最新中考数学试题分类汇编(平均数,中位数,众数,方差)
北京市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

北京市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共3小题)1.(2023•北京)计算:4sin60°+()﹣1+|﹣2|﹣.2.(2022•北京)计算:(π﹣1)0+4sin45°﹣+|﹣3|.3.(2021•北京)计算:2sin60°++|﹣5|﹣(π+)0.二.整式的混合运算—化简求值(共2小题)4.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.5.(2021•北京)已知a2+2b2﹣1=0,求代数式(a﹣b)2+b(2a+b)的值.三.分式的值(共1小题)6.(2023•北京)已知x+2y﹣1=0,求代数式的值.四.一元一次方程的应用(共1小题)7.(2023•北京)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)五.解一元二次方程-因式分解法(共1小题)8.(2021•北京)已知关于x的一元二次方程x2﹣4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.六.解一元一次不等式组(共3小题)9.(2023•北京)解不等式组:.10.(2022•北京)解不等式组:.11.(2021•北京)解不等式组:.七.一次函数图象与几何变换(共1小题)12.(2021•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.八.待定系数法求一次函数解析式(共1小题)13.(2022•北京)在平面直角坐标系xOy 中,函数y =kx +b (k ≠0)的图象过点(4,3),(﹣2,0),且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当x >0时,对于x 的每一个值,函数y =x +n 的值大于函数y =kx +b (k ≠0)的值,直接写出n 的取值范围.九.三角形内角和定理(共1小题)14.(2022•北京)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角的和等于180°.已知:如图,△ABC ,求证:∠A +∠B +∠C =180°.方法一证明:如图,过点A 作DE ∥BC .方法二证明:如图,过点C 作CD ∥AB.一十.全等三角形的判定与性质(共1小题)15.(2022•北京)在△ABC 中,∠ACB =90°,D 为△ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得CE =DC .(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.一十一.三角形的外接圆与外心(共1小题)16.(2021•北京)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接BO并延长,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE =3,求GC和OF的长.一十二.切线的判定(共1小题)17.(2022•北京)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.一十三.圆的综合题(共1小题)18.(2022•北京)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′,点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上.若点P(﹣2,0),点Q为点P 的“对应点”.①在图中画出点Q;②连接PQ,交线段ON于点T,求证:NT=OM;(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(<t<1),若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时,直接写出PQ长的最大值与最小值的差(用含t的式子表示).一十四.旋转的性质(共1小题)19.(2021•北京)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC 上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.一十五.折线统计图(共1小题)20.(2022•北京)某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析.下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m 根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:在甲、乙两位同学中,评委对 的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是 (填“甲”“乙”或“丙”).一十六.方差(共1小题)21.(2023•北京)某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175;b.16名学生的身高的平均数、中位数、众数:平均数中位数众数166.75m n(1)写出表中m,n的值;(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好,据此推断:在下列两组学生中,舞台呈现效果更好的是 (填“甲组”或“乙组”);甲组学生的身高162165165166166乙组学生的身高161162164165175(3)该舞蹈队要选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为168,168,172,他们的身高的方差为.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为 和 .北京市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共3小题)1.(2023•北京)计算:4sin60°+()﹣1+|﹣2|﹣.【答案】5.【解答】解:原式=4×+3+2﹣2=2+3+2﹣2=5.2.(2022•北京)计算:(π﹣1)0+4sin45°﹣+|﹣3|.【答案】4.【解答】解:原式=1+4×﹣2+3=1+2﹣2+3=4.3.(2021•北京)计算:2sin60°++|﹣5|﹣(π+)0.【答案】3+4.【解答】解:原式=2×+2+5﹣1=+2+5﹣1=3+4.二.整式的混合运算—化简求值(共2小题)4.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【答案】2x2+4x+1,原式=5.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x2+2x﹣2=0,∴x2+2x=2,∴当x2+2x=2时,原式=2(x2+2x)+1=2×2+1=4+1=5.5.(2021•北京)已知a2+2b2﹣1=0,求代数式(a﹣b)2+b(2a+b)的值.【答案】1.【解答】解:原式=a2﹣2ab+b2+2ab+b2=a2+2b2,∵a2+2b2﹣1=0,∴a2+2b2=1,∴原式=1.三.分式的值(共1小题)6.(2023•北京)已知x+2y﹣1=0,求代数式的值.【答案】见试题解答内容【解答】解:∵x+2y﹣1=0,∴x+2y=1,∴====2,∴的值为2.四.一元一次方程的应用(共1小题)7.(2023•北京)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)【答案】边的宽为4cm,天头长为24cm.【解答】解:设天头长为6x,地头长为4x,则左、右边的宽为x,根据题意得,100+10x=4×(27+2x),解得x=4,答:边的宽为4cm,天头长为24cm.五.解一元二次方程-因式分解法(共1小题)8.(2021•北京)已知关于x的一元二次方程x2﹣4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.【答案】见试题解答内容【解答】(1)证明:∵a=1,b=﹣4m,c=3m2,∴Δ=b2﹣4ac=(﹣4m)2﹣4×1×3m2=4m2.∵无论m取何值时,4m2≥0,即Δ≥0,∴原方程总有两个实数根.(2)解:方法一:∵x2﹣4mx+3m2=0,即(x﹣m)(x﹣3m)=0,∴x1=m,x2=3m.∵m>0,且该方程的两个实数根的差为2,∴3m﹣m=2,∴m=1.方法二:设方程的两根为x1,x2,则x1+x2=4m,x1•x2=3m2,∵x1﹣x2=2,∴(x1﹣x2)2=4,∴(x1+x2)2﹣4x1x2=4,∴(4m)2﹣4×3m2=4,∴m=±1,又m>0,∴m=1.六.解一元一次不等式组(共3小题)9.(2023•北京)解不等式组:.【答案】1<x<2.【解答】解:,解不等式①得:x>1,解不等式②得:x<2,∴原不等式组的解集为:1<x<2.10.(2022•北京)解不等式组:.【答案】1<x<4.【解答】解:由2+x>7﹣4x,得:x>1,由x<,得:x<4,则不等式组的解集为1<x<4.11.(2021•北京)解不等式组:.【答案】2<x<4.【解答】解:解不等式4x﹣5>x+1,得:x>2,解不等式<x,得:x<4,则不等式组的解集为2<x<4.七.一次函数图象与几何变换(共1小题)12.(2021•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.【答案】(1)y=x﹣1.(2)≤m≤1.【解答】解:(1)函数y=x的图象向下平移1个单位长度得到y=x﹣1,∵一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到,∴这个一次函数的表达式为y=x﹣1.(2)把x=﹣2代入y=x﹣1,求得y=﹣2,∴函数y=mx(m≠0)与一次函数y=x﹣1的交点为(﹣2,﹣2),把点(﹣2,﹣2)代入y=mx,求得m=1,∵当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=x﹣1的值,∴≤m≤1.八.待定系数法求一次函数解析式(共1小题)13.(2022•北京)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象过点(4,3),(﹣2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.【答案】(1)y=x+1,A(0,1);(2)n≥1.【解答】解:(1)把(4,3),(﹣2,0)分别代入y=kx+b得,解得,∴一次函数的解析式为y=x+1,当x=0时,y=x+1=1,∴A点坐标为(0,1);(2)当n≥1时,当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b (k≠0)的值.九.三角形内角和定理(共1小题)14.(2022•北京)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角的和等于180°.已知:如图,△ABC ,求证:∠A +∠B +∠C =180°.方法一证明:如图,过点A 作DE ∥BC .方法二证明:如图,过点C 作CD ∥AB .【答案】(1)见解答过程;(2)见解答过程.【解答】证明:方法一:∵DE ∥BC ,∴∠B =∠BAD ,∠C =∠CAE ,∵∠BAD +∠BAC +∠CAE =180°,∴∠B +∠BAC +∠C =180°;方法二:∵CD ∥AB ,∴∠A =∠ACD ,∠B +∠BCD =180°,∴∠B +∠ACB +∠A =180°.一十.全等三角形的判定与性质(共1小题)15.(2022•北京)在△ABC 中,∠ACB =90°,D 为△ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得CE =DC .(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【答案】见试题解答内容【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.一十一.三角形的外接圆与外心(共1小题)16.(2021•北京)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接BO并延长,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE =3,求GC和OF的长.【答案】(1)证明见解答过程;(2)GC=6,OF=.【解答】(1)证明:∵AD是⊙O的直径,AD⊥BC,∴=,∴∠BAD=∠CAD;(2)解:在Rt△BOE中,OB=5,OE=3,∴BE==4,∵AD是⊙O的直径,AD⊥BC,∴BC=2BE=8,∵BG是⊙O的直径,∴∠BCG=90°,∴GC==6,∵AD⊥BC,∠BCG=90°,∴AE∥GC,∴△AFO∽△CFG,∴=,即=,解得:OF=.一十二.切线的判定(共1小题)17.(2022•北京)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.【答案】见试题解答内容【解答】证明:(1)如图,连接AD,∵AB是⊙O的直径,AB⊥CD,∴,∴∠CAB=∠BAD,∵∠BOD=2∠BAD,∴∠BOD=2∠A;(2)如图,连接OC,∵F为AC的中点,∴DF⊥AC,∴AD=CD,∴∠ADF=∠CDF,∵,∴∠CAB=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠CDF=∠CAB,∵OC=OD,∴∠CDF=∠OCD,∴∠OCD=∠CAB,∵,∴∠CAB=∠CDE,∴∠CDE=∠OCD,∵∠E=90°,∴∠CDE+∠DCE=90°,∴∠OCD+∠DCE=90°,即OC⊥CE,∵OC为半径,∴直线CE为⊙O的切线.一十三.圆的综合题(共1小题)18.(2022•北京)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′,点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上.若点P(﹣2,0),点Q为点P 的“对应点”.①在图中画出点Q;②连接PQ,交线段ON于点T,求证:NT=OM;(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(<t<1),若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时,直接写出PQ长的最大值与最小值的差(用含t的式子表示).【答案】见试题解答内容【解答】解:(1)①由题意知,P'(﹣2+1,0+1),∴P'(﹣1,1),如图,点Q即为所求;②连接PP',∵∠P'PO=∠MOx=45°,∴PP'∥ON,∵P'N=QN,∴PT=QT,∴NT=PP',∵PP'=OM,∴NT=OM;(2)如图,连接PO,并延长至S,使OP=OS,延长SQ到T,使ST=OM,由题意知,PP'∥OM,PP'=OM,P'N=NQ,∴TQ=2MN,∵MN=OM﹣ON=1﹣t,∴TQ=2﹣2t,∴SQ=ST﹣TQ=1﹣(2﹣2t)=2t﹣1,∵PS﹣QS≤PQ≤PS+QS,∴PQ的最小值为PS﹣QS,PQ的最大值为PS+QS,∴PQ长的最大值与最小值的差为(PS+QS)﹣(PS﹣QS)=2QS=4t﹣2.