2018年秋新课堂高中数学人教B版选修2-3 课件+教师用书+学业分层测评 第二章 (5)

合集下载

2018版物理新课堂同步选修3-2文档:学业分层测评 第2章 第3节 自感现象的应用 含解析 精品

2018版物理新课堂同步选修3-2文档:学业分层测评 第2章 第3节 自感现象的应用 含解析 精品

学业分层测评(六)(建议用时:45分钟)[学业达标]1.关于日光灯的发光实质,下列说法中正确的有( )A .是由于灯管两端的灯丝在炽热状态下发光,后经灯管壁多次反射和透射传到周围空间B .是在镇流器的高电压作用下,灯管内气体被电离成为导体,形成大电流,使气体处于炽热状态而发光C .日光灯发出的其实就是紫外线D .日光灯发出的光,实质上是紫外线激发荧光物质发光【解析】 日光灯发光的本质,是灯丝发射的电子与汞原子碰撞而放出紫外线,紫外线照射灯管内壁的荧光物质而发光.故选项D 正确.【答案】 D2.关于日光灯下列说法中正确的是( )A .日光灯是常用的照明灯具之一,它所消耗的电功率仅为相同亮度白炽灯的15~13B .灯管内气体的击穿电压和正常工作电压都是220 VC .灯管发光是由于管内的气体被加热到炽热状态,发出的光D .让日光灯正常工作,必须一直给其提供比220 V 高很多的电压【解析】 日光灯比白炽灯发光效率高,属于节能的灯具,它所消耗的电功率仅为相同亮度白炽灯的15~13,故选项A 正确.灯管启动电压高于220 V 、正常工作电压低于220 V ,选项B 、D 错误.灯管发光是因为灯管两端炽热的灯丝释放出大量电子,这些电子与汞原子碰撞而放出紫外线,涂在内壁的荧光物质在紫外线的照射下发出可见光.选项C 错误.【答案】 A3.镇流器是由一个线圈和铁芯构成的,下列说法中正确的是( )A .镇流器中加入铁芯变成了电磁铁,在日光灯电路中起开关的作用B .镇流器在日光灯正常发光后,只消耗电能,为了节能可以把它短路C.日光灯电路中的镇流器可以用白炽灯泡来替代D.镇流器中的铁芯是为了增大自感系数【解析】镇流器中加入铁芯是为了增大线圈整体的自感系数,进而产生更大的自感电动势.以击穿灯管内气体而导通;灯管导通后镇流器又起降压限流作用,故不可将其短路,且在启动时不可用白炽灯泡来代替.故D正确.【答案】 D4.下列关于日光灯启动器的说法中正确的有()【导学号:05002044】①启动器由氖管和电容器并联组成②没有电容器,启动器无法正常工作③电容器击穿后,日光灯管仍能正常发光④启动器起着自动开关的作用A.①②B.①③C.①④D.②④【解析】启动器主要是一个充有氖气的小玻璃泡,里面装有两个电极,一个是静触片,另一个是由两个膨胀系数不同的金属片制成的U形动触片.启动器相当于一个自动开关,在日光灯点燃前它是接通的,在日光灯点燃后它是断开的.它应与镇流器串联,与日光灯管只能并联连接.电容器与氖管并联,它的作用是防止产生电火花击穿后成为导体使氖管短路.【答案】 C5.(多选)下列对日光灯元件的认识,正确的是()A.启动器氖管内的氖气在较低电压下发光,但不适于照明B.灯管内的汞蒸气在较高电压下发光且适合照明C.启动器中的电容器是使动、静触片在分离时不产生火花D.灯管内壁的荧光物质是在灯丝发出的电子激发下发光的【解析】启动器相当于自动开关,配合镇流器产生瞬时高压,启动器发光时间短且弱,不适于照明,选项A正确,电容器的作用是在动、静触片分离时不产生火花,以避免烧毁触片,选项C正确.灯管内汞蒸气在高电压导通,炽热灯丝发出的大量电子与汞原子碰撞而放出紫外线,荧光物质在紫外线照射下发出可见光,选项B、D均错误.【答案】AC6.下列说法正确的是()A.感应圈的工作原理是电磁感应现象B.日光灯和白炽灯一样,都可接在直流电路中正常工作C.感应圈中的两个线圈的匝数一样多D.一个标有“220 V40 W”的日光灯管,用欧姆表测灯管两端,读数约为1 210 Ω【解析】感应圈就是利用了电路中的电流不断地变化产生感应电动势的,当电流变化较快时,产生高压,故选项A正确;日光灯必须接在交流电路中,故选项B错误;在感应圈中次级线圈的匝数要多于初级线圈,在次级线圈中得到较高的电压,故选项C错误;日光灯在不接通时,处于断路,故电阻为无穷大,选项D错误.【答案】 A7.(多选)下列利用了感应圈的是()A.煤气灶电子点火装置B.汽车发动机点火装置C.自动设备中的延时继电器D.物理、化学实验中的小功率高压电源【解析】煤气灶电子点火装置、汽车发电机点火装置都是利用感应圈产生的高压电火花来完成点火工作的,A、B正确.物理、化学实验中的小功率电源是利用感应圈通过低压直流电源获得高电压,D正确.延时继电器是利用线圈的电磁感应来正常工作的,没有用到感应圈,C错误.【答案】ABD8.如图2-3-4是一种焊接方法的原理示意图.将圆形待焊接金属工件放在线圈中,然后在线圈中通以某种电流,待焊接工件中会产生感应电流,感应电流在焊缝处产生大量的热量将焊缝两边的金属熔化,待焊工件就焊接在一起.下列说法中正确的是()【导学号:05002045】图2-3-4A.线圈中的电流是很强的恒定电流B.线圈中的电流是交变电流,且频率很高C.待焊工件焊缝处的接触电阻比非焊接部分电阻小D.焊接工件中的感应电流方向与线圈中的电流方向总是相反【解析】线圈中的电流是交变电流,且频率很高,选项B正确,A错误;待焊工件焊缝处的接触电阻比非焊接部分电阻大,选项C错误;根据楞次定律和安培定则可知,当线圈中的电流增大时,焊接工件中的感应电流方向与线圈中的电流方向相反,当线圈中的电流减小时,焊接工件中的感应电流方向与线圈中的电流方向相同,选项D错误.【答案】 B[能力提升]9.图2-3-5如图2-3-5所示,在日光灯的连接线路中,关于启动器的作用,以下说法正确的是()A.日光灯启动时,为灯管提供瞬时高压B.日光灯正常工作时,起降压限流的作用C.起到一个自动开关的作用,实际上可用一个弹片开关代替(按下接通,放手断开)D.启动器内的电容器毫无作用【解析】日光灯启动时,镇流器为灯管提供瞬时高压,日光灯正常工作时,镇流器起降压限流的作用,启动器只是起一个自动开关的作用,故A、B错误,C正确;启动器内的电容器的作用是在动、静触片分离时避免产生火花而烧坏触片,对启动器起保护作用,故D错误.【答案】 C10.人类生活中对能源的可持续利用可以通过节能方式体现,日光灯是最常用的节能照明工具,它的主要构成有灯管、镇流器、启动器.启动器的构造如图2-3-6所示,为了便于日光灯工作,常在启动器两端并上一个纸质电容器C,现有一盏日光灯总是出现灯管两端亮而中间不亮,经检查,灯管是好的,电源电压正常,镇流器无故障,其原因可能是()图2-3-6【导学号:05002046】A.启动器两脚A、B与启动器座接触不良B.电容器C断路C.电容器C击穿而短路D.镇流器自感系数L太大【解析】题目说镇流器无故障,故D项错误.日光灯管两端亮而中间不亮,说明灯管两端的灯丝处于通电状态,即启动器接通,但不能自动断开,说明电容器C短路了,选C.【答案】 C11.如图2-3-7所示是日光灯的电路图.图2-3-7(1)开关闭合前,启动器的静触片和动触片是________(选填“接通的”或“断开的”).(2)开关刚闭合时,220 V电压加在________的两电极之间,使________气发出辉光.(3)日光灯灯管点亮瞬间,灯管两端电压________220 V(选填“大于”“等于”或“小于”).(4)日光灯正常发光时,启动器的静触片和动触片________(选填“接通”或“断开”),镇流器起着________作用,保证日光灯正常工作.(5)启动器中的电容器能________,没有电容器,启动器也能工作.【解析】(1)开关闭合前,启动器的静触片和动触片是断开的.(2)当开关闭合时,220 V电压加在启动器的两电极之间,使氖气放电而发出辉光,辉光产生的热量使U形动触片膨胀伸长,从而与静触片接触而把电路接通,于是镇流器的线圈和灯管的灯丝中就有电流通过.(3)电路接通后,启动器中的氖气停止放电,U形动触片冷却收缩,两个触片分离,电路自动断开.在电路突然断开的瞬间,由于镇流器中的电流急剧减小,在镇流器线圈中会产生很高的自感电动势,其方向与原来电压方向相同,加在日光灯管两端,将灯管内的气体电离,灯管开始发光,故灯管点亮瞬间,灯管两端电压大于220 V.(4)日光灯使用的是交变电流,电流的大小和方向都在不断地变化,在日光灯正常发光时,由于交变电流通过镇流器的线圈,线圈中会产生自感电动势,它总是阻碍电流的变化,这时镇流器就起着降压限流的作用,保证日光灯正常工作.(5)启动器中的电容器能在静、动触片脱离瞬间避免启动器产生电火花而烧坏,没有电容器,启动器也能工作.【答案】(1)断开的(2)启动器氖(3)大于(4)断开降压限流(5)避免启动器产生电火花12.日光灯管的寿命和开关次数有密切关系,频繁开关会使灯管的寿命大大缩短,据统计,同样的日光灯,连续点燃不关,点亮的时间要比每昼夜开关八次的日光灯点亮时间长两倍半,为什么频繁开关会影响灯管的寿命?【导学号:05002047】【解析】日光灯在通电启动的一瞬间,气体放电,日光灯灯丝不但要发射热电子,还要受到带电粒子强有力的轰击,每启动一次,要消耗大量的电子,还要受到高电压冲击一次,启动的次数越多,灯丝的寿命越短.【答案】见解析。

