜上.展开的薄膜如图b所示,NP,PQ间距相等.则()(A)到达M附近的银原子速率较大(B )到达Q 附近的银原子速率较大(C )位于PQ 区间的分子百分率大于位于NP 区间的分子百分率 (D )位于PQ 区间的分子百分率小于位于NP 区间的分子百分率 答案:AC解析:分子在圆筒中运动的时间t=d/v ,可见速率越大,运动的时间越短,圆筒转过的角度越小,到达位置离M 越近,所以A 正确,B 错误;根据题图b 可知位于PQ 区间的分子百分率大于位于NP 区间的分子百分率,即C 正确,D 错误.4.(2012江苏卷).如图所示,细线的一端固定于O 点,另一端系一小球,在水平拉力作用下,小球以恒定速率在竖直平面内由A 点运动到B 点,在此过程中拉力的瞬时功率变化情况是 A .逐渐增大 B .逐渐减小 C .先增大,后减小 D .先减小,后增大 答案:A解析:小球从A 到B 在竖直平面内做匀速圆周运动,动能不变,重力势能增加得越来越快,故拉力的瞬时功率逐渐增大.5(2012江苏卷).如图所示,相距l 的两小球A 、B 位于同一高度h (l 、h 为定值),将A 向B 水平抛出的同时,B 自由下落,A 、B 与地面碰撞前后,水平分速度不变,竖直分速度大小不变,方向相反,不计空气阻力及小球与地面碰撞的时间,则: A .A 、B 在第一次落地前能否相碰,取决于A 的初速度 B .A 、B 在第一次落地前若不碰,此后就不会相碰 C .A 、B 不可能运动到最高处相碰 D .A 、B 一定能相碰 答案:AD解析:平抛运动规律,,所以,若,则第1次落地前能相遇,所以取决于,A 正确;A 碰地后还可能与B 相遇,所以B 、C 错误,D 正确. 6.(2012全国理综).(20分)一探险队员在探险时遇到一山沟,山沟的一侧竖直,另一侧的坡面呈抛物线形状.此队员从BAFO山沟的竖直一侧,以速度v0沿水平方向跳向另一侧坡面.如图所示,以沟底的O点为原点建立坐标系Oxy.已知,山沟竖直一侧的高度为2h,坡面的抛物线方程为y=1/2h*x2,探险队员的质量为m.人视为质点,忽略空气阻力,重力加速度为g.(1)求此人落到破面试的动能;(2)此人水平跳出的速度为多大时,他落在坡面时的动能最小?动能的最小值为多少?解析:(1)平抛运动的分解析:,,得平抛运动的轨迹方程,此方程与坡面的抛物线方程为y=1/2h*x2的交点为,.根据机械能守恒,解得(2)求关于的导数并令其等于0,解得当此人水平跳出的速度为时,他落在坡面时的动能最小,动能的最小值为.7.(2012北京高考卷).(16分)如图所示,质量为m的小物块在粗糙水平桌面上做直线运动,经距离l后以速度υ飞离桌面,最终落在水平地面上.已知l=1.4m,υ=3.0 m/s,m=0.10kg,物块与桌面间的动摩擦因数μ=0.25,桌面高h =0.45m ,不计空气阻力,重力加速度g 取10m/s 2.求:(1)小物块落地点距飞出点的水平距离s ; (2)小物块落地时的动能E k ; (3)小物块的初速度大小υ0.解析:(1)由平抛运动规律,有 竖直方向 h =gt 2水平方向 s =υt 得水平距离 s =υ=0.90m(2)由机械能守恒定律,动能 E k =m υ2+mgh =0.90J(3)由动能定理,有 -μmg l =m υ2-m υ02得初速度大小 υ0==4.0m/s8.(2012山东卷).(15分)如图所示,一工件置于水平地面上,其AB 段为一半径的光滑圆弧轨道,BC 段为一长度的粗糙水平轨道,二者相切与B 点,整个轨道位于同一竖直平面内,P 点为圆弧轨道上的一个确定点.一可视为质点的物块,其质量,与BC间的动摩擦因数.工件质,与地面间的动摩擦因数.(取(1)若工件固定,将物块由P 点无初速度释放,滑至C 点时恰好静止,求P 、C 两点间的高度差h.(2)若将一水平恒力F 作用于工件,使物体在P 点与工件保持相对静止,一起向左做匀加速直线运动 ○1求F 的大小υ0shυl○2当速度时,使工件立刻停止运动(即不考虑减速的时间和位移),物块飞离圆弧轨道落至BC段,求物块的落点与B点间的距离.