一十四.旋转的性质(共1小题)19.(2021•北京)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC 上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.【答案】(1)∠BAE=∠CAD,BE+MD=BM;(2)EN=DN.【解答】解:(1)∵∠DAE=∠BAC=α,∴∠DAE﹣∠BAD=∠BAC﹣∠BAD,即∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴BE=CD,∵M为BC的中点,∴BM=CM,∴BE+MD=BM;(2)如图,作EH⊥AB交BC于H,交AB于F,由(1)△ABE≌△ACD得:∠ABE=∠ACD,∵∠ACD=∠ABC,∴∠ABE=∠ABD,在△BEF和△BHF中,,∴△BEF≌△BHF(ASA),∴BE=BH,由(1)知:BE+MD=BM,∴MH=MD,∵MN∥HF,∴,∴EN=DN.一十五.折线统计图(共1小题)20.(2022•北京)某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析.下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m 根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:在甲、乙两位同学中,评委对 甲 的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是 丙 (填“甲”“乙”或“丙”).【答案】见试题解答内容【解答】解:(1)m=×(10+10+10+9+9+8+3+9+8+10)=8.6;(2)甲同学的方差S2甲=×[2×(7﹣8.6)2+2×(8﹣8.6)2+4×(9﹣8.6)2+2×(10﹣8.6)2]=1.04,乙同学的方差S2乙=×[4×(7﹣8.6)2+2×(9﹣8.6)2+4×(10﹣8.6)2]=1.84,∵S2甲<S2乙,∴评委对甲同学演唱的评价更一致.故答案为:甲;(3)甲同学的最后得分为×(7+8×2+9×4+10)=8.625;乙同学的最后得分为×(3×7+9×2+10×3)=8.625;丙同学的最后得分为×(8×2+9×3+10×3)=9.125,∴在甲、乙、丙三位同学中,表现最优秀的是丙.故答案为:丙.一十六.方差(共1小题)21.(2023•北京)某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175;b.16名学生的身高的平均数、中位数、众数:平均数中位数众数166.75m n(1)写出表中m,n的值;(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好,据此推断:在下列两组学生中,舞台呈现效果更好的是 甲组 (填“甲组”或“乙组”);甲组学生的身高162165165166166乙组学生的身高161162164165175(3)该舞蹈队要选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为168,168,172,他们的身高的方差为.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为 170 和 172 .【答案】(1)166;165;(2)甲组;(3)170,172.【解答】解:(1)数据按由小到大的顺序排序:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175,则舞蹈队16名学生的中位数为m==166,众数为n=165;(2)甲组学生身高的平均值是:=164.8,甲组学生身高的方差是:×[(164.8﹣162)2+(164.8﹣165)2+(164.8﹣165)2+(164.8﹣166)2+(164.8﹣166)2]=2.16,乙组学生身高的平均值是:=165.4,乙组学生身高的方差是:×[(165.4﹣161)2+(165.4﹣162)2+(165.4﹣164)2+(165.4﹣165)2+(165.4﹣175)2]=25.04,∵25.04>2.6,∴甲组舞台呈现效果更好.故答案为:甲组;(3)∵168,168,172的平均数为(168+168+172)=169,且所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,∴数据的差别较小,可供选择的有170,172,平均数为:(168+168+170+172+172)=170,方差为:[(168﹣170)2+(168﹣170)2+(170﹣170)2+(172﹣170)2+(172﹣170)2]=3.2<,∴选出的另外两名学生的身高分别为170和172.故答案为:170,172.。
山东省烟台市2021年中考数学真题(word版,含解析)

2021年山东省烟台市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D 四个备选答案,其中有且只有一个是正确的1.若x的相反数是3,则x的值是()A.﹣3B.﹣C.3D.±32.下列数学符号中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列计算正确的是()A.a2•a3=a6B.a2+a3=a5C.(a2)3=a6D.a2÷a3=a4.一个正方体沿四条棱的中点切割掉一部分后,如图所示,则该几何体的左视图是()A.B.C.D.5.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,5500万用科学记数法表示为()A.0.55×108B.5.5×107C.55×106D.5.5×1036.一副三角板如图放置,两三角板的斜边互相平行,每个三角板的直角顶点都在另一个三角板的斜边上,图中∠α的度数为()A.45°B.60°C.75°D.85°7.如图,在直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点B的坐标为(﹣1,0),∠BCD=120°,则点D的坐标为()A.(2,2)B.(,2)C.(3,)D.(2,)8.如图所示,若用我们数学课本上采用的科学计算器进行计算,其按键顺序及结果如下:按键的结果为m;按键的结果为n;按键的结果为k.下列判断正确的是()A.m=n B.n=k C.m=k D.m=n=k9.已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定10.连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为()A.B.C.D.11.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.下列结论:①ac>0;②当x>0时,y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的个数有()A.1个B.2个C.3个D.4个12.由12个有公共顶点O的直角三角形拼成的图形如图所示,∠AOB=∠BOC=…=∠LOM =30°.若OA=16,则OG的长为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.若代数式在实数范围内有意义,则x的取值范围为.14.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为米.15.幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为.16.数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为米.(结果精确到1米,参考数据:≈1.41,≈1.73)17.如图,在正方形网格中,每个小正方形的边长都是1,⊙O是△ABC的外接圆,点A,B,O在网格线的交点上,则sin∠ACB的值是.18.综合实践活动课上,小亮将一张面积为24cm2,其中一边BC为8cm的锐角三角形纸片(如图1),经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形BCDE(如图2),则矩形的周长为cm.三、解答题(本大题共7个小题,满分66分19.(6分)先化简,再求值:,从﹣2<x≤2中选出合适的x 的整数值代入求值.20.(8分)2021年是中国共产党成立100周年.为普及党史知识,培养爱国主义精神,今年五月份,某市党校举行党史知识竞赛,每个班级各选派15名学员参加了网上测试,现对甲、乙两班学员的分数进行整理分析如下:甲班15名学员测试成绩(满分100分)统计如下:87,84,88,76,93,87,73,98,86,87,79,85,84,85,98.乙班15名学员测试成绩(满分100分)统计如下:77,88,92,85,76,90,76,91,88,81,85,88,98,86,89(1)按如表分数段整理两班测试成绩班级70.5~75.575.5~80.580.5~85.585.5~90.590.5~95.595.5~100.5甲12a512乙033621表中a =;(2)补全甲班15名学员测试成绩的频数分布直方图;(3)两班测试成绩的平均数、众数、中位数、方差如表所示:班级平均数众数中位数方差甲86x8644.8乙8688y36.7表中x=,y=.(4)以上两个班级学员掌握党史相关知识的整体水平较好的是班;(5)本次测试两班的最高分都是98分,其中甲班2人,乙班1人.现从以上三人中随机抽取两人代表党校参加全市党史知识竞赛,利用树状图或表格求出恰好抽取甲、乙两班各一人参加全市党史知识竞赛的概率.21.(8分)如图,正比例函数y=x与反比例函数y=(x>0)的图象交于点A,过点A 作AB⊥y轴于点B,OB=4,点C在线段AB上,且AC=OC.(1)求k的值及线段BC的长;(2)点P为B点上方y轴上一点,当△POC与△P AC的面积相等时,请求出点P的坐标.22.(9分)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?23.(10分)如图,已知Rt△ABC中,∠C=90°.(1)请按如下要求完成尺规作图(不写作法,保留作图痕迹).①作∠BAC的角平分线AD,交BC于点D;②作线段AD的垂直平分线EF与AB相交于点O;③以点O为圆心,以OD长为半径画圆,交边AB于点M.(2)在(1)的条件下,求证:BC是⊙O的切线;(3)若AM=4BM,AC=10,求⊙O的半径.24.(11分)有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,连接BF,DE,M是BF的中点,连接AM交DE于点N.【观察猜想】(1)线段DE与AM之间的数量关系是,位置关系是;【探究证明】(2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,其他条件不变,线段DE与AM之间的关系是否仍然成立?并说明理由.25.(14分)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.(1)求抛物线及直线BC的函数表达式;(2)点F是抛物线对称轴上一点,当F A+FC的值最小时,求出点F的坐标及F A+FC的最小值;(3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P 的坐标;若不存在,请说明理由.2021年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D 四个备选答案,其中有且只有一个是正确的1.若x的相反数是3,则x的值是()A.﹣3B.﹣C.3D.±3【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣3的相反数是3,∴x=﹣3.故选:A.2.下列数学符号中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的定义进行判断,即可求出答案.【解答】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.不是轴对称图形,是中心对称图形,故本选项不合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.3.下列计算正确的是()A.a2•a3=a6B.a2+a3=a5C.(a2)3=a6D.a2÷a3=a【分析】根据同底数幂的乘法,合并同类项,幂的乘方,同底数幂的除法法则进行计算,然后作出判断.【解答】解:A.a2•a3=a5,故此选项不符合题意;B.a2与a3不是同类项,不能进行合并计算,故此选项不符合题意;C.(a2)3=a6,正确,故此选项符合题意;D.a2÷a3=,故此选项不符合题意,故选:C.4.一个正方体沿四条棱的中点切割掉一部分后,如图所示,则该几何体的左视图是()A.B.C.D.【分析】根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,是一个正方形,正方形的中间有一条横向的虚线.故选:C.5.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,5500万用科学记数法表示为()A.0.55×108B.5.5×107C.55×106D.5.5×103【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:5500万=55000000=5.5×107.故选:B.6.一副三角板如图放置,两三角板的斜边互相平行,每个三角板的直角顶点都在另一个三角板的斜边上,图中∠α的度数为()A.45°B.60°C.75°D.85°【分析】根据EF∥BC得出∠FDC=∠F=30°,进而得出∠α=∠FDC+∠C即可.【解答】解:如图,∵EF∥BC,∴∠FDC=∠F=30°,∴∠α=∠FDC+∠C=30°+45°=75°,故选:C.7.如图,在直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点B的坐标为(﹣1,0),∠BCD=120°,则点D的坐标为()A.(2,2)B.(,2)C.(3,)D.(2,)【分析】根据直角三角形的性质得出OB,OA的长,进而利用菱形的性质得出点的坐标即可.【解答】解:∵菱形ABCD,∠BCD=120°,∴∠ABC=60°,∵B(﹣1,0),∴OB=1,OA=,AB=2,∴A(0,),∴BC=AD=2,∴C(1,0),D(2,),故选:D.8.如图所示,若用我们数学课本上采用的科学计算器进行计算,其按键顺序及结果如下:按键的结果为m;按键的结果为n;按键的结果为k.下列判断正确的是()A.m=n B.n=k C.m=k D.m=n=k【分析】分别计算出m,n,k的值即可得出答案.【解答】解:m=23﹣=8﹣4=4;n=﹣22=4﹣4=0;k=﹣cos60°=﹣=4;∴m=k,故选:C.9.