高中数学苏教版高二选修2-2学业分层测评:第二章_推理与证明_14

高中数学苏教版高二选修2-2学业分层测评:第二章_推理与证明_14

学业分层测评(十四)(建议用时:45分钟)学业达标]一、填空题1.如图2-1-19所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a 所表示的数是________.【导学号:01580042】图2-1-19【解析】 由图形中数字,不难得出每行两头数字均为1,其它数字均为其肩上两数字之和,∴a =3+3=6.【答案】 62.对于大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23=⎩⎨⎧3,5, 33=⎩⎨⎧7,9,11,43=⎩⎨⎧13,15,17,19,….仿此,若m 3的“分裂数”中有一个是2 015,则m =________. 【解析】 根据分裂特点,设最小数为a 1, 则ma 1+m (m -1)2×2=m 3,∴a 1=m 2-m +1. ∵a 1为奇数,又452=2 025, ∴猜想m =45.验证453=91 125=(1 979+2 071)×452.【答案】 453.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:________________________.【解析】 平面几何中的线与立体几何中的面相类比,可得:夹在两个平行平面间的平行线段相等.【答案】 夹在两个平行平面间的平行线段相等4.观察下面不等式:1+122<32,1+122+132<53,1+122+132+142<74,…,猜想第n 个不等式为________.【解析】 当n ≥2时,则不等式左端就为1+122+132+…+1n 2,而右端的分母正好是n ,分子是2n -1,因此可以猜想,n ≥2时,满足的不等式为1+122+132+…+1n 2<2n -1n .故可归纳式子为:1+122+132+…+1n 2<2n -1n (n ≥2). 【答案】 1+122+132+…+1n 2<2n -1n (n ≥2) 5.若a 1,a 2,a 3,a 4∈R +,有以下不等式成立:a 1+a 22≥a 1a 2,a 1+a 2+a 33≥3a 1a 2a 3,a 1+a 2+a 3+a 44≥4a 1a 2a 3a 4.由此推测成立的不等式是_______________________________________________.(要注明成立的条件)【答案】 a 1+a 2+a 3+…+a n n≥n a 1a 2a 3…a n (a 1,a 2,a 3,…,a n ∈R +) 6.观察下列各式:55=3 125,56=15 625,57=78 125,…则52 015的末四位数字为________. 【解析】 ∵55=3 125,56=15 625,57=78 125, 58末四位数字为0 625,59末四位数字为3 125, 510末四位数字为5 625,511末四位数字为8 125, 512末四位数字为0 625,…,由上可得末四位数字周期为4,呈规律性交替出现, ∴52 015=54×503+3末四位数字为8 125. 【答案】 8 1257.(2016·湖北调研)如图2-1-20①②③④所示,它们都是由小圆圈组成的图案.现按同样的排列规则进行排列,记第n 个图形包含的小圆圈个数为f (n ),则图2-1-20(1)f (5)=________;(2)f (2 015)的个位数字为________.【解析】 观察规律可知:f (5)=4×5+1=21,f (2 015)=2 014×2 015+1,它的个位数字是1.【答案】 (1)21 (2)18.(2016·江西稳派调研)将2n 按如表所示的规律填在5列的数表中,设22 015排在数表的第n 行,第m 列,则第m -1列中的前n 个数的和S n =________.【解析】 由于2 015=4504行第4列,所以n =504,m =4.所以S n =22[1-(24)504]1-24=22 018-415.【答案】22 018-415 二、解答题9.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *),证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .【导学号:01580043】【证明】 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n .故S n +1n +1=2·S nn ,数列⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列. (2)由(1)知S n +1n +1=4·S n -1n -1(n ≥2). ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).又∵a2=3S1=3,S2=a1+a2=4=4a1,∴对任意正整数n,都有S n+1=4a n.10.在平面几何中,研究正三角形内任意一点与三边的关系时,我们有真命题:边长为a的正三角形内任意一点到各边的距离之和是定值32a.类比上述命题,请你写出关于正四面体内任意一点与四个面的关系的一个真命题,并给出简要的证明.【解】类比所得的真命题是:棱长为a的正四面体内任意一点到四个面的距离之和是定值63a.证明:设M是正四面体P-ABC内任意一点,M到面ABC,面P AB,面P AC,面PBC的距离分别为d1,d2,d3,d4.由于正四面体四个面的面积相等,故有:V P-ABC=V M-ABC+V M-P AB+V M-P AC+V M-PBC=13·S△ABC·(d1+d2+d3+d4),而S△ABC =34a2,VP-ABC=212a3,故d1+d2+d3+d4=63a(定值).能力提升]1.(2016·盐城高二期终)已知2+23=223,3+38=338,4+415=4415,…类比这些等式,若6+ab=6ab(a,b均为正实数),则a+b=______.【解析】类比已知的3个等式,知a=6,b=62-1=35.所以a+b=41.【答案】412.已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则AGGD=2”.若把该结论推广到空间,则有结论:在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则AOOM等于________.【解析】如图,设正四面体的棱长为1,则易知其高AM=63,此时点O即为正四面体内切球的球心,设其半径为r ,利用等体积法有4×13×34r =13×34×63⇒r =612,故AO =AM -MO =63-612=64,故AO ∶OM =64∶612=3.【答案】 33.(2016·湖北宜昌高三模拟)观察下列等式: ①sin 2θ=cos θ·2sin θ; ②sin 4θ=cos θ(4sin θ-8sin 3θ);③sin 6θ=cos θ(6sin θ-32sin 3θ+32sin 5θ);④sin 8θ=cos θ(8sin θ-80sin 3θ+192sin 5θ-128sin 7θ);⑤sin 10θ=cos θ(10sin θ-160sin 3θ+m sin 5θ-1 024sin 7θ+n sin 9θ). 则可以推测(1)n =________,(2)m =________.【解析】 由给定等式的规律可知奇数式的最后一项系数为正数.数值为2n ,n 的值与sin θ的次数相同,所以式子⑤中n =29=512.另一特征为括号中所有系数的和奇数式与θ的系数相等,偶数式与θ的系数相反,所以⑤式中10-160+m -1 024+512=10,∴m =672.【答案】 512 672【答案】 145.设f (x )=a x +a -x 2,g (x )=a x -a -x 2(其中a >0,a ≠1).(1)请你推测g (5)能否用f (2),f (3),g (2),g (3)来表示. (2)如果(1)中获得一个结论,请你推测能否推广并加以证明.【解】 (1)由题意可得f (2)=a 2+a -22,f (3)=a 3+a -32,g (2)=a 2-a -22,g (3)=a 3-a -32. 则f (3)·g (2)+g (3)·f (2)=a 5-a +a -1-a -5+a 5+a -a -1-a -54=a 5-a -52.又g(5)=a5-a-52,因此,g(5)=f(3)·g(2)+g(3)·f(2).(2)g(5)=f(3)·g(2)+g(3)·f(2),即g(3+2)=f(3)·g(2)+g(3)·f(2).于是猜测g(x+y)=f(x)·g(y)+g(x)·f(y).证明:∵f(x)=a x+a-x2,g(x)=a x-a-x2,∴g(x+y)=a(x+y)-a-(x+y)2,g(y)=a y-a-y2,f(y)=a y+a-y2,所以f(x)·g(y)+g(x)·f(y)=a x+a-x2·a y-a-y2+a x-a-x2·a y+a-y2=a(x+y)-a-(x+y)2=g(x+y).故g(x+y)=f(x)·g(y)+g(x)·f(y).。