解析:(1)物块从P点下滑经B点至C点的整个过程,根据动能定理得○1代入数据得○2(2)○1设物块的加速度大小为,P点与圆心的连线与竖直方向间的夹角为,由几何关系可得○3根据牛顿第二定律,对物体有○4对工件和物体整体有○5联立○2○3○4○5式,代入数据得○6○2设物体平抛运动的时间为,水平位移为,物块落点与B间的距离为,由运动学公式可得○7○8○9联立○2○3○7○8○9式,代入数据得○109.(2012浙江卷).由光滑细管组成的轨道如图所示,其中AB段和BC段是半径为R的四分之一圆弧,轨道固定在竖直平面内.一质量为m的小球,从距离水平地面为H的管口D处静止释放,最后能够从A端水平抛出落到地面上.下列说法正确的是()A.小球落到地面时相对于A点的水平位移值为B. 小球落到地面时相对于A点的水平位移值为C.小球能从细管A端水平抛出的条件是H>2RD.小球能从细管A端水平抛出的最小高度H min= R答案:BC解析:因轨道光滑,从D→A过程应用机械能守恒定律有mgH=mg(R+R)+1/2mv2A,得v A=;从A端水平抛出到落地,由平抛运动公式有2R=1/2*gt2,水平位移x=v A t=·=,则选项B正确,A错误;因小球能从细管A端水平抛出的条件是v A>0,故要求H>2R,则选项C正确,D错误.10.(2012天津卷)如图所示,水平地面上固定有高为h的平台,台面上有固定的光滑坡道,坡道顶端距台面高也为h,坡道底端与台面相切.小球A从坡道顶端由静止开始滑下,到达水平光滑的台面后与静止在台面上的小球B发生碰撞,并粘连在一起,共同沿台面滑行并从台面边缘飞出,落地点与飞出点的水平距离恰好为台高的一半,两球均可视为质点,忽略空气阻力,重力加速度为g,求(1)小球A刚滑至水平台面的速度v A;(2)A、B两球的质量之比m A:m B解析:(1)小球A在坡道上只有重力做功机械能守恒,有①解得②(2)小球A、B在光滑台面上发生碰撞粘在一起速度为v,根据系统动量守恒得③离开平台后做平抛运动,在竖直方向有④在水平方向有⑤联立②③④⑤化简得。
高考物理一轮复习第4章曲线运动万有引力与航天-第1讲曲线运动运动的合成与分解PPT课件

梳理深化 强基
多思维课 建堂 模 热 素点 养
【典例1】 各种大型的货运站中少不了旋臂式起重机,如图4
-1-3所示,该起重机的旋臂保持不动,可沿旋臂“行
走”的天车有两个功能,一是吊着货物沿竖直方向运动,
二是吊着货物沿旋臂水平运动.现天车吊着货物正在沿水
平方向向右匀速行驶,同时又启动天车上的起吊电动机,
梳理深化 强基
多思维课 建堂 模 热 素点 养
基础自测
1.(单选)一质点在某段时间内做曲线运动,则在这段时间内 ( ).
A.速度一定不断改变,加速度也一定不断改变 B.速度一定不断改变,加速度可以不变 C.速度可以不变,加速度一定不断地改变 D.速度可以不变,加速度也可以不变 解析 做曲线运动的物体速度方向不断改变,加速度一定 不为零,但加速度可能改变也可能不变,所以做曲线运动 的物体可以是匀变速运动也可以是非匀变速运动. 答案 B
A.橡皮在水平方向上做匀速运动
B.橡皮在竖直方向上做加速运动
C.橡皮的运动轨迹是一条直线
图4-1-2
D.橡皮在图示虚线位置时的速度大小为 v cos2θ+1
梳理深化 强基
多思维课 建堂 模 热 素点 养
解析 悬挂橡皮的细线一直保持竖直,说明橡皮水平方向 具有和铅笔一样的速度,A 正确;在竖直方向上,橡皮的 速度等于细线收缩的速度,把铅笔与细线接触的地方的速 度沿细线方向和垂直细线方向分解,沿细线方向的分速度 v1=vsin θ,θ 增大,沿细线方向的分速度增大,B 正确; 橡皮的加速度向上,与初速度不共线,所以做曲线运动, C 错误;橡皮在题图虚线位置时的速度 vt= v21+v2= v sin2θ+1,D 错误.