已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【分析】先由数轴得出m,n与0的关系,再计算判别式的值即可判断.【解答】解:由数轴得m>0,n<0,m+n<0,∴mn<0,∴△=(mn)2﹣4(m+n)>0,∴方程有两个不相等的实数根.故选:A.10.连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为()A.B.C.D.【分析】如图,将阴影部分分割成图形小三角形的大小,令小三角形的面积为a,分别表示出阴影部分的面积个正六边形的面积,根据概率公式求解即可.【解答】解:如图所示,令S△ABC=a,则S阴影=6a,S正六边形=18a,∴将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为=,故选:B.11.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.下列结论:①ac>0;②当x>0时,y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的个数有()A.1个B.2个C.3个D.4个【分析】把点A(﹣1,0),B(3,0)代入二次函数y=ax2+bx+c,可得二次函数的解析式为:y=ax2﹣2ax﹣3a,由图象可知,函数图象开口向下,所以a<0,可得b和c的符号,及a和c的数量关系;由函数解析式可得函数对称轴为直线:x=﹣=1,根据函数的增减性和最值,可判断②和④的正确性.【解答】解:把点A(﹣1,0),B(3,0)代入二次函数y=ax2+bx+c,可得二次函数的解析式为:y=ax2﹣2ax﹣3a,∵该函数开口方向向下,∴a<0,∴b=﹣2a>0,c=﹣3a>0,∴ac<0,3a+c=0,①错误,③正确;∵对称轴为直线:x=﹣=1,∴x<1时,y随x的增大而增大,x>1时,y随x的增大而减小;②错误;∴当x=1时,函数取得最大值,即对于任意的m,有a+b+c≥am2+bm+c,∴a+b≥am2+bm,故④正确.综上,正确的个数有2个,故选:B.12.由12个有公共顶点O的直角三角形拼成的图形如图所示,∠AOB=∠BOC=…=∠LOM =30°.若OA=16,则OG的长为()A.B.C.D.【分析】由AOB=∠BOC=…=∠LOM=30°,∠ABO=∠BCO=…=∠LMO=90°,可知AB:OB:OA=BC:OC:OB=…=FG:OG:OF=1::2,由此可求出OG的长.【解答】解:由图可知,∠ABO=∠BCO=…=∠LMO=90°,∵AOB=∠BOC=…=∠LOM=30°,∴∠A=∠OBA=∠BCD=…=∠OLM=60°,∴AB=OA,OB=AB=OA,同理可得,OC=OB=()2OA,OD=OC=()3OA,…OG=OF=()6OA=()6×16=.故选:A.二、填空题(本大题共6个小题,每小题3分,满分18分)13.若代数式在实数范围内有意义,则x的取值范围为x≤2.【分析】二次根式的被开方数是非负数.【解答】解:依题意,得2﹣x≥0,解得,x≤2.故答案是:x≤2.14.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为3米.【分析】由题意知:△ABE∽△CDE,得出对应边成比例即可得出CD.【解答】解:由题意知:AB∥CD,则∠BAE=∠C,∠B=∠CDE,∴△ABE∽△CDE,∴,∴,∴CD=3米,故答案为:3.15.幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为2.【分析】利用幻方中每一横行,每一竖行以及两条对角线上的数字之和都是15,可求出幻方右下角及第二行中间的数字,再利用幻方中对角线上的数字之和为15,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:幻方右下角的数字为15﹣8﹣3=4,幻方第二行中间的数字为15﹣6﹣4=5.依题意得:8+5+a=15,解得:a=2.故答案为:2.16.数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为14米.(结果精确到1米,参考数据:≈1.41,≈1.73)【分析】过O点作OC⊥AB的延长线于C点,垂足为C,利用直角三角形的解法得出OC,进而解答即可.【解答】解:过O点作OC⊥AB的延长线于C点,垂足为C,∵当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,∴AC=45米,∠CAO=30°,∴OC=AC•tan30°=(米),∴旗杆的高度=40﹣15≈14(米),故答案为:14.17.如图,在正方形网格中,每个小正方形的边长都是1,⊙O是△ABC的外接圆,点A,B,O在网格线的交点上,则sin∠ACB的值是.【分析】连接AO并延长交⊙O于D,根据圆周角定理得到∠ACB=∠ADB,根据勾股定理求出AD,根据正弦的定义计算,得到答案.【解答】解:如图,连接AO并延长交⊙O于D,由圆周角定理得:∠ACB=∠ADB,由勾股定理得:AD==2,∴sin∠ACB=sin∠ADB===,故答案为:.18.综合实践活动课上,小亮将一张面积为24cm2,其中一边BC为8cm的锐角三角形纸片(如图1),经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形BCDE(如图2),则矩形的周长为22cm.【分析】延长AT交BC于点P,利用三角形的面积公式求出AP,求出BE,CD,DE,可得结论.【解答】解:延长AT交BC于点P,∵AP⊥BC,∴•BC•AP=24,∴×8×AP=24,∴AP=6(cm),由题意,AT=PT=3(cm),∴BE=CD=PT=3(cm),∵DE=BC=8cm,∴矩形BCDE的周长为8+8+3+3=22(cm).故答案为:22.三、解答题(本大题共7个小题,满分66分19.(6分)先化简,再求值:,从﹣2<x≤2中选出合适的x 的整数值代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣2<x≤2中选出一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:=[]•=•==,∵﹣2<x≤2且(x+1)(x﹣1)≠0,2﹣x≠0,∴x的整数值为﹣1,0,1,2且x≠±1,2,∴x=0,当x=0时,原式==﹣1.20.(8分)2021年是中国共产党成立100周年.为普及党史知识,培养爱国主义精神,今年五月份,某市党校举行党史知识竞赛,每个班级各选派15名学员参加了网上测试,现对甲、乙两班学员的分数进行整理分析如下:甲班15名学员测试成绩(满分100分)统计如下:87,84,88,76,93,87,73,98,86,87,79,85,84,85,98.乙班15名学员测试成绩(满分100分)统计如下:77,88,92,85,76,90,76,91,88,81,85,88,98,86,89(1)按如表分数段整理两班测试成绩班级70.5~75.575.5~80.580.5~85.585.5~90.590.5~95.595.5~100.5甲12a512乙033621表中a =4;(2)补全甲班15名学员测试成绩的频数分布直方图;(3)两班测试成绩的平均数、众数、中位数、方差如表所示:班级平均数众数中位数方差甲86x8644.8乙8688y36.7表中x=87,y=86.(4)以上两个班级学员掌握党史相关知识的整体水平较好的是乙班;(5)本次测试两班的最高分都是98分,其中甲班2人,乙班1人.现从以上三人中随机抽取两人代表党校参加全市党史知识竞赛,利用树状图或表格求出恰好抽取甲、乙两班各一人参加全市党史知识竞赛的概率.【分析】(1)由甲班15名学员的测试成绩即可求解;(2)由(1)的结果,补全甲班15名学员测试成绩的频数分布直方图即可;(3)由众数、中位数的定义求解即可;(4)从平均数、中位数、方差几个方面说明即可;(5)画树状图,共有6种等可能的结果,恰好抽取甲、乙两班各一人参加全市党史知识竞赛的结果有4种,再由概率公式求解即可.【解答】解:(1)由题意得:a=4,故答案为:4;(2)补全甲班15名学员测试成绩的频数分布直方图如下:(3)甲班15名学员测试成绩中,87分出现的次数最多,∴x=87,由题意得:乙班15名学员测试成绩的中位数为86,故答案为:87,86;(4)以上两个班级学员掌握党史相关知识的整体水平较好的是乙班,理由如下:①甲、乙两个班的平均数相等,但乙班的中位数大于甲班的中位数;②乙班的方差小于甲班的方差,因此乙班的成绩更稳定;故答案为:乙;(5)把甲班2人记为A、B,乙班1人记为C,画树状图如图:共有6种等可能的结果,恰好抽取甲、乙两班各一人参加全市党史知识竞赛的结果有4种,∴恰好抽取甲、乙两班各一人参加全市党史知识竞赛的概率为=.21.(8分)如图,正比例函数y=x与反比例函数y=(x>0)的图象交于点A,过点A 作AB⊥y轴于点B,OB=4,点C在线段AB上,且AC=OC.(1)求k的值及线段BC的长;(2)点P为B点上方y轴上一点,当△POC与△P AC的面积相等时,请求出点P的坐标.【分析】(1)根据正比例函数的解析式求出A点坐标,由A在反比例函数上,可求出k,再根据AC=OC求出点C的坐标,即可得线段BC的长;(2)设点P(0,p),根据△POC与△P AC的面积相等,得出关于p的方程,解方程即可得点P的坐标.【解答】解:(1)∵点A在正比例函数y=x上,AB⊥y轴,OB=4,∵点B的坐标为(0,4),∴点A的纵坐标是4,代入y=x,得x=8,∴A(8,4),∵点A在反比例函数y=(x>0)的图象上,∴k=4×8=32,∵点C在线段AB上,且AC=OC.设点C(c,4),∵OC==,AC=AB﹣BC=8﹣c,∴=8﹣c,解得:c=3,∴点C(3,4),∴BC=3,∴k=32,BC=3;(2)如图,设点P(0,p),∵点P为B点上方y轴上一点,∴OP=p,BP=p﹣4,∵A(8,4),C(3,4),∴AC=8﹣3=5,BC=3,∵△POC与△P AC的面积相等,∴×3p=×5(p﹣4),解得:p=10,∴P(0,10).22.(9分)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?【分析】(1)根据日利润=每件利润×日销售量,可求出售价为60元时的原利润,设售价应定为x元,则每件的利润为(x﹣40)元,日销售量为20+=(140﹣2x)件,根据日利润=每件利润×日销售量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)设该商品需要打x折销售,根据销售价格不超过50元,列出不等式求解即可.【解答】(1)解:设售价应定为x元,则每件的利润为(x﹣40)元,日销售量为20+=(140﹣2x)件,依题意,得:(x﹣40)(140﹣2x)=(60﹣40)×20,整理,得:x2﹣110x+3000=0,解得:x1=50,x2=60(舍去).答:售价应定为50元;(2)该商品需要打a折销售,由题意,得,62.5×≤50,解得:a≤8,答:该商品至少需打8折销售.23.(10分)如图,已知Rt△ABC中,∠C=90°.(1)请按如下要求完成尺规作图(不写作法,保留作图痕迹).①作∠BAC的角平分线AD,交BC于点D;②作线段AD的垂直平分线EF与AB相交于点O;③以点O为圆心,以OD长为半径画圆,交边AB于点M.(2)在(1)的条件下,求证:BC是⊙O的切线;(3)若AM=4BM,AC=10,求⊙O的半径.【分析】(1)①以A为圆心,以任意长度为半径画弧,与AC、AB相交,再以两个交点为圆心,以大于两点之间距离的一半为半径画弧相交于∠BAC内部一点,将点A与它连接并延长,与BC交于点D,则AD为∠BAC的平分线;②分别以点A、点D为圆心,以大于AD长度为半径画圆,将两圆交点连接,则EF为AD的垂直平分线,EF与AB交于点O;(2)根据线段垂直平分线及角平分线的性质推出角之间的关系,再根据平行线的判定得出OD∥AC,从而得出OD⊥BC即可;(3)根据题意得到线段之间的关系:OM=2BM,BO=3BM,AB=5BM,再根据相似三角形的性质求解即可.【解答】解:(1)如图所示,①以A为圆心,以任意长度为半径画弧,与AC、AB相交,再以两个交点为圆心,以大于两点之间距离的一半为半径画弧相交于∠BAC内部一点,将点A与它连接并延长,与BC交于点D,则AD为∠BAC的平分线;②分别以点A、点D为圆心,以大于AD长度为半径画圆,将两圆交点连接,则EF为AD的垂直平分线,EF与AB交于点O;③如图,⊙O与AB交于点M;(2)证明:∵EF是AD的垂直平分线,且点O在AD上,∴OA=OD,∴∠OAD=∠ODA,∵AD是∠BAC的平分线,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵AC⊥BC,∴OD⊥BC,故BC是⊙O的切线.(3)根据题意可知OM=OA=OD=AM,AM=4BM,∴OM=2BM,BO=3BM,AB=5BM,∴==,由(2)可知Rt△BOD与Rt△BAC有公共角∠B,∴Rt△BOD∽Rt△BAC,∴=,即=,解得DO=6,故⊙O的半径为6.24.(11分)有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,连接BF,DE,M是BF的中点,连接AM交DE于点N.【观察猜想】(1)线段DE与AM之间的数量关系是DE=2AM,位置关系是DE⊥AM;【探究证明】(2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,其他条件不变,线段DE与AM之间的关系是否仍然成立?并说明理由.【分析】(1)由正方形的性质得出AD=AB,AF=AE,∠DAE=∠BAF=90°,证明△DAE≌△BAF(SAS),由全等三角形的性质得出DE=BF,∠ADE=∠ABF,由直角三角形的性质可得出结论;(2)延长AM至点H,使得AM=MH,连接FH,证明△AMB≌△HMF(SAS),由全等三角形的性质得出AB=HF,∠ABM=∠HFM,证明△EAD≌△AFH(SAS),由全等三角形的性质得出DE=AH,则可得出答案.【解答】解:(1)∵四边形ABCD和四边形AEGF都是正方形,∴AD=AB,AF=AE,∠DAE=∠BAF=90°,∴△DAE≌△BAF(SAS),∴DE=BF,∠ADE=∠ABF,∵∠ABF+∠AFB=90°,∴∠ADE+∠AFB=90°,在Rt△BAF中,M是BF的中点,∴AM=FM=BM=BF,∴DE=2AM.∵AM=FM,∴∠AFB=∠MAF,又∵∠ADE+∠AFB=90°,∴∠ADE+∠MAF=90°,∴∠AND=180°﹣(∠ADE+∠MAF)=90°,即AN⊥DN;故答案为DE=2AM,DE⊥AM.(2)仍然成立,证明如下:延长AM至点H,使得AM=MH,连接FH,∵M是BF的中点,∴BM=FM,又∵∠AMB=∠HMF,∴△AMB≌△HMF(SAS),∴AB=HF,∠ABM=∠HFM,∴AB∥HF,∴∠HFG=∠AGF,∵四边形ABCD和四边形AEGF是正方形,∴∠DAB=∠AFG=90°,AE=AF,AD=AB=FH,∠EAG=∠AGF,∴∠EAD=∠EAG+∠DAB=∠AFG+∠AGF=∠AFG+∠HFG=∠AFH,∴△EAD≌△AFH(SAS),∴DE=AH,又∵AM=MH,∴DE=AM+MH=2AM,∵△EAD≌△AFH,∴∠ADE=∠FHA,∵△AMB≌△HMF,∴∠FHA=∠BAM,∴∠ADE=∠BAM,又∵∠BAM+∠DAM=∠DAB=90°,∴∠ADE+∠DAM=90°,∴∠AND=180°﹣(∠ADE+∠DAM)=90°,即AN⊥DN.