2016-2017学年高中数学人教B版选修2-2学业分层测评 模块综合测评 含答案 精品

2016-2017学年高中数学人教B版选修2-2学业分层测评 模块综合测评 含答案 精品

模块综合测评(时间150分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z=a+i的实部与虚部相等,则实数a=()A.-1B.1C.-2 D.2【解析】z=a+i的虚部为1,故a=1,选B.【答案】 B2.已知复数z=11+i,则z·i在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解析】∵z=11+i=1-i2,∴z=12+12i,∴z·i=-12+12i.【答案】 B3.观察:6+15<211,5.5+15.5<211,4-2+17+2<211,…,对于任意的正实数a,b,使a+b<211成立的一个条件可以是() A.a+b=22 B.a+b=21C.ab=20 D.ab=21【解析】由归纳推理可知a+b=21.故选B.【答案】 B4.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)=()A.-e B.-1C.1 D.e【解析】∵f(x)=2xf′(1)+ln x,∴f′(x)=2f′(1)+1 x,∴f′(1)=2f′(1)+1,∴f′(1)=-1.【答案】 B5.由①y=2x+5是一次函数;②y=2x+5的图象是一条直线;③一次函数的图象是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是()A.②①③B.③②①C.①②③D.③①②【解析】该三段论应为:一次函数的图象是一条直线(大前提),y=2x+5是一次函数(小前提),y=2x+5的图象是一条直线(结论).【答案】 D6.已知函数y=f(x)的导函数y=f′(x)的图象如图1所示,则()图1A.函数f(x)有1个极大值点,1个极小值点B.函数f(x)有2个极大值点,2个极小值点C.函数f(x)有3个极大值点,1个极小值点D.函数f(x)有1个极大值点,3个极小值点【解析】根据极值的定义及判断方法,检查f′(x)的零点左右的值的符号,如果左正右负,那么f(x)在这个点处取得极大值;如果左负右正,那么f(x)在这个点处取得极小值;如果左右都是正,或者左右都是负,那么f(x)在这个点处不是极值.由此可见,x2是函数f(x)的极大值点,x3是极小值点,x1,x4不是极值点.【答案】 A7.曲线y=e x在点(2,e2)处的切线与坐标轴所围成的三角形的面积为()【导学号:05410080】A.94e2B.2e2C .e 2D.e 22【解析】 ∵f ′(x )=e x ,∴曲线在点(2,e 2)处的切线的斜率为k =f ′(2)=e 2,切线方程为y -e 2=e 2(x -2),即e 2x -y -e 2=0,切线与x 轴和y 轴的交点坐标分别为A (1,0),B (0,-e 2),则切线与坐标轴围成的△OAB 的面积为12×1×e 2=e 22.【答案】 D8.已知数列1,a +a 2,a 2+a 3+a 4,a 3+a 4+a 5+a 6,…,则数列的第k 项是( ) A .a k +a k +1+…+a 2k B .a k -1+a k +…+a 2k -1 C .a k -1+a k +…+a 2k D .a k -1+a k +…+a 2k -2【解析】 由归纳推理可知,第k 项的第一个数为a k -1,且共有k 项.故选D.【答案】 D9.函数f (x )=ax 3-x 在R 上为减函数,则( ) A .a ≤0 B .a <1 C .a <2D .a ≤13【解析】 由题意可知f ′(x )=3ax 2-1≤0在R 上恒成立,则a ≤0. 【答案】 A10.设a =⎠⎛01x -13d x ,b =1-⎠⎛01x 12d x ,c =⎠⎛01x 3d x 则a ,b ,c 的大小关系( )A .a >b >cB .b >a >cC .a >c >bD .b >c >a【解析】 由题意可得a =⎠⎛01x -13d x =32x 23| 10=32; b =1-⎠⎛01x 12d x =1-23x 32| 10=1-⎝ ⎛⎭⎪⎫23-0=13;c =⎠⎛01x 3d x =x 44| 10=14.综上,a >b >c . 【答案】 A11.在数学归纳法的递推性证明中,由假设n=k时成立推导n=k+1时成立时,f(n)=1+12+13+…+12n-1增加的项数是()A.1 B.2k+1 C.2k-1 D.2k【解析】∵f(k)=1+12+13+……+12k-1,又f(k+1)=1+12+13+…+12k-1+12k+12k+1+…+12k+1-1.从f(k)到f(k+1)是增加了(2k+1-1)-2k+1=2k项.【答案】 D12.已知函数f(x)=x3-ln(x2+1-x),则对于任意实数a,b(a+b≠0),则f(a)+f(b)a+b的值为()A.恒正B.恒等于0C.恒负D.不确定【解析】可知函数f(x)+f(-x)=x3-ln(x2+1-x)+(-x)3-ln(x2+1+x)=0,所以函数为奇函数,同时,f′(x)=3x2+1x2+1>0,f(x)是递增函数,f(a)+f(b)a+b=f(a)-f(-b)a-(-b),所以f(a)+f(b)a+b>0,所以选A.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.复数3+ii2(i为虚数单位)的实部等于________.【解析】∵3+ii2=-3-i,∴其实部为-3.【答案】-314.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.【解析】 第n 个等式左边为1到n +1的立方和,右边为1+2+3+…+(n +1)的平方,所以第五个等式为13+23+33+43+53+63=212.【答案】 13+23+33+43+53+63=21215.曲线y =sin x (0≤x ≤π)与直线y =12围成的封闭图形的面积为__________. 【解析】 由于曲线y =sin x (0≤x ≤π)与直线y =12的交点的横坐标分别为x =π6及x =5π6,因此所求图形的面积为⎠⎜⎜⎛π65π6⎝⎛⎭⎪⎫sin x -12d x =⎝ ⎛⎭⎪⎫-cos x -12x ⎪⎪⎪⎪5π6π6=3-π3.【答案】3-π316.已知函数f (x )=x 3+3mx 2+nx +m 2在x =-1时有极值0,则m +n =________ .【导学号:05410081】【解析】 ∵f ′(x )=3x 2+6mx +n , ∴由已知可得⎩⎨⎧f (-1)=(-1)3+3m (-1)2+n (-1)+m 2=0,f ′(-1)=3×(-1)2+6m (-1)+n =0, ∴⎩⎨⎧ m =1,n =3或⎩⎨⎧m =2,n =9,当⎩⎨⎧ m =1,n =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0恒成立与x =-1是极值点矛盾,当⎩⎨⎧m =2,n =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3), 显然x =-1是极值点,符合题意,∴m +n =11. 【答案】 11三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设复数z =(1+i )2+3(1-i )2+i ,若z 2+az +b =1+i ,求实数a ,b 的值. 【导学号:05410082】【解】 z =(1+i )2+3(1-i )2+i =2i +3-3i 2+i =3-i2+i=(3-i )(2-i )5=5-5i5=1-i. 因为z 2+az +b =(1-i)2+a (1-i)+b =-2i +a -a i +b =(a +b )-(2+a )i =1+i , 所以⎩⎨⎧ a +b =1,-(2+a )=1,解得⎩⎨⎧a =-3,b =4.18.(本小题满分12分)已知函数f (x )=x 3+3ax 2+3x +1. (1)当a =-2时,讨论f (x )的单调性;(2)若x ∈[2,+∞)时,f (x )≥0,求a 的取值范围. 【解】 (1)当a =-2时,f (x )=x 3-32x 2+3x +1, f ′(x )=3x 2-62x +3.令f ′(x )=0,得x 1=2-1,x 2=2+1.当x ∈(-∞, 2-1)时,f ′(x )>0,f (x )在(-∞,2-1)上是增函数; 当x ∈(2-1,2+1)时,f ′(x )<0,f (x )在(2-1, 2+1)上是减函数; 当x ∈(2+1,+∞)时,f ′(x )>0,f (x )在(2+1,+∞)上是增函数. (2)由f (2)≥0,得a ≥-54. 当a ≥-54,x ∈(2,+∞)时, f ′(x )=3(x 2+2ax +1)≥3⎝ ⎛⎭⎪⎫x 2-52x +1=3⎝ ⎛⎭⎪⎫x -12(x -2)>0, 所以f (x )在(2,+∞)上是增函数,于是当x ∈[2,+∞)时,f (x )≥f (2)≥0. 综上,a 的取值范围是⎣⎢⎡⎭⎪⎫-54,+∞.19.(本小题满分12分)设等差数列{a n }的公差为d ,S n 是{a n }中从第2n -1项开始的连续2n -1项的和,即S 1=a 1, S 2=a 2+a 3, S 3=a 4+a 5+a 6+a 7, ……S n =a 2n -1+a 2n -1+1+…+a 2n -1, ……若S 1,S 2,S 3成等比数列,问:数列{S n }是否成等比数列?请说明你的理由. 【解】 ∵S 1,S 2,S 3成等比数列, ∴S 1=a 1≠0,且S 1·S 3=S 22,由S 1·S 3=S 22,得a 1(a 4+a 5+a 6+a 7)=(a 2+a 3)2,即a 1(4a 1+18d )=(2a 1+3d )2,2a 1d =3d 2.∴d =0或a 1=32d . 当d =0时,S n =2n -1a 1≠0,S n +1S n =2n a 12n -1a 1=2(常数),n ∈N +,{S n }成等比数列; 当a 1=32d 时,S n =a 2n -1+a 2n -1+1+a 2n -1=2n -1a 2n -1+2n -1(2n -1-1)2d=2n -1[a 1+(2n -1-1)d ]+2n -1(2n -1-1)2d=2n -1⎝ ⎛⎭⎪⎫32d ·2n -1+a 1-32d =32d ·4n -1≠0, S n +1S n =32d ·4n32d ·4n -1=4(常数),n ∈N +,{S n }成等比数列.综上所述,若S 1,S 2,S 3成等比数列,则{S n }成等比数列.20.(本小题满分12分)已知幂函数f (x )=x -m 2+2m +3(m ∈Z )为偶函数,且在区间(0,+∞)上是单调增函数.(1)求函数f (x )的解析式;(2)设函数g (x )=14f (x )+ax 3+92x 2-b (x ∈R ),其中a ,b ∈R ,若函数g (x )仅在x=0处有极值,求a的取值范围.【解】(1)因为f(x)在区间(0,+∞)上是单调增函数,所以-m2+2m+3>0,即m2-2m-3<0,所以-1<m<3,又m∈Z,所以m=0,1,2.而m=0,2时,f(x)=x3不是偶函数,m=1时,f(x)=x4是偶函数,所以f(x)=x4.(2)由(1)知g(x)=14x4+ax3+92x2-b,则g′(x)=x(x2+3ax+9),显然x=0不是方程x2+3ax+9=0的根.为使g(x)仅在x=0处有极值,必须x2+3ax+9≥0恒成立,即有Δ=9a2-36≤0,解不等式得a∈[-2,2].这时,g(0)=-b是唯一极值,所以a∈[-2,2].21.(本小题满分12分)在各项为正的数列{a n}中,数列的前n项和S n满足S n=12⎝⎛⎭⎪⎫a n+1a n.(1)求a1,a2,a3;(2)由(1)猜想到数列{a n}的通项公式,并用数学归纳法证明你的猜想.【解】(1)由S1=a1=12⎝⎛⎭⎪⎫a1+1a1,得a21=1,因为a n>0,所以a1=1.由S2=a1+a2=12⎝⎛⎭⎪⎫a2+1a2,得a22+2a2-1=0,所以a2=2-1,由S3=a1+a2+a3=12⎝⎛⎭⎪⎫a3+1a3,得a23+22a3-1=0,所以a3=3- 2.(2)猜想a n=n-n-1(n∈N+).证明:①当n=1时,a1=1-0=1,命题成立;②假设n=k(k≥1,k∈N+)时,a k =k -k -1成立, 则n =k +1时, a k +1=S k +1-S k=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k ,即a k +1=12⎝ ⎛⎭⎪⎫a k +1+1a k +1 -12⎝⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k , 所以a 2k +1+2ka k +1-1=0. 所以a k +1=k +1-k , 则n =k +1时,命题成立. 则①②知,n ∈N +,a n =n -n -1.22.(本小题满分12分)设函数f (x )=a e xln x +b e x -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.【解】 (1)函数f (x )的定义域为(0,+∞), f ′(x )=a e x ln x +a x e x -b x 2e x -1+bx e x -1.由题意可得f (1)=2,f ′(1)=e.故a =1,b =2. (2)证明:由(1)知,f (x )=e x ln x +2x e x -1, 从而f (x )>1等价于x ln x >x e -x -2e . 设函数g (x )=x ln x ,则g ′(x )=1+ln x . 所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e . 设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ). 所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e . 综上,当x >0时,g (x )>h (x ),即f (x )>1.。