使货物沿竖直方向做匀减速运动.此时,我们站在地面上
高考物理总复习第四章曲线运动万有引力与航天基础课4万有引力与航天课件

第二十四页,共49页。
解析 根据万有引力提供向心力得GMr2m=mvr2和 T=2vπr,可解得恒星的质量 M= 2vπ3TG,选项 A 正确;因不知行星和恒星之间的万有引力的大小,所以行星的质量无 法计算,选项 B 错误;因 v=ωr=2Tπr,所以 r=v2Tπ,选项 C 正确;行星的加速度 a =ω2r=4Tπ22·v2Tπ=2Tπv,选项 D 正确。 答案(dáàn) ACD
第二十五页,共49页。
3.(2016·海南单科,7)(多选)通过观测冥王星的卫星,可以推算 出冥王星的质量。假设卫星绕冥王星做匀速圆周运动,除了 引力常量外,至少还需要两个物理量才能计算出冥王星的质 量。这两个物理量可以是( ) A.卫星的速度和角速度 B.卫星的质量和轨道半径 C.卫星的质量和角速度 D.卫星的运行(yùnxíng)周期和轨道半径
第十九页,共49页。
解析 因为不考虑地球的自转,所以卫星的万有引力等于重力,即GMR地2 m=mg,得 M 地=gGR2,所以据 A 中给出的条件可求出地球的质量;根据GMR地2m卫=m 卫vR2和 T= 2πvR,得 M 地=2vπ3TG,所以据 B 中给出的条件可求出地球的质量;根据GMr地2m月= m 月4Tπ22r,得 M 地=4GπT2r23,所以据 C 中给出的条件可求出地球的质量;根据GMr太2m地= m 地4Tπ22r,得 M 太=4GπT2r23,所以据 D 中给出的条件可求出太阳的质量,但不能求出 地球质量,本题答案为 D。 答案(dáàn) D
基础课4 万有引力(wàn yǒu yǐnlì)与
第一页,共49页。
高考物理第一轮复习第4章 曲线运动 万有引力与航天 4-2 新课标人教版 Word版含解析[ 高考]
![高考物理第一轮复习第4章 曲线运动 万有引力与航天 4-2 新课标人教版 Word版含解析[ 高考]](https://img.taocdn.com/s3/m/6da62b96f524ccbff12184eb.png)
第2讲平抛运动A对点训练——练熟基础知识题组一对抛体运动规律的理解及应用1.关于平抛运动的叙述,下列说法不正确的是().A.平抛运动是一种在恒力作用下的曲线运动B.平抛运动的速度方向与恒力方向的夹角保持不变C.平抛运动的速度大小是时刻变化的D.平抛运动的速度方向与加速度方向的夹角一定越来越小解析平抛运动的物体只受重力作用,故A正确;平抛运动是曲线运动,速度时刻变化,由v=v20+(gt)2知合速度v在增大,故C正确;对平抛物体的速度方向与加速度方向的夹角,有tan θ=v0v y=v0gt,因t一直增大,所以tan θ变小,故D正确、B错误.答案 B2.一架飞机以200 m/s的速度在高空中某一水平面上做匀速直线运动,前、后相隔1 s从飞机上落下A、B两个物体,不计空气阻力,落下时A、B两个物体相对飞机的速度均为零,在A、B以后的运动过程中,它们所处的位置关系是().A.A在B的前方,沿水平方向两者相距200 mB.A在B的后方,沿水平方向两者相距200 mC.A在B的正下方,两者间的距离始终保持不变D.A在B的正下方,两者间的距离逐渐增大答案 D3.(2013·济南模拟)如图4-2-11所示,从某高度水平抛出一小球,经过时间t 到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g.下列说法正确的是().图4-2-11 A.小球水平抛出时的初速度大小为gt tan θB.小球在t时间内的位移方向与水平方向的夹角为θ2C.若小球初速度增大,则平抛运动的时间变长D.若小球初速度增大,则θ减小解析落地时竖直方向上的速度v y=gt.因为速度方向与水平方向的夹角为θ,所以落地的速度大小v=v ysin θ=gtsin θ,小球的初速度v0=v ytan θ=gttan θ,A错误.速度与水平方向夹角的正切值tan θ=v yv0=gtv0,位移与水平方向夹角的正切值tan α=yx=gt2v0,tan θ=2tan α,但α≠θ2,故B错误.平抛运动的时间由高度决定,与初速度无关,故C错误.由于tan θ=v yv0=gtv0,若小球初速度增大,则θ减小,D正确.答案 D4.(太原模考)如图4-2-12所示,将一篮球从地面上方B点斜向上抛出,刚好垂直击中篮板上A点,不计空气阻力,若抛射点B向篮板方向水平移动一小段距离,仍使抛出的篮球垂直击中A点,则可行的是().图4-2-12A.增大抛射速度v0,同时减小抛射角θB .减小抛射速度v 0,同时减小抛射角θC .增大抛射角θ,同时减小抛出速度v 0D .增大抛射角θ,同时增大抛出速度v 0解析 由于篮球始终垂直击中A 点,可应用逆向思维,把篮球的运动看做从A 开始的平抛运动.