故线段DE与AM之间的数量关系是DE=2AM.线段DE与AM之间的位置关系是DE ⊥AM.25.(14分)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.(1)求抛物线及直线BC的函数表达式;(2)点F是抛物线对称轴上一点,当F A+FC的值最小时,求出点F的坐标及F A+FC的最小值;(3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P 的坐标;若不存在,请说明理由.【分析】(1)用待定系数法即可求解;(2)点A、B关于抛物线的对称轴对称,设抛物线的对称轴交BC于点F,则点F为所求点,此时,当F A+FC的值最小,进而求解;(3)①当点Q在点P的左侧时,证明△QME∽△ENP,则=tan∠EQP=tan∠OCA===,进而求解;②当点Q在点P的右侧时,同理可解.【解答】解:(1)由点A的坐标知,OA=2,∵OC=2OA=4,故点C的坐标为(0,4),将点A、B、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为y=﹣x+x+4;将点B、C的坐标代入一次函数表达式得:,解得,故直线BC的表达式为y=﹣x+4;(2)∵点A、B关于抛物线的对称轴对称,设抛物线的对称轴交BC于点F,则点F为所求点,此时,当F A+FC的值最小,理由:由函数的对称性知,AF=BF,则AF+FC=BF+FC=BC为最小,当x=1时,y=﹣x+4=3,故点F(1,3),由点B、C的坐标知,OB=OC=4,则BC=BO=4,即点F的坐标为(1,3)、F A+FC的最小值为4;(3)存在,理由:设点P的坐标为(m,﹣m2+m+4)、点Q的坐标为(t,﹣t+4),①当点Q在点P的左侧时,如图2,过点P、Q分别作x轴的垂线,垂足分别为N、M,由题意得:∠PEQ=90°,∴∠PEN+∠QEM=90°,∵∠EQM+∠QEM=90°,∴∠PEN=∠EQM,∴∠QME=∠ENP=90°,∴△QME∽△ENP,∴=tan∠EQP=tan∠OCA===,则PN=﹣m2+m+4,ME=1﹣t,EN=m﹣1,QM=﹣t+4,∴==,解得m=±(舍去负值),当m=时,﹣m2+m+4=,故点P的坐标为(,).②当点Q在点P的右侧时,分别过点P、Q作抛物线对称轴的垂线,垂足分别为N、M,则MQ=t﹣1,ME=t﹣4,NE=﹣m2+m+4、PN=m﹣1,同理可得:△QME∽△ENP,∴=tan∠PQE=2,即,解得m=(舍去负值),故m=,故点P的坐标为(,),故点P的坐标为(,)或(,).。
4.2数据的分析-河北省1997-2018年中考数学试题分类汇编(word原题及解析版)

第四部分 统计与概率 4.2 数据的分析【一】知识点清单 1、数据的集中趋势算术平均数;加权平均数;计算器-平均数;中位数;众数;平均数、中位数、众数的相关应用;统计量的选择 2、数据的波动程度方差;计算器-标准差与方差;用样本估计总体;极差(删);标准差(删)【二】分类试题汇编一、选择题1.(2011年-7题-3分)甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是S 甲2=27,S 乙2=19.6,S 丙2=1.6,导游小王最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选( ) A .甲团 B .乙团 C .丙团 D .甲或乙团2.(2014年-16题-3分)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是( ) A .20B .28C .30D .313.(2017年-14题-2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断4.(2018年-9题-3分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁5.(2018年-10题-3分)图中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个B.3个C.4个D.5个二、填空题1.(2008年-15题-3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的2.(2009年-15题则这些体温的中位数是℃.三、解答题1.(1997年-22题-5分)求下列一组数据的平均数x和方差s2:20.1,20.2,19.7,20.2,19.8.2.(1998年-25题-5分)指出下面一组数据的中位数,并计算这组数据的方差:11 19 13 17 15.3.(1999年-21题-7分)甲,乙两台机床同时加工直径为100毫米的零件,为了检验产品的质量,从产品中各随机抽出6件进行测量,测得数据如下(单位:毫米):甲机床:99 100 98 100 100 103乙机床:99 100 102 99 100 100(1)分别计算上述两组数据的平均数及方差;(2)根据(1)中计算结果,说明哪一台机床加工这种零件更符合要求?4.(2000年-23题-7分)为了解学生的身高情况,抽测了某校17岁的50名男生的身高,数据如下(单位:米).若将数据分成7组,取组距为0.03米,相应的频率分布表是:某校17岁的50名男生的身高的频数分布表请回答下列问题:(1)样本数据中,17岁男生身高的众数、中位数分别是多少?(2)依据样本数据,估计这所学校17岁的男生中,身高不低于1.65米且不高于1.70米的学生所占的百分比;(3)观察频率分布表,指出该校17岁的男生中,身高在哪个数据范围内的频率最大.如果该校17岁的男生共有350人,那么在这个身高范围内的人数估计有多少人?5.(2002年-24题-8分)甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.(1)请填写下表:(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩更好些);③从平均数和命中9环及以上的次数相结合看(分析谁的成绩更好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).6.(2003年-23题-8分)某中学举行了一次演讲比赛,分段统计参赛同学的成绩后,所得结果如下表(分数均为整数,满分为100分):请根据表中提供的信息解答下列各题:(1)参加这次演讲比赛的同学共有人;(2)已知成绩在91~100分的同学为优胜者,那么优胜率为;(3)所有参赛同学的平均得分M(分)在什么范围内?答:.7.(2004年大纲卷-23题-8分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,初三各年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:(1)请你填写表二:(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从众数和平均数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些).(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强些?并说明理由.8.(2004年课标卷-21题-8分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服,为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.9.(2005年大纲卷-24题-8分)如图是连续十周测试甲、乙两名运动员体能训练情况的折线统计图.教练组规定:体能测试成绩70分以上(包括70分)为合格.(1)请根据图中所提供的信息填写右表:(2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙,的体能测试成绩较好;②依据平均数与中位数比较甲和乙,的体能测试成绩较好.③依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.乙6010.(2006年课标卷-20题/大纲卷-23题-8分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:请你根据上述内容,解答下列问题:(1)该公司“高级技工”有名;(2)所有员工月工资的平均数x为2500元,中位数为元,众数为元;(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y 能否反映该公司员工的月工资实际水平.11.(2007年-21题-10分)甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图1、图2的统计图.(1)在图2中画出折线表示乙队在集训期内这五场比赛成绩的变化情况;(2)已知甲队五场比赛成绩的平均分x甲=90分,请你计算乙队五场比赛成绩的平均分x乙;(3)就这五场比赛,分别计算两队成绩的极差;(4)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、折线的走势、获胜场数和极差四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?12.(2010年-21题-8分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表(1)在图1中,“7分”所在扇形的圆心角等于°.(2)请你将图2的统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?13.(2011年-24题-9分)已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:货运收费项目及收费标准表(1)汽车的速度为千米/时,火车的速度为千米/时:(2)设每天用汽车和火车运输的总费用分别为y汽(元)和y火(元),分别求y汽、y火与x的函数关系式(不必写出x的取值范围),当x为何值时,y汽>y火(总费用=运输费+冷藏费+固定费用)(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?14.(2012年-21题-8分)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表(1)a=,x=;乙(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.15.(2013年-22题-10分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.16.(2014年-22题-10分)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C度数的平均数x:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的x作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)17.(2015年-24题-11分)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.并求得了A 产品三次单价的平均数和方差:A x =5.9,s A 2=13 [(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=43150(1)补全如图中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了 % (2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m%(m >0),使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1,求m 的值.18.(2017年-21题-9分)编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记.0.分.,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图; (2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次,这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.19.(2018年-21题-9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分. (1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.【三】参考答案与解析一、选择题1.(2011年-7题-3分)甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是S甲2=27,S乙2=19.6,S丙2=1.6,导游小王最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选()A.甲团B.乙团C.丙团D.甲或乙团【分类目录】4.2数据的分析【知识考点】方差.【思路分析】由S甲2=27,S乙2=19.6,S丙2=1.6,得到丙的方差最小,根据方差的意义得到丙旅行团的游客年龄的波动最小.【解答过程】解:∵S甲2=27,S乙2=19.6,S丙2=1.6,∴S甲2>S乙2>S丙2,∴丙旅行团的游客年龄的波动最小,年龄最相近.故选C.【总结归纳】本题考查了方差的意义:方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.2.(2014年-16题-3分)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是()A.20 B.28 C.30 D.31【分类目录】4.2数据的分析【知识考点】众数;中位数.【思路分析】根据题意,可得最大的三个数的和是:6+7+7=20,两个较小的数一定是小于6的非负整数,且不相等,则可求得五个数的和的范围,进而判断.【解答过程】解:中位数是6.唯一众数是7,则最大的三个数的和是:6+7+7=20,两个较小的数一定是小于6的非负整数,且不相等,即,两个较小的数最大为4和5,总和一定大于等于21且小于等于29.故选:B.【总结归纳】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个。
平均数众数中位数测试题及答案-用卷