人教B版高中数学高二选修2-3学案 1.3.2 杨辉三角

人教B版高中数学高二选修2-3学案 1.3.2 杨辉三角

1.3.2杨辉三角1.使学生建立“杨辉三角”与二项式系数之间的直觉,并探索其中的规律.(难点)2.掌握二项式系数的性质及其应用.(重点)3.掌握“赋值法”并会灵活运用.教材整理1杨辉三角阅读教材P29,完成下列问题.杨辉三角的特点(1)在同一行中,每行两端都是1,与这两个1等距离的项的系数相等.(2)在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和,即C m n+1=C m-1n +C m n.1.如图1-3-1是一个类似杨辉三角的图形,则第n行的首尾两个数均为________.13 356 571111791822189图1-3-1【解析】由1,3,5,7,9,…可知它们成等差数列,所以a n=2n-1.【答案】2n-12.如图1-3-2,由二项式系数构成的杨辉三角中,第________行从左到右第14与第15个数之比为2∶3.11 11 2 1 1 3 3 1 1 4 6 4 1…… 图1-3-2【解析】 设第n 行从左到右第14与第15个数之比为2∶3,则3C 13n =2C 14n, 即3n !13!(n -13)!=2n !14!(n -14)!, 解得n =34. 【答案】 34教材整理2 二项式系数的性质 阅读教材P 29后半部分,完成下列问题.1.每一行的两端都是1,其余每个数都等于它“肩上”两个数的和.2.每一行中,与首末两端“等距离”的两个数相等.3.如果二项式的幂指数n 是偶数,那么其展开式中间一项T n2+1的二项式系数最大;如果n 是奇数,那么其展开式中间两项T n +12与T n +12+1的二项式系数相等且最大.4.二项展开式的二项式系数的和等于2n .1.已知(a +b )n 展开式中只有第5项的二项式系数最大,则n 等于________. 【解析】 因为只有第5项的二项式系数最大,所以n2+1=5,所以n =8.【答案】 82.已知(ax +1)n 的展开式中,二项式系数和为32,则n 等于________.【导学号:62980026】【解析】 二项式系数之和为C 0n +C 1n +…+C n n =2n =32,所以n =5.【答案】 53.(2x -1)10展开式中x 的奇次幂项的系数之和为________. 【解析】 因为(2x -1)10=a 0+a 1x +a 2x 2+…+a 10x 10, 令x =1,得a 0+a 1+a 2+…+a 10=1,再令x =-1,得310=a 0-a 1+a 2-a 3+…+a 10, 两式相减,可得a 1+a 3+…+a 9=1-3102.【答案】 1-3102预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:与“杨辉三角”有关的问题如图1-3-3,在“杨辉三角”中斜线AB 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,….记其前n 项和为S n ,求S 19的值.图1-3-3【精彩点拨】 由图知,数列中的首项是C 22,第2项是C 12,第3项是C 23,第4项是C 13,…,第17项是C 210,第18项是C 110,第19项是C 211. 【自主解答】 S 19=(C 22+C 12)+(C 23+C 13)+(C 24+C 14)+…+(C 210+C 110)+C 211=(C 12+C 13+C 14+…+C 110)+(C 22+C 23+…+C 210+C 211)=(2+3+4+…+10)+C 312=(2+10)×92+220=274.“杨辉三角”问题解决的一般方法观察—分析;试验—猜想;结论—证明,要得到杨辉三角中蕴含的诸多规律,取决于我们的观察能力,观察能力有:横看、竖看、斜看、连续看、隔行看,从多角度观察.如表所示:1.(2016·南充高二检测)如图1-3-4所示,满足如下条件:①第n行首尾两数均为n;②表中的递推关系类似“杨辉三角”.则第10行的第2个数是________,第n行的第2个数是________.图1-3-4【解析】由图表可知第10行的第2个数为:(1+2+3+…+9)+1=46,第n行的第2个数为:[1+2+3+…+(n-1)]+1=n(n-1)2+1=n2-n+22.【答案】46n2-n+22求展开式的系数和设(1-2x)2 017=a0+a1x+a2x2+…+a2 017·x2 017(x∈R).(1)求a0+a1+a2+…+a2 017的值;(2)求a1+a3+a5+…+a2 017的值;(3)求|a0|+|a1|+|a2|+…+|a2 017|的值.【精彩点拨】先观察所求式子与展开式各项的特点,利用赋值法求解.【自主解答】(1)令x=1,得a 0+a 1+a 2+…+a 2 017=(-1)2 017=-1.① (2)令x =-1,得a 0-a 1+a 2-…-a 2 017=32 017.② ①-②得2(a 1+a 3+…+a 2 017)=-1-32 017, ∴a 1+a 3+a 5+…+a 2 017=-1-32 0172.(3)∵T r +1=C r 2 017(-2x )r =(-1)r·C r 2 017·(2x )r , ∴a 2k -1<0(k ∈N +),a 2k >0(k ∈N ). ∴|a 0|+|a 1|+|a 2|+|a 3|+…+|a 2 017| =a 0-a 1+a 2-a 3+…-a 2 017=32 017.1.解决二项式系数和问题思维流程.2.“赋值法”是解决二项展开式中项的系数常用的方法,根据题目要求,灵活赋给字母不同值.一般地,要使展开式中项的关系变为系数的关系,令x =0可得常数项,令x =1可得所有项系数之和,令x =-1可得偶次项系数之和与奇次项系数之和的差.2.若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,求: (1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6.【解】 (1)令x =0,则a 0=-1;令x =1,得a 7+a 6+…+a 1+a 0=27=128,① 所以a 1+a 2+…+a 7=129.(2)令x =-1,得-a 7+a 6-a 5+a 4-a 3+a 2-a 1+a 0=(-4)7,② 由①-②得2(a 1+a 3+a 5+a 7)=128-(-4)7,∴a 1+a 3+a 5+a 7=8 256.(3)由①+②得2(a 0+a 2+a 4+a 6)=128+(-4)7, ∴a 0+a 2+a 4+a 6=-8 128.二项式系数性质的应用探究1 根据杨辉三角的特点,在杨辉三角同一行中与两个1等距离的项的系数相等,你可以得到二项式系数的什么性质?【提示】 对称性,因为C m n =C n -mn ,也可以从f (r )=C r n 的图象中得到.探究2 计算C k nC k -1n ,并说明你得到的结论.【提示】 C k nC k -1n =n -k +1k .当k <n +12时,C k nC k -1n >1,说明二项式系数逐渐增大;同理,当k >n +12时,二项式系数逐渐减小.探究3 二项式系数何时取得最大值?【提示】 当n 是偶数时,中间的一项取得最大值;当n 是奇数时,中间的两项Cn -12n ,Cn +12n相等,且同时取得最大值. 已知f (x )=(3x 2+3x 2)n 展开式中各项的系数和比各项的二项式系数和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.【精彩点拨】 求二项式系数最大的项,利用性质知展开式中中间项(或中间两项)是二项式系数最大的项;求展开式中系数最大的项,必须将x ,y 的系数均考虑进去,包括“+”“-”号.【自主解答】 令x =1,则二项式各项系数的和为f (1)=(1+3)n =4n ,又展开式中各项的二项式系数之和为2n .由题意知,4n -2n =992.∴(2n )2-2n -992=0,∴(2n +31)(2n -32)=0,∴2n =-31(舍去)或2n =32,∴n =5.(1)由于n =5为奇数,所以展开式中二项式系数最大的项为中间两项,它们分别是 T 3=C 25(x 23)3(3x 2)2=90x 6, T 4=C 35(x 23)2(3x 2)3=270x 223. (2)展开式的通项公式为T r +1=C r 53r ·x 23(5+2r ). 假设T r +1项系数最大,则有⎩⎪⎨⎪⎧C r 53r ≥C r -15·3r -1,C r 53r ≥C r +15·3r +1,∴⎩⎪⎨⎪⎧5!(5-r )!r !×3≥5!(6-r )!(r -1)!,5!(5-r )!r !≥5!(4-r )!(r +1)!×3,∴⎩⎪⎨⎪⎧3r ≥16-r,15-r ≥3r +1.∴72≤r ≤92,∵r ∈N ,∴r =4. ∴展开式中系数最大的项为T 5=C 45x 23(3x 2)4=405x 263.1.求二项式系数最大的项,根据二项式系数的性质,当n 为奇数时,中间两项的二项式系数最大;当n 为偶数时,中间一项的二项式系数最大.2.求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式组,解不等式的方法求得.3.已知(a 2+1)n 展开式中的各项系数之和等于⎝⎛⎭⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n的展开式的系数最大的项等于54,求a 的值. 【导学号:62980027】【解】 由⎝⎛⎭⎫165x 2+1x 5,得T r +1=C r 5⎝⎛⎭⎫165x 25-r ⎝⎛⎭⎫1x r =⎝⎛⎭⎫1655-r ·C r5·x 20-5r 2, 令T r +1为常数项,则20-5r =0, 所以r =4,常数项T 5=C 45×165=16. 又(a 2+1)n 展开式中的各项系数之和等于2n , 由此得到2n =16,n =4.所以(a 2+1)4展开式中系数最大项是中间项T 3=C 24a 4=54,所以a =±3.1.(1+x )2n+1的展开式中,二项式系数最大的项所在项数是( )A.n ,n +1B.n -1,nC.n +1,n +2D.n +2,n +3【解析】 该展开式共2n +2项,中间两项为第n +1项与第n +2项,所以第n +1项与第n +2项为二项式系数最大的项.【答案】 C2.