当B 点水平向左移动一小段距离时,A 点抛出的篮球仍落在B 点,则竖直高度不变,水平位移减小,球到B 点的时间t =2hg 不变,竖直分速度v y =2gh 不变,水平方向由x =v x t 知x ↓,v x ↓,合速度v 0=v 2x +v 2y 变小,与水平方向的夹角tan θ=v y v x变大,综合可知选项C 正确. 答案 C5.(2014·重庆市巴蜀中学高三第一次月考)从高h 的平台上水平踢出一球,欲击中地面上A 点.若两次踢球的方向均正确,第一次初速度为v 1,球的落地点比A 近了a (m);第二次球的落地点比A 远了b (m),如图4-2-13,试求:图4-2-13(1)第一次小球下落的时间;(2)第二次踢出时球的初速度多大?解析 (1)竖直方向:h =12gt 2t =2hg① (2)水平方向:x -a =v 1t② x +b =v 2t③ 由①②③解得:v 2=v 1+g2h (a +b )答案 (1)2hg (2)v 1+g2h (a +b )题组二 多体的平抛问题6.(2013·重庆双桥中学高三月考)从高H 处以水平速度v 1平抛一个小球1,同时从地面以速度v 2竖直向上抛出一个小球2,两小球在空中相遇则: ( ).图4-2-14 ①从抛出到相遇所用时间为H v 1②从抛出到相遇所用时间为H v 2③抛出时两球的水平距离是v 1H v 2④相遇时小球2上升高度H ⎝ ⎛⎭⎪⎫1-gH 2v 21 A .①③B .②③C .②③④D .②④解析 平抛运动中竖直方向自由落体运动,在t 时刻相遇,有H =12gt 2+v 2t -12gt 2,运动时间为H v 2,水平方向有x =v 1t =v 1H v 2,B 对. 答案 B7.在同一点O 水平抛出的三个物体,做平抛运动的轨迹如图4-2-15所示,则三个物体做平抛运动的初速度v A 、v B 、v C 的关系和三个物体做平抛运动的时间t A 、t B 、t C 的关系分别是 ( ).图4-2-15A .v A >vB >vC ,t A >t B >t CB .v A =v B =vC ,t A =t B =t CC .v A <v B <v C ,t A >t B >t CD .v A >v B >v C ,t A <t B <t C解析 从题图中可以看出h A >h B >h C ,由t =2hg 得t A >t B >t C .判断三个物体做平抛运动的初速度的大小时,可以补画一个水平面,如图所示,三个物体从O 点抛出运动到这一水平面时所用的时间相等,由图可知水平位移x A <x B <x C ,由v =x t 可得v A <v B <v C ,所以选项C 正确.答案 C8.如图4-2-16所示,水平地面上有一个坑,其竖直截面为半圆,O 为圆心,AB 为沿水平方向的直径.若在A 点以初速度v 1沿AB 方向平抛一小球,小球将击中坑壁上的最低点D 点;而在C 点以初速度v 2沿BA 方向平抛的小球也能击中D 点.已知∠COD =60°,则两小球初速度大小之比v 1∶v 2.(小球视为质点) ( ).图4-2-16A .1∶2B .1∶3C .3∶2D .6∶3解析 小球从A 点平抛:R =v 1t 1,R =12gt 21,小球从C 点平抛:R sin 60°=v 2t 2,R (1-cos 60°)=12gt 22,联立解得v 1v 2=63,故选项D 正确.答案 D题组三 “平抛+斜面”问题9.如图4-2-17所示,小球以v 0正对倾角为θ的斜面水平抛出,若小球到达斜面的位移最小,则飞行时间t 为(重力加速度为g ) ( ).图4-2-17A .t =v 0tan θB .t =2v 0tan θgC .t =v 0cot θgD .t =2v 0cot θg解析 如图所示,要使小球到达斜面的位移最小,则要求落点与抛出点的连线与斜面垂直,所以有tan θ=x y ,而x =v 0t ,y =12gt 2,解得t =2v 0cot θg .答案 D10.(2013·晋中市四校联考)如图4-2-18所示是倾角为45°的斜坡,在斜坡底端P点正上方某一位置Q 处以速度v 0水平向左抛出一个小球A ,小球恰好能垂直落在斜坡上,运动时间为t 1,小球B 从同一点Q 处自由下落,下落至P 点的时间为t 2,不计空气阻力,则t 1∶t 2为 ( ).图4-2-18A .1∶2B .1∶ 2C.1∶3 D.1∶ 3解析对小球A,设垂直落在斜坡上对应的竖直高度为h,则有h=gt212,hv0t1=v y2v0=12,解得小球A的水平位移为2h,所以小球B运动时间t2对应的竖直高度为3h,即3h=gt222,t1∶t2=1∶3.答案 D11.(2013·云南部分名校统考,20)如图4-2-19所示,为湖边一倾角为30°的大坝横截面示意图,水面与大坝的交点为O.