平均数众数中位数1题号一二三四总分得分一、选择题(本大题共13小题,共39.0分)1.在某公司的面试中,李明的得分情况为:个人形象89分,工作能力93分,交际能力83分.已知个人形象、工作能力和交际能力的权重为3:4:4,则李明的最终成绩是()A. 96.7分B. 97.1分C. 88.3分D. 265分2.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A. 5、6、5B. 5、5、6C. 6、5、6D. 5、6、63.关于一组数据:1,5,6,3,5,下列说法错误的是()A. 平均数是4B. 众数是5C. 中位数是6D. 方差是3.24.某班学生军训射击,有m人各打中a环,n人各打中b环,那么该班打中a环和b环学生的平均环数是()A. a+bm+n B. 12(am+bn) C. am+bnm+nD. 12(am+bn)5.歌唱比赛有二十位评委给选手打分,统计每位选手得分时,会去掉一个最高分和一个最低分,这样做,肯定不会对所有评委打分的哪一个统计量产生影响()A. 平均分B. 众数C. 中位数D. 极差6.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3则得分的众数和中位数分别为()A. 70分,70分B. 80分,80分C. 70分,80分D. 80分,70分7.一组数据5,2,6,9,5,3的众数、中位数、平均数分别是()A. 5,5,6B. 9,5,5C. 5,5,5D. 2,6,58.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A. 1.65、1.70B. 1.65、1.75C. 1.70、1.75D. 1.70、1.709.我市某连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A. ,B. ,C. ,D. ,10.某小组长统计组内5人一天在课堂上的发言次数分别为3,3,0,4,5.关于这组数据,下列说法错误的是()A. 众数是3B. 中位数是0C. 平均数是3D. 方差是2.811.数据2、5、6、0、6、1、8的中位数和众数分别是()A. 0和6B. 0和8C. 5和6D. 5和812.一组数据:1,2,4,2,2,5,这组数据的众数是()A. 1B. 2C. 4D. 513.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0123人数13352923关于这组数据,下列说法正确的是()A. 众数是2册B. 中位数是2册C. 极差是2册D. 平均数是2册二、填空题(本大题共6小题,共18.0分)14.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是___________.15.某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是_______分.16.三个数-1,a,3的平均数是2,则a的值是______ .17.某校男子足球队队员的年龄分布如图所示,根据图中信息可知,这些队员年龄的中位数是______ 岁.18.一组数3,4,7,4,3,4,5,6,5的众数是______.19.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.三、计算题(本大题共1小题,共6.0分)20.某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生______人,并将条形图补充完整;(2)捐款金额的众数是______,平均数是______;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?四、解答题(本大题共1小题,共8.0分)21.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为______,图①中m的值为______;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.答案和解析1.【答案】C【解析】解:根据题意得:89×3+93×4+83×4≈88.3,3+4+4故选C.将李明的各项成绩分别乘以其权,再除以权的和,求出加权平均数即可.本题考查了加权平均数,本题易出现的错误是求89,93,83这三个数的平均数,对平均数的理解不正确.2.【答案】D【解析】【分析】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.根据众数、平均数和中位数的定义分别进行解答即可.【解答】解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,=6;则中位数是6+62=6.平均数是:4×2+5×6+6×5+7×4+8×320故选D.3.【答案】C【解析】解:A、这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;B、5出现了2次,出现的次数最多,则众数是5,故本选项正确;C、把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;[(1-4)2+(5-4)2+(6-4)2+(3-4)2+(5-4)2]=3.2,故本D、这组数据的方差是:15选项正确;故选:C.分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.本题考查平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.4.【答案】C【解析】【分析】本题主要考查加权平均数,掌握得出射击环数的总数和加权平均数的定义是解题的关键.求出该班所有学生射击的总环数,再根据平均数的定义计算可得.【解答】解:根据题意知m人射击的总环数为am,n人射击的总环数为bn,则该班打中a环和b环学生的平均环数是am+bn,m+n故选:C.5.【答案】C【解析】【分析】本题考查了统计量的选择,属于基础题,相对比较简单,解题的关键在于理解这些统计量的意义.去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.【解答】解:统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据的中间的数产生影响,即中位数.故选C.6.【答案】C【解析】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.【答案】C【解析】[分析]此题主要考查了众数、中位数和平均数,关键是掌握三种数的概念.根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=1(x1+x2+…+x n)就叫做这n个数的算术平均数进行分析和计算可得答案.n[解答]解:众数是5,中位数:5,=5,平均数:5+2+6+9+5+36故选C.8.【答案】C【解析】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选:C.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数. 9.【答案】D【解析】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30; 故选:D .根据平均数和众数的定义及计算公式分别进行解答,即可求出答案.此题考查了平均数和众数,平均数是指在一组数据中所有数据之和再除以数据的个数,众数是一组数据中出现次数最多的数,难度不大. 10.【答案】B【解析】【解答】解:将数据重新排列为0,3,3,4,5, 则这组数的众数为3,中位数为3,平均数为0+3+3+4+55=3,方差为15×[(0-3)2+2×(3-3)2+(4-3)2+(5-3)2]=2.8,故选:B .【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式. 11.【答案】C【解析】【分析】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决. 【解答】解:将2、5、6、0、6、1、8按照从小到大排列是: 0,1,2,5,6,6,8, 位于中间位置的数为5, 故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5, 故选C . 12.【答案】B【解析】解:一组数据:1,2,4,2,2,5,这组数据的众数是2, 故选:B .根据众数定义可得答案.此题主要考查了众数,关键是掌握一组数据中出现次数最多的数据叫做众数. 13.【答案】B【解析】解:A 、众数是1册,结论错误,故A 不符合题意; B 、中位数是2册,结论正确,故B 符合题意; C 、极差=3-0=3册,结论错误,故C 不符合题意; D 、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,故D 不符合题意. 故选:B .根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.本题考查了极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键. 14.【答案】5【解析】解:∵一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,∴16(2+5+x +y +2x +11)=12(x +y )=7,解得y =9,x =5,∴这组数据的众数是5. 故答案为5.根据平均数与中位数的定义可以先求出x ,y 的值,进而就可以确定这组数据的众数. 本题主要考查平均数、众数与中位数的定义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数. 15.【答案】93.6【解析】【分析】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.因为早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,利用加权平均数的公式即可求出答案. 【解答】解:由题意知,小明的体育成绩=94×15%+90×35%+96×50%=93.6(分) 故小明的体育成绩是93.6分. 故答案为93.6. 16.【答案】4【解析】【分析】本题主要考查了平均数的计算方法:掌握数据和÷数据的个数=平均数是本题的关键.根据平均数的计算公式列出算式,再进行计算即可得出答案. 【解答】解:∵-1,a ,3的平均数是2,∴(-1+a +3)÷3=2, 解得:a =4; 则a 的值是4; 故答案为4.17.【答案】15【解析】【分析】本题主要考查中位数有关知识,根据中位数的定义即可得. 【解答】解:由图可知共有2+6+8+3+2+1=22人, 则中位数为第11、12人年龄的平均数,即15+152=15(岁),故答案为15.18.【答案】4【解析】解:在这组数据中4出现次数最多,有3次,所以这组数据的众数为4,故答案为:4.根据众数的定义求解可得.本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.19.【答案】135【解析】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.根据中位数的定义,把13个数据从大到小排列后,中位数是第7个数.本题主要考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.20.【答案】(1)50 ,补全条形统计图图形如下:(2)10;13.1×600=132(人)(3)捐款20元及以上(含20元)的学生有:7+450【解析】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50-9-14-7-4=16(人),补全条形统计图图形见答案;(2)由条形图可知,捐款10元人数最多,故众数是10;=13.1,故平均数为13.1;这组数据的平均数为:5×9+10×16+15×14+20×7+25×450(3)见答案.【分析】(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数;(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.本题主要考查了条形统计图,扇形统计图,平均数和众数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21.【答案】(1)40人,30;(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15(岁),16岁出现12次,次数最多,众数为16岁;按大小顺序排列,中间两个数都为15岁,中位数为15岁【解析】【分析】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.(1)频数÷所占百分比=样本容量,m=100-27.5-25-7.5-10=30;(2)根据平均数、众数和中位数的定义求解即可.【解答】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=30;故答案为40人,30.(2)见答案.。
2022年四川各地(成都德阳南充等)中考数学真题按知识点分类汇编 专题11 统计与概率(原卷版)

专题11 统计与概率1.(2022·成都)在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是()A.56B.60C.63D.722.(2022·自贡)六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是()A.平均数是14B.中位数是14.5C.方差3D.众数是143.(2022·泸州)费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是()A.35,35B.34,33C.34,35D.35,344.(2022·德阳)在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:kg)分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是()A.6,6B.4,6C.5,6D.5,55.(2022·广元)如图是根据南街米粉店今年6月1日至5日每天的用水量(单位:吨)绘制成的折线统计图.下列结论正确的是()A.平均数是6B.众数是7C.中位数是11D.方差是86.(2022·乐山)一个布袋中放着6个黑球和18个红球,除了颜色以外没有任何其他区别.则从布袋中任取1个球,取出黑球的概率是()A.14B.13C.23D.347.(2022·乐山)李老师参加本校青年数学教师优质课比赛,笔试得90分、微型课得92分、教学反思得88分.按照图所显示的笔试、微型课、教学反思的权重,李老师的综合成绩为()A.88B.90C.91D.928.(2022·南充)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差9.(2022·眉山)中考体育测试,某组10名男生引体向上个数分别为:6,8,8,7,7,8,9,7,8,9.则这组数据的中位数和众数分别是()A.7.5,7B.7.5,8C.8,7D.8,810.(2022·凉山)一组数据4、5、6、a、b的平均数为5,则a、b的平均数为()A.4B.5C.8D.1011.(2022·自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池;一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是____________鱼池(填甲或乙)12.