已知C 0n +2C 1n +22C 2n +…+2n C n n =729,则C 1n +C 3n +C 5n 的值等于( )【导学号:62980028】A.64B.32C.63D.31【解析】 C 0n +2C 1n +…+2n C n n =(1+2)n =3n =729,∴n =6,∴C 16+C 36+C 56=32.【答案】 B3.若(x +3y )n 的展开式中各项系数的和等于(7a +b )10的展开式中二项式系数的和,则n 的值为________.【解析】 (7a +b )10的展开式中二项式系数的和为C 010+C 110+…+C 1010=210,令(x +3y )n 中x =y =1,则由题设知,4n =210,即22n =210,解得n =5.【答案】 54.已知(a -x )5=a 0+a 1x +a 2x 2+…+a 5x 5,若a 2=80,则a 0+a 1+a 2+…+a 5=________.【解析】 (a -x )5展开式的通项为T r +1=(-1)r C r 5a 5-r x r,令r =2,得a 2=(-1)2C 25a 3=80,解得a =2,即(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,令x=1,得a 0+a 1+a 2+…+a 5=1.【答案】 15.在⎝⎛⎭⎫x -2x 28的展开式中, (1)求系数的绝对值最大的项; (2)求二项式系数最大的项; (3)求系数最大的项; (4)求系数最小的项.【解】 T r +1=C r 8(x )8-r ⎝⎛⎭⎫-2x 2r =(-1)r C r 82r x 4-5r 2. (1)设第r +1项系数的绝对值最大.则⎩⎪⎨⎪⎧ C r 8·2r ≥C r +18·2r +1,C r 8·2r ≥C r -18·2r -1,∴⎩⎪⎨⎪⎧18-r ≥2r +1,2r≥19-r.解得5≤r ≤6.故系数绝对值最大的项是第6项和第7项. (2)二项式系数最大的项为中间项,即为第5项. 所以T 5=C 48·24·x 4-202=1 120x -6. (3)由(1)知,展开式中的第6项和第7项系数的绝对值最大,而第6项的系数为负,第7项的系数为正.则系数最大的项为T 7=C 68·26·x -11=1 792x -11. (4)系数最小的项为T 6=(-1)5C 58·25x -172=-1 792x -172.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)学业分层测评 (建议用时:45分钟)一、选择题1.在(a -b )20的二项展开式中,二项式系数与第6项的二项式系数相同的项是( ) A.第15项 B.第16项 C.第17项D.第18项【解析】 第6项的二项式系数为C 520,又C 1520=C 520,所以第16项符合条件.【答案】 B2.(2016·吉林一中期末)已知⎝⎛⎭⎫x 2+1x n 的展开式的二项式系数之和为32,则展开式中含x 项的系数是( )A.5B.20C.10D.40【解析】 根据题意,该二项式的展开式的二项式系数之和为32, 则有2n =32,可得n =5,T r +1=C r 5x 2(5-r )·x -r =C r 5x 10-3r , 令10-3r =1,解得r =3,所以展开式中含x 项的系数是C 35=10,故选C.【答案】 C3.设(1+x +x 2)n =a 0+a 1x +a 2x 2+…+a 2n x 2n ,则a 0+a 2+a 4+…+a 2n 等于( )A.2nB.3n -12C.2n +1D.3n +12【解析】 令x =1,得3n =a 0+a 1+a 2+…+a 2n -1+a 2n ,①令x =-1,得1=a 0-a 1+a 2-…-a 2n -1+a 2n ,②①+②得3n +1=2(a 0+a 2+…+a 2n ),∴a 0+a 2+…+a 2n =3n +12.故选D. 【答案】 D4.(2016·信阳六高期中)已知(1+2x )8展开式的二项式系数的最大值为a ,系数的最大值为b ,则b a的值为( ) A.1285B.2567C.5125D.1287【解析】 a =C 48=70,设b =C r 82r ,则⎩⎪⎨⎪⎧C r 82r ≥C r -182r -1,C r 82r ≥C r +182r +1,得5≤r ≤6,所以b =C 6826=C 2826=7×28,所以b a =1285.故选A. 【答案】 A5.在(x -2)2 010的二项展开式中,含x 的奇次幂的项之和为S ,当x =2时,S 等于( )【导学号:62980029】A.23 015B.-23 014C.23 014D.-23 008【解析】 因为S =(x -2)2 010-(x +2)2 0102,当x =2时,S =-23 0152=-23 014. 【答案】 B二、填空题6.若(1-2x )2 016=a 0+a 1x +…+a 2 016x 2 016(x ∈R ),则a 12+a 222+…+a 2 01622 016的值为________.【解析】 令x =0,得a 0=1.令x =12,得a 0+a 12+a 222+…+a 2 01622 016=0,所以a 12+a 222+…+a 2 01622 016=-1. 【答案】 -17.若n 是正整数,则7n +7n -1C 1n +7n -2C 2n +…+7C n -1n 除以9的余数是________.【解析】 7n +7n -1C 1n +7n -2C 2n +…+7C n -1n =(7+1)n -C n n =8n -1=(9-1)n -1=C 0n 9n (-1)0+C 1n 9n -1(-1)1+…+C n n 90(-1)n -1,∴n 为偶数时,余数为0;当n 为奇数时,余数为7.【答案】 7或08.在“杨辉三角”中,每一个数都是它“肩上”两个数的和,它开头几行如图1-3-5所示.那么,在“杨辉三角”中,第________行会出现三个相邻的数,其比为3∶4∶5.第0行 1第1行 1 1第2行 1 2 1第3行 1 3 3 1第4行 1 4 6 4 1第5行 1 5 10 10 5 1图1-3-5【解析】 根据题意,设所求的行数为n ,则存在正整数k ,使得连续三项C k -1n ,C k n ,C k +1n ,有C k -1n C k n =34且C k n C k +1n =45. 化简得kn -k +1=34,k +1n -k =45,联立解得k =27,n =62. 故第62行会出现满足条件的三个相邻的数.【答案】 62三、解答题9.已知(1+2x -x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.(1)求a 0+a 1+a 2+…+a 14;(2)求a 1+a 3+a 5+…+a 13.【解】 (1)令x =1,则a 0+a 1+a 2+…+a 14=27=128.①(2)令x =-1,则a 0-a 1+a 2-a 3+…-a 13+a 14=(-2)7=-128.②①-②得2(a 1+a 3+…+a 13)=256,所以a 1+a 3+a 5+…+a 13=128.10.已知⎝⎛⎭⎫14+2x n 的展开式中前三项的二项式系数的和等于37.求展开式中二项式系数最大的项的系数.【解】 由C 0n +C 1n +C 2n =37,得1+n +12n (n -1)=37,得n =8.⎝⎛⎭⎫14+2x 8的展开式共有9项,其中T 5=C 48⎝⎛⎭⎫144(2x )4=358x 4,该项的二项式系数最大,系数为358.1.若(2-x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=( )A.1B.-1C.2D.-2【解析】 令x =1,得a 0+a 1+a 2+…+a 10=(2-1)10,令x =-1,得a 0-a 1+a 2-a 3+…+a 10=(2+1)10,故(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 10)(a 0-a 1+a 2-a 3+…+a 10)=(2-1)10(2+1)10=1.【答案】 A2.把通项公式为a n =2n -1(n ∈N +)的数列{a n }的各项排成如图1-3-6所示的三角形数阵.记S (m ,n )表示该数阵的第m 行中从左到右的第n 个数,则S (10,6)对应于数阵中的数是( )13 57 9 1113 15 17 19……图1-3-6A.91B.101C.106D.103【解析】 设这个数阵每一行的第一个数组成数列{b n },则b 1=1,b n -b n -1=2(n -1),∴b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=2[(n -1)+(n -2)+…+1]+1=n 2-n +1,∴b 10=102-10+1=91,S (10,6)=b 10+2×(6-1)=101.【答案】 B3.(2016·孝感高级中学期中)若(x 2+1)(x -3)9=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3+…+a 11(x -2)11,则a 1+a 2+a 3+…+a 11的值为________.【解析】 令x =2,得-5=a 0,令x =3,得0=a 0+a 1+a 2+a 3+…+a 11,所以a 1+a 2+a 3+…+a 11=-a 0=5.【答案】 54.已知f (x )=(1+x )m +(1+2x )n (m ,n ∈N +)的展开式中x 的系数为11.(1)求x 2的系数取最小值时n 的值;(2)当x 2的系数取得最小值时,求f (x )展开式中x 的奇次项的系数之和.【解】 (1)由已知C 1m +2C 1n =11,所以m +2n =11,x 2的系数为C 2m +22C 2n =m (m -1)2+2n (n -1)=m 2-m 2+(11-m )·⎝ ⎛⎭⎪⎫11-m 2-1=⎝⎛⎭⎫m -2142+35116. 因为m ∈N +,所以m =5时,x 2的系数取得最小值22,此时n =3.(2)由(1)知,当x 2的系数取得最小值时,m =5,n =3,所以f (x )=(1+x )5+(1+2x )3,设这时f (x )的展开式为f (x )=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,a 0+a 1+a 2+a 3+a 4+a 5=25+33,令x =-1,a 0-a 1+a 2-a 3+a 4-a 5=-1,两式相减得2(a 1+a 3+a 5)=60,故展开式中x 的奇次项的系数之和为30.。