一人站在A点以速度v0沿水平方向扔一小石子,已知AO=40 m,不计空气阻力,g取10 m/s2.下列说法正确的是().图4-2-19A.若v0>18 m/s,则石块可以落入水中B.若v0<20 m/s,则石块不能落入水中C.若石子能落入水中,则v0越大,落水时速度方向与水平面的夹角越大D.若石子不能落入水中,则v0越大,落到斜面上时速度方向与斜面的夹角越大解析石子从A到O过程中,由平抛运动规律有AO sin 30°=12gt2,AO cos 30°=v0t,联立得v0=17.3 m/s,所以只要v0>17.3 m/s的石子均能落入水中,A项正确B项错误;若石子落入水中,由平抛运动规律有AO sin 30°=12gt2,vy=gt=20 m/s,设其落入水中时的速度与水平面夹角为θ,则tan θ=v yv0,v y一定,v0增大,θ减小,C项错;不落入水中时,根据中点定理得石子落到斜面上时的速度方向与斜面夹角都相等,与v 0大小无关,D 项错误.答案 AB 深化训练——提高能力技巧12.(2013·安徽卷,18)由消防水龙带的喷嘴喷出水的流量是0.28 m 3/min ,水离开喷口时的速度大小为16 3 m/s ,方向与水平面夹角为60 °,在最高处正好到达着火位置,忽略空气阻力,则空中水柱的高度和水量分别是(重力加速度g 取10 m/s 2)( ).A .28.8 m 1.12×10-2 m 3B .28.8 m 0.672 m 3C .38.4 m 1.29×10-2 m 3D .38.4 m 0.776 m 3解析 将速度分解为水平方向和竖直方向两个分量,v x =v cos 60°,v y =v sin 60°,水的运动可看成竖直方向的竖直上抛运动和水平方向的匀速直线运动的合运动,水柱的高度h =v 2y 2g =28.8 m ,上升时间t =v y g =v sin 60°g =2.4 s空中水量可用流量乘以时间来计算,Q =0.2860m 3/s ×2.4 s =1.12×10-2m 3.故选项A 正确.答案 A13.(2013·天水一中模拟)如图4-2-20所示,倾角为37°的粗糙斜面的底端有一质量m =1 kg 的凹形小滑块,小滑块与斜面间的动摩擦因数μ=0.25,现让小滑块以某一初速度v 从斜面底端上滑,同时在斜面底端正上方有一小球以初速度v 0水平抛出,经过0.4 s ,小球恰好垂直斜面方向落入凹槽,此时,小滑块还在上滑过程中.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,求:图4-2-20(1)小球水平抛出的速度v0;(2)小滑块的初速度v.解析(1)设小球落入凹槽时的竖直分速度为v y,则v y=gt=10×0.4 m/s=4 m/s,v0=v y tan 37°=3 m/s.(2)小球落入凹槽时的水平分位移x=v0t=3×0.4 m=1.2 m则小滑块的位移s=xcos 37°=1.5 m小滑块的加速度大小a=g sin 37°+μg cos 37°=8 m/s2根据公式s=v t-12at2解得v=5.35 m/s.答案(1)3 m/s(2)5.35 m/s14.(2013·江西八校4月联考)如图4-2-21所示,在水平地面上固定一倾角θ=37°表面光滑的斜面体,物体A以v1=6 m/s的初速度沿斜面上滑,同时在物体A的正上方,有一物体B以某一初速度水平抛出.如果当A上滑到最高点时恰好被B物体击中.(A、B均可看做质点,sin 37°=0.6,cos 37°=0.8)求:图4-2-21(1)物体A上滑到最高点所用的时间t;(2)物体B抛出时的初速度v2.解析 (1)物体A 上滑过程中,由牛顿第二定律得:mg sin θ=ma 解得:a =6 m/s 2设经过时间t 物体A 上滑到最高点,由运动学公式:0=v 1-at解得:t =1 s .(2)平抛物体B 的水平位移:x =12v 1t cos 37°=2.4 m平抛速度:v 2=x t =2.4 m/s答案 (1)1 s (2)2.4 m/s。
专题4曲线运动 第4讲万有引力与航天(教学课件)高考物理一轮复习
①由 GMr2m=m4Tπ22r,得天体的质量 M=4GπT2r23. ②若已知卫星的周期 T 和天体的半径 R,则天体密度 ρ=MV =34πMR3=G3Tπ2rR3 3.
③若卫星绕天体表面运行时,可认为轨道半径 r 等于天体半径 R, 则天体密度 ρ=G3Tπ2.可见,只要测出卫星环绕天体表面运动的周期 T, 就可估算出中心天体的密度.
2.三种宇宙速度
宇宙速度 数值/(km·s-1)
意义
第一宇宙速度 (环绕速度)
卫星绕地球做圆周运动的最小发射速度.
7.9
若 7.9 km/s ≤ v < 11.2 km/s , 物 体 绕
__地__球____运行
第二宇宙速度 (逃逸速度)
11.2
物体挣脱地球引力束缚的最小发射速度.