(2022·德阳)学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制),某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是______分.13.(2022·广元)一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是________.14.(2022·遂宁)遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是__.15.(2022·南充)老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是________.16.(2022·成都)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.根据图表信息,解答下列问题:(1)本次调查的学生总人数为_________,表中x 的值为_________;(2)该校共有500名学生,请你估计等级为B 的学生人数;(3)本次调查中,等级为A 的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.17.(2022·自贡)为了解学生每周参加课外兴趣小组活动的累计时间t (单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按03t ≤<,34t ≤<,45t ≤<,5t ≥分为四个等级,分别用A、B、C、D表示;下图是受损的调查统计图,请根据图上残存信息解决以下问题:(1)求参与问卷调查的学生人数n,并将条形统计图补充完整;(2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;(3)某小组有4名同学,A、D等级各2人,从中任选2人向老师汇报兴趣活动情况,请用画树状图或列表法求这2人均属D等级的概率.18.(2022·泸州)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了m名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:a________;(1)m=________,=t≤≤范围的学生有多少人?(2)若该校学生有640人,试估计劳动时间在23t≤≤范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感(3)劳动时间在2.53受,求抽取的2名学生恰好是一名男生和一名女生的概率.19.(2022·德阳)据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率.20.(2022·广元)为丰富学生课余活动,明德中学组建了A体育类、B美术类、C音乐类和D其它类四类学生活动社团,要求每人必须参加且只参加一类活动.学校随机抽取八年级(1)班全体学生进行调查,以了解学生参团情况.根据调查结果绘制了两幅不完整的统计图(如图所示).请结合统计图中的信息,解决下列问题:(1)八年级(1)班学生总人数是人,补全条形统计图,扇形统计图中区域C所对应的扇形的圆心角的度数为;(2)明德中学共有学生2500人,请估算该校参与体育类和美术类社团的学生总人数;(3)校园艺术节到了,学校将从符合条件的4名社团学生(男女各2名)中随机选择两名学生担任开幕式主持人,请用列表或画树状图的方法,求恰好选中1名男生和1名女生的概率.21.(2022·遂宁)北京冬奥会、冬残奥会的成功举办推动了我国冰雪运动的跨越式发展,激发了青少年对冰雪项目的浓厚兴趣.某校通过抽样调查的方法,对四个项目最感兴趣的人数进行了统计,含花样滑冰、短道速滑、自由式滑雪、单板滑雪四项(每人限选1项),制作了如下统计图(部分信息未给出).请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了______名学生;若该校共有2000名学生,估计爱好花样滑冰运动的学生有______人;(2)补全条形统计图;(3)把短道速滑记为A、花样滑冰记为B、自由式滑雪记为C、单板滑雪记为D,学校将从这四个运动项目中抽出两项来做重点推介,请用画树状图或列表的方法求出抽到项目中恰有一项为自由式滑雪C的概率.22.(2022·乐山)为落实中央“双减”精神,某校拟开设四门校本课程供学生选择:A.文学鉴赏,B.越味数学,C.川行历史,D.航模科技.为了解该校八年级1000名学生对四门校本课程的选择意向,张老师做了以下工作:①抽取40名学生作为调查对象;①整理数据并绘制统计图;①收集40名学生对四门课程的选择意向的相关数据:①结合统计图分析数据并得出结论.(1)请对张老师的工作步骤正确排序______.(2)以上步骤中抽取40名学生最合适的方式是______.A.随机抽取八年级三班的40名学生B.随机抽取八年级40名男生C.随机抽取八年级40名女生D.随机抽取八年级40名学生(3)如图是张老师绘制的40名学生所选课后服务类型的条形统计图,假设全年级每位学生都做出了选择,且只选择了一门课程.若学校规定每个班级不超过40人,请你根据图表信息,估计该校八年级至少应该开设几个趣味数学班.23.(2022·南充)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A.阅读数学名著;B.讲述数学故事;C.制作数学模型;D.挑战数学游戏要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息解答下列问题:a_______________,b=_______________.(1)=(2)扇形统计图中“B”项目所对应的扇形圆心角为_______________度.(3)在月末的展示活动中,“C”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率.24.(2022·眉山)北京冬奥组委会对志愿者开展培训活动,为了解某批次培训活动效果,随机抽取了20名志愿者的测试成绩.成绩如下:84 93 91 87 94 86 97 100 88 9492 91 82 89 87 92 98 92 93 88整理上面的数据,得到频数分布表和扇形统计图:请根据以上信息,解答下列问题:(1)C 等级的频数为________,B 所对应的扇形圆心角度数为________;(2)该批志愿者有1500名,若成绩不低于90分为优秀,请估计这批志愿者中成绩达到优秀等级的人数;(3)已知A 等级中有2名男志愿者,现从A 等级中随机抽取2名志愿者,试用列表或画树状图的方法求出恰好抽到一男一女的概率.25.(2022·达州)“防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x 表示,共分成四组:A .8085x <,B .8590x <,C .9095x <,D .95100x ),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C 组中的数据是:92,92,94,94.七、八年级抽取的学生竞赛成绩统计表八年级抽取的学生竞赛成绩扇形统计图根据以上信息,解答下列问题:a__________,b=__________,m=__________;(1)上述图表中=(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);x)的学生人数(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(95是多少?26.(2022·凉山)为丰富校园文化生活,发展学生的兴趣与特长,促进学生全面发展.某中学团委组建了各种兴趣社团,为鼓励每个学生都参与到社团活动中,学生可以根据自己的爱好从美术、演讲、声乐、舞蹈、书法中选择其中1个社团.某班班主任对该班学生参加社团的情况进行调查统计,并绘制成如下两幅不完整的统计图.请根据统计图提供的信息完成下列各题:(1)该班的总人数为人,并补全条形图(注:在所补小矩形上方标出人数);(2)在该班团支部4人中,有1人参加美术社团,2人参加演讲社团,1人参加声乐社团如果该班班主任要从他们4人中任选2人作为学生会候选人,请利用树状图或列表法求选出的两人中恰好有1人参加美术社团、1人参加演讲社团的概率.。
人教八年级数学平均数、加权平均数、中位数、众数、极差和方差归纳与复习

平均数、加权平均数、中位数、众数、极差和方差归纳与复习一、回顾与梳理。
平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
即x=(x1+x2+……+xn)÷n中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
平均数:一组数据的平均值,平均水平.平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。
平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动.平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。
平均数易受极端数据的影响,从而使人对平均数产生怀疑。
中位数:在有序排列的一组数据中最居中的那个数据中等水平.中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。
中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。
简单明了,很少受一组数据的极端值的影响。
中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。
当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
众数:一组数据中出现次数最多的那个数据。
集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。
众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点。
专题27数据的分析(共50题)-中考数学必刷真题考点分类专练【解析版】

加油!考生!专题27数据的分析(共50题)一.选择题(共27小题)1.(2022•随州)小明同学连续5次测验的成绩分别为:97,97,99,101,106(单位:分),则这组数据的众数和平均数分别为()A.97和99B.97和100C.99和100D.97和101【分析】观察这组数据发现97出现的次数最多,进而得到这组数据的众数为97,将五个数据相加求出之和,再除以5即可求出这组数据的平均数.【解析】∵这组数据中,97出现了2次,次数最多,∴这组数据的众数为97,这组数据的平均数=×(97+97+99+101+106)=100.故选:B.2.(2022•眉山)中考体育测试,某组10名男生引体向上个数分别为:6,8,8,7,7,8,9,7,8,9.则这组数据的中位数和众数分别是()A.7.5,7B.7.5,8C.8,7D.8,8【分析】分别计算该组数据的众数、中位数后找到正确答案即可.【解析】根据题意,这组数据按从小到大排列为:6,7,7,7,8,8,8,8,9,9;∴中位数为:8;众数为8;故选:D.3.(2022•湘潭)“冰墩墩”是北京2022年冬季奥运会的吉祥物.该吉祥物以熊猫为原型进行设计创作,将熊猫形象与富有超能量的冰晶外壳相结合,体现了冬季冰雪运动和现代科技特点,冰墩墩玩具也很受欢迎.某玩具店一个星期销售冰墩墩玩具数量如下:星期一星期二星期三星期四星期五星期六星期日玩具数量(件)35475048426068则这个星期该玩具店销售冰墩墩玩具的平均数和中位数分别是()A.48,47B.50,47C.50,48D.48,50【分析】根据中位数、平均数的意义分别求出中位数、平均数即可.【解析】这个星期该玩具店销售冰墩墩玩具的平均数=×(35+47+50+48+42+60+68)=50(件);将这7天销售冰墩墩玩具数量从小到大排列,处在中间位置的一个数,即第4个数是48,因此中位数是48,故选:C.4.(2022•嘉兴)A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是()A.>且S A2>S B2B.<且S A2>S B2C.>且S A2<S B2D.<且S A2<S B2【分析】根据平均数及方差的意义直接求解即可.【解析】A,B两名射击运动员进行了相同次数的射击,当A的平均数大于B,且方差比B小时,能说明A成绩较好且更稳定.故选:C.5.(2022•衡阳)为贯彻落实教育部《关于全面加强新时代大中小学劳动教育的意见》精神,把劳动教育纳入人才培养全过程,某校组织学生周末赴劳动教育实践基地开展锄地、除草、剪枝、捉鱼、采摘五项实践活动,已知五个项目参与人数(单位:人)分别是:35,38,39,42,42,则这组数据的众数和中位数分别是()A.38,39B.35,38C.42,39D.42,35【分析】根据一组数据中出现次数最多的数据为众数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数即可得出答案.【解析】将这组数据由小到大排列为:35,38,39,42,42,众数为42,中位数为39,故选:C.6.(2022•宁波)开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(℃)36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为()A.36.5℃,36.4℃B.36.5℃,36.5℃C.36.8℃,36.4℃D.36.8℃,36.5℃【分析】应用众数和中位数的定义进行计算即可得出答案.【解析】由统计表可知,众数为36.5℃,中位数为=36.5(℃).所以这14天中,小宁体温的众数和中位数分别为36.5℃,36.5℃.故选:B.7.(2022•湖州)统计一名射击运动员在某次训练中10次射击的中靶环数,获得如下数据:7,8,10,9,9,8,10,9,9,10.这组数据的众数是()A.7B.8C.9D.10【分析】根据众数的定义求解.【解析】在这一组数据中9是出现次数最多的,故众数是9.故选:C.8.(2022•株洲)某路段的一台机动车雷达测速仪记录了一段时间内通过的机动车的车速数据如下:67、63、69、55、65,则该组数据的中位数为()A.63B.65C.66D.69【分析】根据将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数即可得出答案.【解析】将这组数据由小到大排列为:55,63,65,67,69,这组数据的中位数是65,故选:B.9.(2022•云南)为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况:评委1评委2评委3评委4评委59.99.79.6109.8数据9.9,9.7,9.6,10,9.8的中位数是()A.9.6B.9.7C.9.8D.9.9【分析】根据中位数的定义即可得出答案.【解析】将数据从小到大排序为:9.6,9.7,9.8,9.9,10,中位数为9.8,故选:C.10.