2019-2020学年高二数学人教A版选修2-3文档:第2章 2.2.2 学业分层测评 Word版含答案

2019-2020学年高二数学人教A版选修2-3文档:第2章 2.2.2 学业分层测评 Word版含答案

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.有以下三个问题:①掷一枚骰子一次,事件M :“出现的点数为奇数”,事件N :“出现的点数为偶数”; ②袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M :“第1次摸到白球”,事件N :“第2次摸到白球”;③分别抛掷2枚相同的硬币,事件M :“第1枚为正面”,事件N :“两枚结果相同”. 这三个问题中,M ,N 是相互独立事件的有( ) A .3个 B .2个 C .1个D .0个【解析】 ①中,M ,N 是互斥事件;②中,P (M )=35,P (N )=12.即事件M 的结果对事件N 的结果有影响,所以M ,N 不是相互独立事件;③中,P (M )=12,P (N )=12,P (MN )=14,P (MN )=P (M )P (N ),因此M ,N 是相互独立事件.【答案】 C2.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击,则他们同时中靶的概率是( )A.1425B.1225C.34 D.35【解析】 P 甲=810=45,P 乙=710,所以P =P 甲·P 乙=1425.【答案】 A3.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( )A.34B.23 C.35 D.12【解析】 问题等价为两类:第一类,第一局甲赢,其概率P 1=12;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=34.【答案】 A4.如图2-2-2所示,在两个圆盘中,指针落在圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )【导学号:29472060】图2-2-2A.49B.29 C.23 D.13【解析】 “左边圆盘指针落在奇数区域”记为事件A ,则P (A )=46=23,“右边圆盘指针落在奇数区域”记为事件B ,则P (B )=23,事件A ,B 相互独立,所以两个指针同时落在奇数区域的概率为23×23=49,故选A.【答案】 A5.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170,169,168,且各道工序互不影响,则加工出来的零件的次品率为( )A.135 B.368 C.370D.569【解析】 设加工出来的零件是次品为事件A ,则A 为加工出来的零件为正品. 所以P (A )=1-P (A )=1-⎝ ⎛⎭⎪⎪⎫1-170⎝ ⎛⎭⎪⎪⎫1-169⎝ ⎛⎭⎪⎪⎫1-168=370.【答案】 C 二、填空题6.有一道数学难题,在半小时内,甲能解决的概率是12,乙能解决的概率是13,2人试图独立地在半小时内解决它,则两人都未解决的概率为________.【解析】 都未解决的概率为⎝ ⎛⎭⎪⎪⎫1-12⎝ ⎛⎭⎪⎪⎫1-13=12×23=13.【答案】137.在甲盒内的200个螺杆中有160个是A 型,在乙盒内的240个螺母中有180个是A 型.若从甲、乙两盒内各取一个,则能配成A 型螺栓的概率为________.【解析】 “从200个螺杆中,任取一个是A 型”记为事件B .“从240个螺母中任取一个是A 型”记为事件C ,则P (B )=C1160C1200,P (C )=C1180C1240.∴P (A )=P (BC )=P (B )·P (C )=C1160C1200·C1180C1240=35.【答案】 358.三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为________.【导学号:29472061】【解析】 用A ,B ,C 分别表示“甲、乙、丙三人能破译出密码”,则P (A )=15,P (B )=13,P (C )=14,且P (A B C )=P (A )P (B )P (C )=45×23×34=25.所以此密码被破译的概率为1-25=35.【答案】 35三、解答题9.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地的1位车主至少购买甲、乙两种保险中的1种的概率; (2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率. 【解】 记A 表示事件:该地的1位车主购买甲种保险; B 表示事件:该地的1位车主购买乙种保险;C 表示事件:该地的1位车主至少购买甲、乙两种保险中的一种;D 表示事件:该地的1位车主甲、乙两种保险都不购买;E 表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买. (1)P (A )=0.5,P (B )=0.3,C =A +B , P (C )=P (A +B )=P (A )+P (B )=0.8.(2)D=C,P(D)=1-P(C)=1-0.8=0.2,P(E)=0.8×0.2×0.8+0.8×0.8×0.2+0.2×0.8×0.8=0.384.10.某城市有甲、乙、丙3个旅游景点,一位游客游览这3个景点的概率分别是0.4,0.5,0.6,且游客是否游览哪个景点互不影响,用ξ表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对值,求ξ的分布列.【解】设游客游览甲、乙、丙景点分别记为事件A1,A2,A3,已知A1,A2,A3相互独立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.6,游客游览的景点数可能取值为0,1,2,3,相应的游客没有游览的景点数可能取值为3,2,1,0,所以ξ的可能取值为1,3.则P(ξ=3)=P(A1·A2·A3)+P(A1·A2·A3)=P(A1)·P(A2)·P(A3)+P(A1)·P(A2)·P(A3)=2×0.4×0.5×0.6=0.24.P(ξ=1)=1-0.24=0.76.所以分布列为:1.设两个独立事件A和B都不发生的概率为19,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是( )A.29B.118C.13D.23【解析】由P(A B)=P(B A),得P(A)P(B)=P(B)·P(A),即P(A)[1-P(B)]=P(B)[1-P(A)],∴P(A)=P(B).又P(A B)=1 9,∴P (A )=P (B )=13,∴P (A )=23.【答案】 D 2.三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,且是互相独立的.将它们中某两个元件并联后再和第三个元件串联接入电路,在如图2-2-3的电路中,电路不发生故障的概率是( )图2-2-3A.1532B.932 C.732D.1732【解析】 记“三个元件T 1,T 2,T 3正常工作”分别为事件A 1,A 2,A 3,则P (A 1)=12,P (A 2)=34,P (A 3)=34. 不发生故障的事件为(A 2∪A 3)A 1, ∴不发生故障的概率为 P =P [(A 2∪A 3)A 1]=[1-P (A 2)·P (A 3)]·P (A 1) =⎝ ⎛⎭⎪⎪⎫1-14×14×12=1532.【答案】 A3.本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算),有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12,两小时以上且不超过三小时还车的概率分别是12,14,两人租车时间都不会超过四小时.求甲、乙两人所付的租车费用相同的概率为________.【导学号:29472062】【解析】 由题意可知,甲、乙在三小时以上且不超过四个小时还车的概率分别为14,14,设甲、乙两人所付的租车费用相同为事件A ,则P (A )=14×12+12×14+14×14=516.所以甲、乙两人所付的租车费用相同的概率为516. 【答案】5164.已知A ,B ,C 为三个独立事件,若事件A 发生的概率是12,事件B 发生的概率是23,事件C 发生的概率是34,求下列事件的概率:(1)事件A ,B ,C 只发生两个; (2)事件A ,B ,C 至多发生两个.【解】 (1)记“事件A ,B ,C 只发生两个”为A 1,则事件A 1包括三种彼此互斥的情况,AB C ;A B C ;A BC ,由互斥事件概率的加法公式和相互独立事件的概率乘法公式,所以概率为P (A 1)=P (AB C )+P (A B C )+P (A BC )=224+324+624=1124,所以事件A ,B ,C 只发生两个的概率为1124.(2)记“事件A ,B ,C 至多发生两个”为A 2,则包括彼此互斥的三种情况:事件A ,B ,C 一个也不发生,记为A 3,事件A ,B ,C 只发生一个,记为A 4,事件A ,B ,C 只发生两个,记为A 5,故P (A 2)=P (A 3)+P (A 4)+P (A 5)=124+624+1124=34.3 4.所以事件A,B,C至多发生两个的概率为。

高中数学人教B版选修4-1学业分层测评1.2.3 弦切角定理 Word版含答案

高中数学人教B版选修4-1学业分层测评1.2.3 弦切角定理 Word版含答案
∴∠=∠,
又∵∠=∠,
∴∠=∠,
∴∥.
()如图,连接,
∵⊙切于,
∴∠=∠,
由()可得∠=∠,
又∵⊙内接四边形,
∴∠=∠,∴△∽△,
∴=.
又∵∠=∠,
∴=,∴=·.
[能力提升]
.如图,△内接于圆,=,直线切圆于点,弦∥,与相交于点.