若 11.2 km/s ≤ v < 16.7 km/s , 物 体 绕 __太__阳____运行
B.静止轨道卫星的线速度大小约为中轨道卫星的2倍
【强】第4章 曲线运动 万有引力与航天
第四章曲线运动万有引力与航天纵观历年考题,与本章内容相关的考题知识覆盖面宽,常与电场、磁场、机械能等知识综合成难度较大的试题,学习过程中应加强综合能力的培养.近几年对人造卫星问题考查频率较高,它是对万有引力的考查.卫星问题与现代科技结合密切,对理论联系实际的能力要求较高,要引起足够重视.在高考题中本章内容以选择、填空、计算等题型出现都有可能.第1课时曲线运动质点在平面内的运动基础知识回顾1.曲线运动(1)曲线运动中的速度方向做曲线运动的物体,速度的方向时刻在改变,在某点(或某一时刻)的速度方向是曲线上该点的切线方向.(2)曲线运动的性质由于曲线运动的速度方向不断变化,所以曲线运动一定是变速运动,一定存在加速度.(3)物体做曲线运动的条件物体所受合外力(或加速度)的方向与它的速度方向不在同一直线上.①如果这个合外力是大小和方向都恒定的,即所受的力为恒力,物体就做匀变速曲线运动,如平抛运动.②如果这个合外力大小恒定,方向始终与速度垂直,物体就做匀速圆周运动.③做曲线运动的物体,其轨迹向合外力所指一方弯曲.根据曲线运动的轨迹,可以判断出物体所受合外力的大致方向.说明:当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动速率将增大,当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小.2.运动的合成与分解(1)合运动与分运动的特征①等时性:合运动和分运动是同时发生的,所用时间相等.②等效性:合运动跟几个分运动共同叠加的效果相同.③独立性:一个物体同时参与几个运动,各个分运动独立进行,互不影响.(2)已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成.遵循平行四边形定则.①两分运动在同一直线上时,先规定正方向,凡与正方向相同的取正值,相反的取负值,合运动为各分运动的代数和.②不在同一直线上,按照平行四边形定则合成(如图4-1-1示).图4-1-1③两个分运动垂直时,正交分解后的合成为s =合v =合a =合(3)已知合运动求分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解.重点难点例析一、怎样确定物体的运动轨迹?1.同一直线上的两分运动(不含速率相等,方向相反情形)的合成,其合运动一定是直线运动. 2.不在同一直线上的两分运动的合成.(1)若两分运动为匀速运动,其合运动一定是匀速运动.(2)若两分运动为初速度为0的匀变速直线运动,其合运动一定是匀变速直线运动.(3)若两分运动中,一个做匀速运动,另一个做匀变速直线运动,其合运动一定是匀变速曲线运动(如平抛运动).(4)若两分运动均为初速度不为0的匀加(减)速直线运动,其合运动不一定是匀加(减)速直线运动,如图4-1-2、图4-1-3所示).图4-1-2情形为匀变速曲线运动;图4-1-3情形为匀变速直线运动(匀减速情形图未画出),此时有2121a a v v =.【例1】关于不在同一直线的两个初速度不为零的匀变速直线运动的合运动,下列说法正确的是( ) A .一定是直线运动 B .一定是曲线运动C .可能是直线运动,也可能是曲线运动D .一定是匀变速运动【解析】两个分运动的加速度恒定,因此合加速度是恒定的,所以合运动的性质一定是匀变速运动;当合速度与合加速度在一条直线上时,合运动是直线运动,当合速度与合加速度不在一条直线上时,合运动是曲线运动.所以CD 正确. 【答案】CD【点拨】两直线运动的合运动的性质和轨迹,由两个因素决定:一是分运动的性质,二是合运动的初速度与合运动的加速度方向拓展如图4-1-4图示,物体在恒力F 作用下沿曲线从A 运动到B ,这时突然使它所受的力方向改变而大小不变(即由F 变为-F ),在此力作用下物体以后运动情况,下列说法正确的是( ) A .物体不可能沿曲线Ba 运动 B .物体不可能沿直线Bb 运动C .物体不可能沿曲线Bc 运动D .物体不可能沿原曲线由B 返回A【解析】物体在A 点时的速度v A 沿A 点切线方向,物体在恒力F 作用下沿曲线AB 运动,此力F 必有垂直于v A 的分量,即力F 只可能沿为图中所示的各种方向之一;当物体运动到达B 点时,瞬时速度v B 沿B 点的切线方向,这是时受力F /=-F ,即F /只可能为图中所示的方向之一;可知物体以后只可能沿曲线Bc 运动.v图4-1-2 图4-1-3b 图4-1-4b 图4-1-5图4-1-7x3100mBC图4-1-9【答案】ABD二、船过河问题的分析与求解方法1.处理方法:船在有一定流速的河中过河时,实际上参与了两个方向的运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动. 2.