(2022•连云港)在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是()A.38B.42C.43D.45【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解析】∵45出现了3次,出现的次数最多,∴这组数据的众数为45;故选:D.11.(2022•舟山)A,B两名射击运动员进行了相同次数的射击.下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是()A.>且S A2>S B2B.>且S A2<S B2C.<且S A2>S B2D.<且S A2<S B2【分析】根据平均数及方差的意义直接求解即可.【解析】A,B两名射击运动员进行了相同次数的射击,当A的平均数大于B,且方差比B小时,能说明A成绩较好且更稳定.故选:B.12.(2022•滨州)今年我国小麦大丰收,农业专家在某种植片区随机抽取了10株小麦,测得其麦穗长(单位:cm)分别为8,8,6,7,9,9,7,8,10,8,那么这一组数据的方差为()A.1.5B.1.4C.1.3D.1.2【分析】先根据算术平均数的定义求出平均数,再根据方差的定义列式计算即可.【解析】这一组数据的平均数为×(8+8+6+7+9+9+7+8+10+8)=8,故这一组数据的方差为×[4×(8﹣8)2+(6﹣8)2+2×(7﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2,故选:D.13.(2022•凉山州)一组数据4、5、6、a、b的平均数为5,则a、b的平均数为()A.4B.5C.8D.10【分析】首先求得a、b的和,再求出a、b的平均数即可.【解析】∵一组数据4、5、6、a、b的平均数为5,∴4+5+6+a+b=5×5,∴a+b=10,∴a、b的平均数为10÷2=5,故选:B.14.(2022•成都)在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是()A.56B.60C.63D.72【分析】根据众数的定义求解即可.【解析】由题意知,这组数据中60出现3次,次数最多,∴这组数据的众数是60,故选:B.15.(2022•泸州)费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是()A.35,35B.34,33C.34,35D.35,34【分析】根据中位数和众数的定义求解可得.【解析】∵35出现的次数最多,∴这组数据的众数是35,把这些数从小到大排列,排在中间的两个数分别为33、35,故中位数为,故选:D.16.(2022•德阳)在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:kg)分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是()A.6,6B.4,6C.5,6D.5,5【分析】根据中位数、众数的定义进行解答即可.【解析】这组数据中,出现次数最多的是5,共出现3次,因此众数是5,将这组数据从小到大排列,处在中间位置的一个数是5,因此中位数是5,故选:D.17.(2022•自贡)六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是()A.平均数是14B.中位数是14.5C.方差是3D.众数是14【分析】分别计算这组数据的平均数,中位数,方差,众数即可得出答案.【解析】A选项,平均数=(13+14+15+14+14+15)÷6=14(岁),故该选项不符合题意;B选项,这组数据从小到大排序为:13,14,14,14,15,15,中位数==14(岁),故该选项不符合题意;C选项,方差=×[(13﹣14)2+(14﹣14)2×3+(15﹣14)2×2]=,故该选项不符合题意;D选项,14出现的次数最多,众数是14岁,故该选项符合题意;故选:D.18.(2022•南充)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖.关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差【分析】根据条形统计图中的数据,可以判断出平均数、众数、方差无法计算,可以计算出中位数,本题得以解决.【解析】由统计图可知,平均数无法计算,众数无法确定,方差无法计算,而中位数是(9+9)÷2=9,故选:B.19.(2022•黑龙江)一组数据13,10,10,11,16的中位数和平均数分别是()A.11,13B.11,12C.13,12D.10,12【分析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解析】把这组数据按从大到小的顺序排列是:10,10,11,13,16,∴这组数据的中位数是:11,平均数=(13+10+10+11+16)÷5=12.故选:B.20.(2022•岳阳)某村通过直播带货对产出的稻虾米进行线上销售,连续7天的销量(单位:袋)分别为:105,103,105,110,108,105,108,这组数据的众数和中位数分别是()A.105,108B.105,105C.108,105D.108,108【分析】根据众数和中位数的定义求解即可.【解析】将这组数据重新排列为103,105,105,105,108,108,110,这组数据出现次数最多的是105,所以众数为105,最中间的数据是105,所以中位数是105,故选:B.21.(2022•内江)某4S店今年1~5月新能源汽车的销量(辆数)分别如下:25,33,36,31,40,这组数据的平均数是()A.34B.33C.32.5D.31【分析】根据算术平均数的计算方法进行计算即可.【解析】这组数据的平均数为:=33(辆),故选:B.22.(2022•遵义)下表是2022年1月﹣5月遵义市PM2.5(空气中直径小于等于2.5微米的颗粒)的平均值,这组数据的众数是()月份1月2月3月4月5月PM2.5(单位:μg/m3)2423242522A.22B.23C.24D.25【分析】根据众数的定义进行判断即可.【解析】这5个月PM2.5的值出现次数最多的是24,共出现2次,因此这组数据的众数是24,故选:C.23.(2022•恩施州)为了解某小区居民的用水情况,随机抽查了若干户家庭的某月用水量,统计结果如下表所示:月用水量(吨)3456户数4682关于这若干户家庭的该月用水量的数据统计分析,下列说法正确的()A.众数是5B.平均数是7C .中位数是5D.方差是1【分析】根据众数、中位数、平均数、方差的计算方法分别进行计算即可.【解析】这组数据出现次数最多的是5吨,共出现8次,所以用水量的众数是5吨,因此选项A符合题意;这组数据的平均数为=4.4(吨),因此选项B不符合题意;将这20户的用水量从小到大排列,处在中间位置的两个数的平均数为=4.5(吨),因此选项C不符合题意;这组数据的方差为[(3﹣4.4)2×3+(4﹣4.4)2×6+(5﹣4.4)2×8+(6﹣4.4)2×2]≈0.46,因此选项D不符合题意;故选:A.24.(2022•长沙)《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.某班有7名学生已经学会炒的菜品的种数依次为:3,5,4,6,3,3,4.则这组数据的众数和中位数分别是()A.3,4B.4,3C.3,3D.4,4【分析】这7个数据中出现次数最多的数据为众数是3,中位数是把这组数据按从小到大的顺序排,位于中间的数据是4.【解析】∵这7个数据中出现次数最多的数据是3,∴这组数据的众数是3.把这组数据按从小到大顺序排为:3,3,3,4,4,5,6,位于中间的数据为4,∴这组数据的中位数为4,故选:A.25.(2022•绥化)学校组织学生进行知识竞赛,5名参赛选手的得分分别为:96,97,98,96,98.下列说法中正确的是()A.该组数据的中位数为98B.该组数据的方差为0.7C.该组数据的平均数为98D.该组数据的众数为96和98【分析】根据中位数的定义判断A选项;根据算术平均数的计算方法判断C选项;根据方差的计算方法判断B选项;根据众数的定义判断D选项.【解析】A、将这组数据从小到大排列为:96,96,97,98,98,中位数为97,故A选项不符合题意;C、平均数==97,故C选项不符合题意;B、方差=×[(96﹣96)2×2+(97﹣96)2+(98﹣96)2×2]=1.8,故B选项不符合题意;D、该组数据的众数为96和98,故D选项符合题意;故选:D.26.(2022•大庆)小明同学对数据12、22、36、4■,52进行统计分析,发现其中一个两位数的个位数字被墨水污染已无法看清,则下列统计量与被污染数字无关的是()A.平均数B.标准差C.方差D.中位数【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解析】这组数据的平均数、方差和标准差都与被涂污数字有关,而这组数据的中位数为36,与被涂污数字无关.故选:D.27.(2022•海南)在一次视力检查中,某班7名学生右眼视力的检查结果为:4.2、4.3、4.5、4.6、4.8、4.8、5.0,这组数据的中位数和众数分别是()A.5.0,4.6B.4.6,5.0C.4.8,4.6D.4.6,4.8【分析】应用中位数和众数的定义进行判定即可得出答案.【解析】这组数据的中位数是4.6,众数是4.8.故选:D.二.填空题(共16小题)28.(2022•包头)某校欲招聘一名教师,对甲、乙两名候选人进行了三项素质测试,各项测试成绩满分均为100分,根据最终成绩择优录用,他们的各项测试成绩如下表所示:候选人通识知识专业知识实践能力甲809085乙808590根据实际需要,学校将通识知识、专业知识和实践能力三项测试得分按2:5:3的比例确定每人的最终成绩,此时被录用的是甲.(填“甲”或“乙”)【分析】将两人的总成绩按比例求出测试成绩,比较得出结果.【解析】甲的测试成绩为:(80×2+90×5+85×3)÷(2+5+3)=86.5(分),乙的测试成绩为:(80×2+85×5+90×3)÷(2+5+3)=85.5(分),∵86.5>85.5,∴甲将被录用.故答案为:甲.29.(2022•威海)某小组6名学生的平均身高为acm,规定超过acm的部分记为正数,不足acm的部分记为负数,他们的身高与平均身高的差值情况记录如下表:学生序号123456身高差值(cm)+2x+3﹣1﹣4﹣1据此判断,2号学生的身高为(a+1)cm.【分析】根据平均数的定义解答即可.【解析】∵6名学生的平均身高为acm,∴2+x+3﹣1﹣4﹣1=0,解得x=1,故2号学生的身高为(a+1)cm.故答案为:(a+1).30.(2022•鄂州)为了落实“双减”,增强学生体质,阳光学校篮球兴趣小组开展投篮比赛活动.6名选手投中篮圈的个数分别为2,3,3,4,3,5,则这组数据的众数是3.【分析】根据众数的概念求解即可.【解析】因为这组数据中3出现3次,次数最多,所以这组数据的众数是3,故答案为:3.31.(2022•黔东南州)某中学在一次田径运动会上,参加女子跳高的7名运动员的成绩如下(单位:m):1.20,1.25,1.10,1.15,1.35,1.30,1.30.这组数据的中位数是1.25.【分析】根据中位数的定义进行求解即可得出答案.【解析】把这组数据从小到大排列:1.10,1.15,1.20,1.25,1.30,1.30,1.35.所以这组数据的中位数为:1.25.故答案为:1.25.32.(2022•永州)“闪电足球队”参加市中小学生足球比赛,在五场小组赛中,该足球队的进球数分别为:2,0,1,2,3,则此组数据的众数是2.【分析】根据众数的概念求解即可.【解析】此组数据2出现2次,次数最多,所以众数是2.故答案为:2.33.(2022•泰州)学校要从王静、李玉两同学中选拔1人参加运动会志愿者工作,选拔项目为普通话、体育知识和旅游知识,并将成绩依次按4:3:3记分.两人的各项选拔成绩如表所示,则最终胜出的同学是李玉.普通话体育知识旅游知识王静809070李玉908070【分析】根据不同的权计算每个人的得分即可作出比较.【解析】王静的成绩是:(80×4+90×3+70×3)÷(4+3+3)=80(分),李玉的成绩是:(90×4+80×3+70×3)÷(4+3+3)=81(分),∵81>80,∴最终胜出的同学是李玉.故答案为:李玉.34.(2022•宿迁)已知一组数据:4,5,5,6,5,4,7,8,则这组数据的众数是5.【分析】根据众数的定义求解即可.【解析】这组数据中5出现3次,次数最多,所以这组数据的众数是5,故答案为:5.35.(2022•常德)今年4月23日是第27个世界读书日,某校举行了演讲大赛,演讲得分按“演讲内容”占40%、“语言表达”占40%、“形象风度”占10%、“整体效果”占10%进行计算,小芳这四项的得分依次为85,88,92,90,则她的最后得分是87.4分.【分析】根据加权平均数的定义列式计算可得.【解析】她的最后得分是85×40%+88×40%+92×10%+90×10%=87.4(分),故答案为:87.4.36.(2022•山西)生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol•m﹣2•s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是乙(填“甲”或“乙”).【分析】直接利用方差公式,进而计算得出答案.【解析】甲的方差为:=[(32﹣25)2+(30﹣25)2+(25﹣25)2+(18﹣25)2+(20﹣25)2]=29.6;乙的方差为:=[(28﹣25)2+(25﹣25)2+(26﹣25)2+(24﹣25)2+(22﹣25)2]=4.∵29.6>4,∴两个大豆品种中光合作用速率更稳定的是乙.故答案为:乙.37.(2022•武汉)某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是25.尺码/cm2424.52525.526销售量/双131042【分析】根据众数的定义求解即可.【解析】由表知,这组数据中25出现次数最多,有10次,所以这组数据的众数为25,故答案为:25.38.(2022•邵阳)某班50名同学的身高(单位:cm)如下表所示:身高155156157158159160161162163164165166167168人数351221043126812则该班同学的身高的众数为160cm.【分析】一组数据中出现次数最多的数据叫做众数,结合表格信息即可得出答案.【解析】身高160的人数最多,故该班同学的身高的众数为160cm.故答案为:160cm.39.(2022•温州)某校5个小组在一次植树活动中植树株数的统计图如图所示,则平均每组植树5株.【分析】根据算术平均数公式即可解决问题.【解析】观察图形可知:=×(4+3+7+4+7)=5,∴平均每组植树5株.故答案为:5.40.(2022•扬州)某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为S甲2、S乙2,则S甲2>S乙2.(填“>”“<”或“=”)【分析】直接根据图表数据的波动大小进行判断即可.【解析】图表数据可知,甲数据偏离平均数数据较大,乙数据偏离平均数数据较小,即甲的波动性较大,即方差大,故答案为:>.41.(2022•丽水)在植树节当天,某班的四个绿化小组植树的棵数如下:10,8,9,9.则这组数据的平均数是9.【分析】算术平均数:对于n个数x1,x2,…,x n,则(x1+x2+…+x n)就叫做这n个数的算术平均数.【解析】这组数据的平均数是=9.故答案为:9.42.