()求证:△≌△;
()若=,=,求.
【解】()证明:由已知得∠=∠,∠=∠,
∠=∠,∴△∽△,
∴=,
∴=·=×=,
∴=,故选.
【答案】
.如图,与⊙相切于点,割线过圆心,∠=°,则∠等于()

°°
°°
【解析】如图,连接,
∵切⊙于点,
∴⊥,∵∠=°,
∴∠=°,
连接,∵=,
∴∠=∠=°,
∴∠=∠=°.
【答案】
.如图所示,已知、与⊙相切于、,∠=°,点是⊙上异于、的一动点,则∠的度数是()
又∵∥,∴∠=∠,
∴∠=∠.
又直线切圆于点,
∴∠=∠.
∴∠=∠.
又=,∴△≌△.
()由于△≌△,则=,
由()得∠=∠,
∴=.∴==.
在△和△中,
∠=∠,∠=∠,
∴△∽△.∴=.
∴=.
∴=,解得=.
∴∠=°,
∴所对圆心角的度数为°.
【答案】°
.(广东高考)如图,过圆外一点分别作圆的切线和割线交圆于,,且=,是圆上一点使得=,∠=∠,则=.

【解析】由弦切角定理得∠=∠,又因为∠=∠,所以△∽△,可得=,将=,=代入得=.
【答案】
三、解答题(每小题分,共分)
.如图所示,△内接于⊙,过点的切线交的延长线于点,∠的平分线交、于、.

高中数学第三章空间向量与立体几何3.1.2空间向量的基本定理学业分层测评新人教B版选修21

高中数学第三章空间向量与立体几何3.1.2空间向量的基本定理学业分层测评新人教B 版选修21(建议用时:45分钟)[学业达标]一、选择题1.已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x +y 等于( )A .2B .-2C .1D .0【解析】 因为m 与n 共线,所以x a +y b +c =z (a -b +c ).所以⎩⎪⎨⎪⎧x =z ,y =-z ,1=z .所以⎩⎪⎨⎪⎧x =1,y =-1,所以x +y =0.【答案】 D2.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( ) A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D【解析】 BD →=BC →+CD →=-5a +6b +7a -2b =2a +4b ,BA →=-AB →=-a -2b ,∴BD →=-2BA →,∴BD →与BA →共线, 又它们经过同一点B , ∴A ,B ,D 三点共线. 【答案】 A3.A ,B ,C 不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC →,则P ,A ,B ,C 四点( )A .不共面B .共面C .不一定共面D .无法判断【解析】 ∵34+18+18=1,∴点P ,A ,B ,C 四点共面.4.设p :a ,b ,c 是三个非零向量;q :{a ,b ,c }为空间的一个基底,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】 当非零向量a ,b ,c 不共面时,{a ,b ,c }可以当基底,否则不能当基底.当{a ,b ,c }为基底时,一定有a ,b ,c 为非零向量.因此pq ,q ⇒p .【答案】 B5.正方体ABCD ­A ′B ′C ′D ′中,O 1,O 2,O 3分别是AC ,AB ′,AD ′的中点,以{AO →1,AO →2,AO →3}为基底,AC ′→=xAO →1+yAO 2→+zAO →3,则x ,y ,z 的值是( )A .x =y =z =1B .x =y =z =12C .x =y =z =22D .x =y =z =2【解析】 AC ′→=AA ′→+AD →+AB →=12(AB →+AD →)+12(AA ′→+AD →)+12(AA ′→+AB →) =12AC →+12AD ′→+12AB ′→=AO 1→+AO 3→+AO 2→, 由空间向量的基本定理,得x =y =z =1. 【答案】 A 二、填空题6.已知{e 1,e 2,e 3}是空间的一个基底,若λe 1+μe 2+v e 3=0,则λ2+μ2+v 2=________.【解析】 ∵{e 1,e 2,e 3}是空间的一个基底, ∴e 1,e 2,e 3为不共面向量. 又∵λe 1+μe 2+v e 3=0,∴λ=μ=v =0,∴λ2+μ2+v 2=0. 【答案】 07.已知O 为空间任意一点,A ,B ,C ,D 四点满足任意三点不共线,但四点共面,且OA →=2xBO →+3yCO →+4zDO →,则2x +3y +4z 的值为________.【导学号:15460063】【解析】 由题意知A ,B ,C ,D 共面的充要条件是对空间任意一点O ,存在实数x 1,y 1,z 1,使得OA →=x 1OB →+y 1OC →+z 1OD →,且x 1+y 1+z 1=1,因此2x +3y +4z =-1.8.设e 1,e 2是空间两个不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,且A ,B ,D 三点共线,则k =________.【解析】 由已知可得:BD →=CD →-CB →=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2,∵A ,B ,D 三点共线,∴AB →与BD →共线,即存在λ∈R 使得AB →=λBD →. ∴2e 1+k e 2=λ(e 1-4e 2)=λe 1-4λe 2, ∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧λ=2,k =-4λ,解得k =-8.【答案】 -8 三、解答题9.如图3­1­18所示,在平行六面体ABCD ­A ′B ′C ′D ′中,AB →=a ,AD →=b ,AA ′→=c ,P 是CA ′的中点,M 是CD ′的中点,N 是C ′D ′的中点,点Q 在CA ′上,且CQ ∶QA ′=4∶1,用基底{a ,b ,c }表示以下向量:图3­1­18(1)AP →;(2)AM →;(3)AN →;(4)AQ →. 【解】 由题意知|PB →|=2,|CD →|=2,PB →=PA →+AB →,DC →=DA →+AB →+BC →, ∵PA ⊥平面ABCD ,∴PA →·DA →=PA →·AB →=PA →·BC →=0, ∵AB ⊥AD ,∴AB →·DA →=0, ∵AB ⊥BC ,∴AB →·BC →=0,∴PB →·DC →=(PA →+AB →)·(DA →+AB →+BC →) =AB →2=|AB →|2=1,又∵|PB →|=2,|CD →|=2,∴cos 〈PB →,DC →〉=PB →·DC →|PB →||DC →|=12×2=12,∴〈PB →,DC →〉=60°,∴PB 与CD 所成的角为60°.10.正方体OABC ­O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c . (1)用a ,b ,c 表示向量AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →. 【解】 (1)OA →·OB →=|OA →|·|OB →|·cos∠AOB =1×1×cos 60°=12.(2)(OA →+OB →)·(CA →+CB →) =(OA →+OB →)·(OA →-OC →+OB →-OC →) =(OA →+OB →)·(OA →+OB →-2OC →)=12+1×1×1×cos 60°-2×1×1×cos 60°+1×1×cos 60°+12-2×1×1×cos 60°=1.(3)|OA →+OB →+OC →|=OA →+OB →+OC→2=12+12+12+2×1×1×cos 60°×3= 6.[能力提升]1.若P ,A ,B ,C 为空间四点,且有PA →=αPB →+βPC →,则α+β=1是A ,B ,C 三点共线的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 若α+β=1,则PA →-PB →=β(PC →-PB →),即BA →=βBC →,显然A ,B ,C 三点共线;若A ,B ,C 三点共线,则有AB →=λBC →,故PB →-PA →=λ(PC →-PB →),整理得PA →=(1+λ)PB →-λPC →,令α=1+λ,β=-λ,则α+β=1,故选C.【答案】 C2.已知正方体ABCD ­A 1B 1C 1D 1中,P ,M 为空间任意两点,如果有PM →=PB 1→+7BA →+6AA 1→-4A 1D 1→,那么M 必( )A .在平面BAD 1内B .在平面BA 1D 内C .在平面BA 1D 1内D .在平面AB 1C 1内【解析】 由于PM →=PB 1→+7BA →+6AA 1→-4A 1D 1→=PB 1→+BA →+6BA 1→-4A 1D 1→=PB 1→+B 1A 1→+6BA 1→-4A 1D 1→=PA 1→+6(PA 1→-PB →)-4(PD 1→-PA 1→)=11PA 1→-6PB →-4PD 1→,于是M ,B ,A 1,D 1四点共面,故选C.【答案】 C3.已知两非零向量e 1,e 2,且e 1与e 2不共线,若a =λe 1+μe 2(λ,μ∈R ,且λ2+μ2≠0),则下列三个结论有可能正确的是________.【导学号:15460064】①a 与e 1共线;②a 与e 2共线;③a 与e 1,e 2共面.【解析】 当λ=0时,a =μe 2,故a 与e 2共线,同理当μ=0时,a 与e 1共线,由a =λe 1+μe 2,知a 与e 1,e 2共面.【答案】 ①②③4.如图3­1­19所示,M ,N 分别是空间四边形ABCD 的棱AB ,CD 的中点.试判断向量MN →与向量AD →,BC →是否共面.图3­1­19【解】 由题图可得MN →=MA →+AD →+DN →,① ∵MN →=MB →+BC →+CN →,② 又MA →=-MB →,DN →=-CN →, 所以①+②得 2MN →=AD →+BC →,即MN →=12AD →+12BC →,故向量MN →与向量AD →,BC →共面.。