对船过河的分析与讨论.设河宽为d ,船在静水中速度为v 船,水流速为v 水. (1)船过河的最短时间 如图4-1-6所示,设船头斜向上游与河岸成任意夹角θ,这时船速在垂直河岸方向的速度分量为v 1=v 船sin θ,则过河时间为1sin d d t v v θ==船,可以看出,d 、v 船一定时,t 随sin θ增大而减小;当θ=90°时,即船头与河岸垂直时,过河时间最短mindt v =船.到达对岸时船沿水流方向位移x =v 水t min=v d v 水船.(2)船过河的最短位移 ①v 船>v 水如图4-1-6所示,设船头斜指向上游,与河岸夹角θ.当船的合速度垂直于河岸时,此情形下过河位移最短,且最短位移为河宽d .此时有v 船cos θ=v 水,即arccos v v θ=水船. ②v 船<v 水如图4-1-7所示,无论 船向哪一个方向开,船不可 能垂直于河岸过河.设船头 与河岸成θ角,合速度v 合与 河岸成α角.可以看出:α角 越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 合与圆相切时,α角最大,根据cos v v θ=船水,船头与河岸的夹角应为arccosv v θ=船水, 船沿河漂下的最短距离为:min (cos )sin d x v v v θθ=-水船船. 此情形下船过河的最短位移:cos v d s d v θ==水船.【例2】如图4-1-8所 示,一条小船位于200m 宽的河的正中点A 处, 从这里向下游1003m处有一危险区,当时水流速度为4.0m/s ,为了使小船避开危险区沿直线到达对岸,小船在静水中的速度至少是( ) A .334m/s B .338m/s C .2.0m/s D .4.0m/s 【解析】如图4-1-9所示,要使小船避开危险区沿直线到达对岸,小船的合速度方向范围为水平方向AB (不包括AB )到AC之间.由图中几何关系可知,当合速度方向沿AC ,小船垂直AC 开行,其在静水中的速度最小.由图可知,tan θ=θ=30°, 故v 船=v 水sin θ=2.0m/s . 【答案】C【点拨】本题关键是确定小船避开危险区沿直线到达对岸时小船的合速度方向而做出速度矢量三角形,从图知当小船垂直AC 开行,其在静水中的速度最小.本题易出现错解的情形是:认为当小船垂直河岸开行,在静水中的速度最小,此时v 船=v 水tan θ.v v 图4-1-6OA● 拓展在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( ) A .21222v v dv - B .0C .21v dv D .12v dv 【解析】摩托艇要想在最短时间内到达对岸,其划行方向要垂直于江岸,摩托艇实际的运动是相对于水的划行运动和随水流的运动的合运动,垂直于江岸方向的运动速度为v 2,到达江岸所用时间t=2v d ;沿江岸方向的运动速度是水速v 1在相同的时间内,被水冲下的距离,即为登陆点距离0点距离s=v 1t = 21v dv .【答案】C三、如何分解用绳(或杆)连接物体的速度?1.一个速度矢量按矢量运算法则分解为两个速度,但若与实际情况不符,则所得分速度毫无物理意义,所以速度分解的一个基本原则就是按实际效果进行分解.通常先虚拟合运动(即实际运动)的一个位移,看看这个位移产生了什么效果,从中找到两个分速度的方向;最后利用平行四边形画出合速度和分速度的关系图,由几何关系得出他们的关系.2.由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(或杆)和平行于绳(或杆)两个分量,根据沿绳(杆)方向的分速度大小相同求解.✧ 易错门诊【例3】如图4-1-10所示,卡车通过定滑轮牵引河中的小船,小船一直沿水面运动.在某一时刻卡车的速度为υ,绳AO 段与水平面夹角为α,不计摩擦和轮的质量,则此时小船的水平速度多大?图4-1-10【错解】将绳的速度按图4-1-11所示的方法分解,则υ1即为船的水平速度υ1=υ·cos θ.【错因】上述错误的原因是没有弄清船的运动情况.船的实际运动是水平向右的匀速运动,每一时刻船上各点都有相同的水平速度而AO 绳上各点运动比较复杂.以连接船上的A 点来说,它有沿绳的速度υ,也有与υ垂直的法向速度υn ,即转动分速度,A 点的合速度υA 即为两个分速度的矢量和υA =θcos v.【正解】小船的运动为平动,而绳AO 上各点的运动是平动+转动.以连接船上的A 点为研究对象,如图4-1-12,A 的平动速度为υ,转动速度为υn ,合速度υA 即与船的平动速度相同.则由图可以看出υA =υcos θ.【点悟】本题中也许学生不易理解绳上各点的运动,关键是要弄清合运动就是船的实际运动,只有实际位移 、实际加速度、实际速度才可分解,即实际位移 、实际加速度、实际速度在平行四边形的对角线上.