2018学年高中数学人教B版选修2-1课件:3.2.1 直线的方向向量与直线的向量方程 精品


∴m=52.
【答案】
5 2
2.若直线l1的方向向量与l2的方向向量的夹角是150°,则l1与l2这两条异面直 线所成的角等于________.
【解析】 由异面直线所成角的定义可知,l1与l2所成的角为180°-150°= 30°.
【答案】 30°
[质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:________________________________________________________ 解惑:________________________________________________________ 疑问2:________________________________________________________ 解惑:________________________________________________________ 疑问3:________________________________________________________
得A→1B=(0,4,-3),B→1C=(-4,0,-3).
设A→1B与B→1C的夹角为θ,则cos θ=|AA→→11BB|·|BB→→11CC|=295, 故A→1B与B→1C的夹角的余弦值为295, 即异面直线A1B与B1C所成角的余弦值为295.
[探究共研型] 利用空间向量证明线面、面面平行 探究1 利用待定系数法求平面法向量的解题步骤是什么? 【提示】
∴cos〈A→C,V→D〉=|AA→→CC|·|VV→→DD|=2×-22
Hale Waihona Puke =- 22 4.∴异面直线AC与VD所成角的余弦值为
2 4.

高中数学 第一章 统计案例 1.2 回归分析学业分层测评 新人教B版选修1-2-新人教B版高二选修1

1.2 回归分析(建议用时:45分钟)[学业达标]一、选择题1.在画两个变量的散点图时,下面叙述正确的是( ) A.预报变量在x 轴上,解释变量在y 轴上 B.解释变量在x 轴上,预报变量在y 轴上 C.可以选择两个变量中任意一个变量在x 轴上 D.可以选择两个变量中任意一个变量在y 轴上【解析】 结合线性回归模型y =bx +a +ε可知,解释变量在x 轴上,预报变量在y 轴上,故选B.【答案】B2.在回归分析中,相关指数r 的绝对值越接近1,说明线性相关程度( ) A.越强 B.越弱 C.可能强也可能弱D.以上均错【解析】 ∵r =∴|r |越接近于1时,线性相关程度越强,故选A. 【答案】A3.已知x 和y 之间的一组数据x 0 1 2 3 y1357则y 与x 的线性回归方程y =b x +a 必过点( ) A.(2,2) B.⎝ ⎛⎭⎪⎫32,0 C.(1,2)D.⎝ ⎛⎭⎪⎫32,4 【解析】 ∵x -=14(0+1+2+3)=32,y -=14(1+3+5+7)=4,∴回归方程y ^=b ^x +a ^必过点⎝ ⎛⎭⎪⎫32,4.【答案】D4.已知人的年龄x 与人体脂肪含量的百分数y 的回归方程为y ^=0.577x -0.448,如果某人36岁,那么这个人的脂肪含量( )【导学号:37820004】A.一定是20.3%B.在20.3%附近的可能性比较大C.无任何参考数据D.以上解释都无道理【解析】 将x =36代入回归方程得y ^=0.577×36-0.448≈20.3.由回归分析的意义知,这个人的脂肪含量在20.3%附近的可能性较大,故选B.【答案】B5.某产品的广告费用x (万元)与销售额y (万元)的统计数据如下表所示,根据表中数据可得回归方程y ^=b ^x +a ^中的b ^=10.6.据此模型预测广告费用为10万元时的销售额为( )万元 万元D.113.9万元【解析】 由题表中数据得x -=3.5,y -=43.由于回归直线y ^=b ^x +a ^过点(x -,y -),且b ^=10.6,解得a ^=5.9,所以线性回归方程为y ^=10.6x +5.9,于是x =10时,y ^=111.9. 【答案】C 二、填空题6.已知x ,y 的取值如下表所示,由散点图分析可知y 与x 线性相关,且线性回归方程为y =0.95x +2.6,那么表格中的数据m 的值为________.【解析】x -=04=2,y -=4=4,把(x -,y -)代入回归方程得11.3+m4=0.95×2+2.6,解得m =6.7.【答案】 6.77.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为________.【解析】 根据样本相关系数的定义可知,当所有样本点都在直线上时,相关系数为1.【答案】 18.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y ^=0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.【解析】 以x +1代x ,得y ^=0.254(x +1)+0.321,与y ^=0.254x +0.321相减可得,年饮食支出平均增加0.254万元.【答案】 0.254 三、解答题9.关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计资料:x 2 3 4 5 6 y2.23.85.56.57.0如由资料可知y 对x 呈线性相关关系.试求:(1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少? 【解】 (1)x -=2+3+4+5+65=4,y -=2.2+3.8+5.5+6.5+7.05=5,于是a ^=y --b ^x =5-1.23×4=0.08.所以线性回归方程为:y ^=b ^x +a ^=1.23x +0.08. (2)当x =10时,y ^=1.23×10+0.08=12.38(万元), 即估计使用10年时维修费用是12.38万元.10.在一次抽样调查中测得样本的5个样本点,数值如下表:x 0.25 0.5 1 2 4 y1612521试建立y 与x 之间的回归方程.【解】 作出变量y 与x 之间的散点图如图所示.由图可知变量y 与x 近似地呈反比例函数关系.设y =k x,令t =1x ,则y =kt .由y 与x 的数据表可得y 与t 的数据表:t 4 2 1 0.5 0.25 y1612521作出y 与t 的散点图如图所示.由图可知y 与t 呈近似的线性相关关系.又t -=1.55,y -=7.2,∑5i =1t i y i =94.25,∑5i =1t 2i =21.312 5,b ^=∑5i =1t i y i -5t -y -∑5i =1t 2i -5t -2=94.25-5×1.55×7.221.312 5-5×1.552≈4.134 4,a ^=y --b ^t -=7.2-4.134 4×1.55≈0.8,∴y ^=4.134 4t +0.8.即y 与x 之间的回归方程为y ^=4.134 4x+0.8.[能力提升]1.对于下列表格所示的五个散点,已知求得的线性回归直线方程为y ^=0.8x -155.则实数m 的值为( )C.8.4D.8.5【解析】 依题意得x -=15×(196+197+200+203+204)=200,y -=15×(1+3+6+7+m )=17+m 5,因为回归直线必经过样本点的中心,所以17+m5=0.8×200-155,解得m =8,选A.【答案】A2.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:A.y =x -1B.y =x +1C.y =88+12xD.y =176【解析】 因为x -=174+176+176+176+1785=176,y -=175+175+176+177+1775=176,而回归方程经过样本中心点,所以排除A ,B ,又身高的整体变化趋势随x 的增大而增大,排除D ,所以选C.【答案】C3.以模型y =c e kx去拟合一组数据时,为了求出回归方程,设z =ln y ,其变换后得到线性回归方程z =0.3x +4,则c =________.【导学号:37820005】【解析】 由题意得:ln(c e kx)=0.3x +4, ∴ln c +kx =0.3x +4, ∴ln c =4,∴c =e 4. 【答案】e 44.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.图1­2­2(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为【解】 (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程. 由于d ^==108.81.6=68,,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6, 年利润z 的预报值z ^=576.6×0.2-49=66.32. ②根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68x )-x =-x +13.6x +20.12.所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.。

高二数学(选修2-3人教B版)-正态分布


例:当 0, 1 时,正态变量(这时称它为标准正态变量)
(2,2) ,(3,3) 内取值的概率分别是 68.3%,95.4%,
在区间 (1,1) ,
99.7%.
典型例题
练习:设有一正态变量,它的概率密度曲线是函数
的图象,且
,则这个正态变量的均值与
标准差分别是(
A.10与8
答案: B
典型例题
例:某工厂生产的圆柱形零件的外直径 X (单位:mm)
2
服从正态分布 N (4,0.5 ),质检人员从该厂生产的1000个
零件中随机抽查一件,测得它的外直径为5.7mm,试判
断该厂生产的这批零件是否合格?
典型例题
分析:
解题一定要将所求问题向 P( , ) ,P( 2 , 2 )
( 3 , 3 ) 这三个区间进行转化;
(3)利用上述区间求出相应的概率.
典型例题
例:某年级的一次信息技术测验成绩近似服从正态分
2
布N (70,10 ),该年级有2000名学生,如果规定低于60分
为不及格,求成绩不及格的学生约有多少人?
2
解:设学生的得分为随机变量 X ,
X N (70,10 ) ,则
的概率只有0.0026,而 5.7 (2.5,5.5) ,这说明在一次试
验中,出现了几乎不可能发生的小概率事件,所以可以
认为该批零件是不合格的.
典型例题
规律方法总结:
求正态变量 X 在某区间内取值的概率的基本方法:
(1)根据题目中给出的条件确定 , 的值;
(2)将待求问题向( , ), ( 2 , 2 ),
(1)曲线在 x轴的上方,与x 轴不相交.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档