课堂自主训练1.小船在静水中速度为v 1,今小船要渡过一条河流,过河的小船始终垂直对岸划行,若小船划行到河中间时,河水流速忽然由v 2增大到'v 2,则过河时间与预定时间相比,将( )图4-1-11图4-1-12甲乙图4-1-13A .增长B .不变C .缩短D .无法确定 【解析】合运动、分运动都是独立的,且具有等时性.小船渡河速度不变,则渡河时间就不变,与河水速度的变化无关,但河水流速的变化会影响船沿河岸方向的位移.选项B 正确. 【答案】B2.如图4-1-13所示的塔吊臂上有 一可以沿水平方向运动的小车A , 小车下装有吊着物体B 的吊钩.在 小车A 与物体B 以相同的水平速 度沿吊臂方向匀速运动的同时,吊钩将物体B 向上吊起,A 、B 之间的距离以d=H -2t 2 (SI )(SI 表示国际单位制,式中H 为吊臂离地面 的高度)规律变化,则物体做( ) A .速度大小不变的曲线运动 B .速度大小增加的曲线运动 C .加速度大小方向均不变的曲线运动 D .加速度大小方向均变化的曲线运动【解析】由题意,物体B 在水平方向做匀速直线运动;由d=H -2t 2知,它在竖直方向的位移为y=H-d =2t 2,因此它在该方向上做初速度为0的,加速度为4m/s 2匀加速直线运动.所以它的合运动为匀加速曲线运动. 【答案】BC课后创新演练1.关于曲线运动性质的说法正确的是( B ) A .变速运动一定是曲线运动 B .曲线运动一定是变速运动 C .曲线运动一定是变加速运动D .曲线运动一定是加速度不变的匀变速运动 2.两个互成角度的匀加速直线运动,初速度的大小分别为v 1和v 2,加速度分别为a 1和a 2,则它们的合运动的轨迹(D )A .如果v 1=v 2,那么轨迹一定是直线B .如果v 1≠0,v 2≠0,那么轨迹一定是曲线C .如果a 1=a 2,那么轨迹一定是直线D .如果a 1/a 2=v 1/v 2,那么轨迹一定是直线 3.一个质点受到两个互成锐角的力F 1和F 2的作用后,由静止开始运动,若运动中保持二力方向不变,但F 1突然增大到F 2+ F ,则质点以后(AB ) A .一定做匀变速曲线运动 B .在相等的时间内速度的变化一定相等 C .可能做匀速直线运动 D .可能做变加速直线运动4.某河水的流速与离河岸距离的变化关系如图4-1-14甲所示.船在静水中的速度与时间的关系如图4-1-14乙所示.若要使船以最短时间渡河,则(BD )图4-1-14A .船渡河的最短时间是75sB .船在行驶过程中,船头始终与河岸垂直C .船在河水中航行的轨迹是一条直线D .船在河水中的最大速度是5m/s5.如图4-1-15所示,卡车通过定滑轮牵引河中的小船,小船一直沿水面运动.则(BC )图4-1-15A .小船的速度v 2总小于汽车速度v 1B .汽车速度v 1总小于小船的速度v 2C .如果汽车匀速前进,则小船加速前进D .如果汽车匀速前进,则小船减速前进 6.如图4-1-16所示,物体A 和B 质量均为m ,且分别与轻绳连结跨过光滑轻质定滑轮,当用力F 拉B 沿水平面向左匀速运动过程中,绳对A的拉力的大小是(A ) 图4-1-16A .大于mgB .等于FC .总等于mgD .小于mg7.玻璃板生产线上,宽9m 的玻璃板以43m /s 的速度连续不断地向前行进,在切割工序处,金刚钻的走刀速度为8m /s ,为了使割下的玻璃板都成规定尺寸的矩形,金刚钻割刀的轨道应如何控制?切割一次的时间多长?【解析】要切成矩形则割刀相对玻璃板的速度垂直v ,如图4-1-17,设v 刀与v 玻方向夹角为θ,cos θ=刀玻v v =834,则θ=300.v =22玻刀v v -=4864-=4m/s .时间t =v s =49=2.25s .8.质量为m =1kg 的物体静止在光滑水平面上,从t =0时刻开始物体受到水平力F 的作用,F =0.1N 并保持不变.此力先沿向东的方向作用1s ,而后依次改为沿向北、向西、向南方向各作用1s .以出发点为原点,向东为x 轴正方向,向北为y 轴正方向,建立直角坐标系,如图4-1-18求: (1)第1s 内物体的位移值; (2)物体在第2s 末的速度大小;(3)在坐标系中画出前4s 内物体的运动轨迹【解析】(1)沿x 轴物体运动的加速度为 a x =F /m .1s 内物体的位移 S 1=221t a x ,联立解得 S 1=0.05m .(2)第2s 内物体沿x 轴方向做匀速运动, 沿y 轴方向做匀加速直线运动. v 2x =v 1x =a x t =0.1m/s ,a y =mF=0.1m/s 2,v 2y =a y t =0.1m/s .物体在第2s 末的速度 v 2=2222y x v v + , 代入数据解得 v 2=0.14m/s .(3)如图4-1-19所示4-1-184-1-19刀玻第2课时 抛体运动的规律及其应用基础知识回顾1.平抛运动(1)定义:将一物体水平抛出,物体只在重力作用下的运动。