(2022•德阳)学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制).某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是88分.【分析】根据加权平均数的计算方法进行计算即可.【解析】85×20%+88×50%+90×30%=88(分),故答案为:88.43.(2022•遂宁)遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是23.【分析】先将题目中的数据按照从小到大排列,然后即可写出相应的中位数.【解析】将22,24,20,23,25按照从小到大排列是:20,22,23,24,25,∴这五个数的中位数是23,故答案为:23.三.解答题(共7小题)44.(2022•贺州)为了落实“双减”政策,提倡课内高效学习,课外时间归还学生.“鸿志”班为了激发学生学习热情,提高学习成绩,采用分组学习方案,每7人分为一小组.经过半个学期的学习,在模拟测试中,某小组7人的成绩分别为98,94,92,88,95,98,100(单位:分).(1)该小组学生成绩的中位数是95分,众数是98分;(2)若成绩95分(含95分)以上评为优秀,求该小组成员成绩的平均分和优秀率(百分率保留整数).【分析】(1)将这组数据重新排列,再根据中位数和众数的定义求解即可;(2)根据算术平均数的定义和优秀率的概念求解即可.【解析】(1)将7人的成绩重新排列为88,92,94,95,98,98,100,所以这组数据的中位数是95分,众数是98分,故答案为:95分,98分;(2)该组成员成绩的平均分为×(98+94+92+88+95+98+100)=95(分),95分(含95分)以上人数为4人,所以优秀率为×100%≈57%,答:该小组成员成绩的平均分为95分,优秀率为57%.45.(2022•广西)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各1片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:123456789103.8 3.7 3.5 3.4 3.84.0 3.6 4.0 3.6 4.0芒果树叶的长宽比2.0 2.020 2.4 1.819 1.8 2.0 1.3 1.9荔枝树叶的长宽比【实践探究】分析数据如下:平均数中位数众数方差芒果树叶的长宽比3.74m4.00.0424荔枝树叶的长宽比1.912.0n0.0669【问题解决】(1)上述表格中:m= 3.75,n= 2.0;(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是B(填序号);(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.【分析】(1)根据中位数和众数的定义解答即可;(2)根据题目给出的数据判断即可;(3)根据树叶的长宽比判断即可.【解析】(1)把10片芒果树叶的长宽比从小到大排列,排在中间的两个数分别为3.7、3.8,故m==3.75;10片荔枝树叶的长宽比中出现次数最多的是2.0,故n=2.0;故答案为:3.75;2.0;(2)∵0.0424<0.0669,∴芒果树叶的形状差别小,故A同学说法不合理;∵荔枝树叶的长宽比的平均数1.91,中位数是2.0,众数是2.0,∴B同学说法合理.故答案为:B;(3)∵一片长11cm,宽5.6cm的树叶,长宽比接近2,∴这片树叶更可能来自荔枝.46.(2022•玉林)为了加强对青少年防溺水安全教育,5月底某校开展了“远离溺水,珍爱生命”的防溺水安全知识比赛.下面是从参赛学生中随机收集到的20名学生的成绩(单位:分):87998689919195968797919796869689100919997整理数据:成绩(分)8687899195969799100学生人数(人)222a13b21分析数据:平均数众数中位数93c d解决问题:(1)直接写出上面表格中的a,b,c,d的值;(2)若成绩达到95分及以上为“优秀”等级,求“优秀”等级所占的百分率;(3)请估计该校1500名学生中成绩达到95分及以上的学生人数.【分析】(1)根据20名学生的成绩的具体数据求出a、b,根据众数的定义求出c,根据中位数的定义求出d;(2)根据“优秀”等级人数求出“优秀”等级所占的百分率;(3)根据“优秀”等级所占的百分率估计该校1500名学生中成绩达到95分及以上的学生人数.【解析】(1)∵91分的有4人,97分的有3人,∴a=4,b=3,∵91分的人数最多,∴众数为91,即c=91,d==93,综上所述,a=4,b=3,c=4,d=93;(2)成绩达到95分及以上有10人,则“优秀”等级所占的百分率为:×100%=50%;(3)估计该校1500名学生中成绩达到95分及以上的学生人数为:1500×50%=750(人).47.(2022•陕西)某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:组别“劳动时间”t/分钟频数组内学生的平均“劳动时间”/分钟A t<60850B60≤t<901675C90≤t<12040105D t≥12036150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在C组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.【分析】(1)利用中位数的定义解答即可;(2)根据平均数的定义解答即可;(3)用样本估计总体即可.【解析】(1)(2)把100名学生的“劳动时间”从小到大排列,排在中间的两个数均在C组,故这100名学生的“劳动时间”的中位数落在C组,故答案为:C;(2)=×(50×8+75×16+105×40+105×36)=112(分钟),答:这100名学生的平均“劳动时间”为112分钟;(3)1200×=912(人),答:估计在该校学生中,“劳动时间”不少于90分钟的人数为912人.48.(2022•株洲)某校组织了一次“校徽设计“竞赛活动,邀请5名老师作为专业评委,50名学生代表参与民主测评,且民主测评的结果无弃权票.某作品的评比数据统计如下:专业评委给分(单位:分)①88②87③94④91⑤90(专业评委给分统计表)记“专业评委给分”的平均数为.(1)求该作品在民主测评中得到“不赞成”的票数;(2)对于该作品,问的值是多少?(3)记“民主测评得分”为,“综合得分”为S,若规定:①=“赞成”的票数×3分+“不赞成”的票数×(﹣1)分;②S=0.7+0.3.求该作品的“综合得分”S的值.【分析】(1)“不赞成”的票数=总票数﹣赞成的票;(2)平均数=总分数÷总人数;(3)根据=“赞成”的票数×3分+“不赞成”的票数×(﹣1)分;S=0.7+0.3求出该作品的“综合得分”S的值.【解析】(1)该作品在民主测评中得到“不赞成”的票数:50﹣40=10(张),答:该作品在民主测评中得到“不赞成”的票是10张;(2)=(88+87+94+91+90)÷5=90(分);答:的值是90分;(3)①=40×3+10×(﹣1)=110(分);②∵S=0.7+0.3=0.7×90+0.3×110=96(分).答:该作品的“综合得分”S的值为96分.49.(2022•杭州)某校学生会要在甲、乙两位候选人中选择一人担任文艺部干事,对他们进行了文化水平、艺术水平、组织能力的测试,根据综合成绩择优录取,他们的各项成绩(单项满分100分)如下表所示:候选人文化水平艺术水平组织能力甲80分87分82分乙80分96分76分(1)如果把各项成绩的平均数作为综合成绩,应该录取谁?(2)如果想录取一名组织能力较强的候选人,把文化水平、艺术水平、组织能力三项成绩分别按照20%,20%,60%的比例计入综合成绩,应该录取谁?【分析】(1)根据算术平均数的定义列式计算可得;(2)根据加权平均数的定义列式计算可得.。
2023年山东省泰安市中考数学试卷(含答案)050501

2023年山东省泰安市中考数学试卷试卷考试总分:149 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1. 的倒数是( )A.B.C.D.2. 下列计算正确的是( )A.B.C.D.3. 据统计,年第一季度我省生产总值约亿元,按可比价格计算,比去年同期增长,其中“亿”用科学记数法可表示为( )A.B.C.D.4. 下列数字中,既是轴对称图形又是中心对称图形的是 A.B.C.D.5. 如图,将三角板的直角顶点放在直尺的一边上,已知,那么等于多少度( )−12019−2019120192019−120192+3=5a 2a 2a 4=+ab +(a +b)2a 2b 2=−8(−2)a 23a 6−2⋅3=−6a 2a 2a 2201970657.7%70657.065×1037.065×10117065×108706.5×109()66808896∠2=50∘∠3B.C.D.6. 已知一组数据,,,,.对这组数据描述正确的是( )A.众数是B.平均数是C.中位数是D.方差是7. 如图,,,,是上的点,则图中与相等的角是( )A.B.C. D.8. 函数与在同一直角坐标系内的图象可能是( )A.B.C.D.20∘80∘50∘287538675.2A B C D ⊙O ∠A ∠B∠C∠DEB∠Dy =kx+k y =k x∘A. B. C.D.10. 我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有个和尚分个馒头,正好分完;如果大和尚一人分个,小和尚人分一个,试问大、小和尚各几人?设大、小和尚各有,人,以下列出的方程组正确的是( )A.B.C.D.11. 如图,在中,=,=,以为圆心,任意长为半径画弧分别交、于点和,再分别以、为圆心,大于的长为半径画弧,两弧交于点,连接并延长交于点,则下列说法中正确的个数是( )①是的平分线;②=;③点在的中垂线上;④=.A.B.C.D.12. 如图,在平面直角坐标系中,点在轴的正半轴上,点在第二象限内,,.将绕点顺时针旋转得到,则点的对应点的坐标是( )A.π−24π−810010033x y { x+y =100+3y =100x 3{ x+y =1009x+y =100{ x+y =1003x+=100y 3{ x+y =100x+9y =100△ABC ∠C 90∘∠B 30∘A AB AC M N M N MN 12P AP BC D AD ∠BAC ∠ADC 60∘D AB :S △DAC S △ABC 1:31234A yB ∠OAB =120∘OA =AB =2△AOB O 90∘△O A ′B ′B B ′(−,3)3–√C.D.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13. 若关于的一元二次方程没有实数根,则的取值范围为________.14. 如图,半径为的与边长为的等边三角形的两边,都相切,连接,则________.15. 二次函数有最________值,其值为________.16. 如图,长为米的斜坡,它的坡角是,现把它改成坡角是的斜坡,则的长为________米.(结果保留根号)17. 等腰三角形一个内角是,则顶角的度数为________.18. 如图,在直角坐标系中,第一次将变换成,第二次将变换成,第三次将变换成.已知,,,,,,,.观察每次变换后的三角形有何变化,找出规律,按此规律再将变换成,则点的坐标是________,的坐标是________.若按第一题找到的规律将进行了次变换,得到,比较每次变换中三角形顶点坐标有何变化,找出规律,推测的坐标是________,的坐标是________.三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19. (1)化简:(2)解不等式组: 20. 为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为小时,将它分为个等级:,,,,并根据调查结果绘制了如图两幅不完整的统计图:(3,)3–√(,3)3–√x −6x−k =0x 2k 3–√⊙O 9ABC AB BC OC tan ∠OCB =y =+6x−5x 2100AB 45∘30∘AD DB 78∘△OAB △OA 1B 1△OA 1B 1△OA 2B 2△OA 2B 2△OA 3B 3A(1,4)(2,4)A 1(4,4)A 2(8,4)A 3B(2,0)(4,0)B 1(8,0)B 2(16,0)B 3(1)△OA 3B 3△OA 4B 4A 4B 4(2)△OAB n △OA n B n A n B n (a −)÷(1−)b 2a b a−≤63x−122x+132x+1<3(x−1)x 4A(0≤x <2)B(2≤x <4)C(4≤x <6)D(x ≥6)请你根据统计图的信息,解决下列问题:本次共调查了________名学生;在扇形统计图中,等级所对应的扇形的圆心角为________;请补全条形统计图;在等级中有甲、乙、丙、丁人表现最为优秀,现从人中任选人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率. 21. 如图,平面直角坐标系中,反比例函数的图象经过点,点是反比例函数的图象上一动点,记点坐标为,连接,,.若,求的取值范围;当时,求的面积.22. 某校在书城、当当网共买了套标价相同的书,由于网上购物可以享受一定的优惠,因此当当网的售价比书城的售价每套便宜元.已知当当网购书共花去了元,比书城多元,求该校在书城和当当网各买了多少套书?23. 如图,在矩形中,为对角线的中点,过点作直线分别与矩形的边,交于,两点,连接,.求证:四边形为平行四边形;若,,且,求的长.24. 如图, 中, , ,点是上的动点(不与点,重合),过点作 于,交于点,连接.若 , ,求的长;求证: ;(1)(2)D ∘(3)(4)D 442y =(x >0)k x A(6,1)B B (m,n)OB OA AB (1)1≤m≤4n (2)m=2△OBA 25101350350ABCD O AC O AD BC M N CM AN (1)ANCM (2)AD =4AB =2MN ⊥AC DM △ABC AC =BC ∠ACB =90∘D BC B C C CF ⊥AD E AB F DF (1)∠CAD =30∘CD =8AE (2)∠CAD =∠BCF25. 如图,已知二次函数的图象与轴交于和两点,与轴交于,对称轴为直线,直线经过点,且与轴交于点,与抛物线交于点,与对称轴交于点.求抛物线的解析式和的值;在轴上是否存在点,使得以、、为顶点的三角形与相似,若存在,求出点的坐标,若不存在,试说明理由;直线上有、两点(在的左侧),且,若将线段在直线上平移,当它移动到某一位置时,四边形的周长会达到最小,请求出周长的最小值(结果保留根号).x 4B(−3,0)y c(0,−3)x =−1y =−2x+m 4y D E F (1)m (2)y P D E P △AOD P (3)y =1M N M N MN =2MN y=1MEFN参考答案与试题解析2023年山东省泰安市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1.【答案】A【考点】倒数【解析】此题暂无解析【解答】解:由题意得:的倒数是.故选.2.【答案】C【考点】幂的乘方与积的乘方合并同类项完全平方公式单项式乘单项式【解析】分别根据同底数幂的乘法和除法,幂的乘方和积的乘方以及合并同类项的法则计算即可判断正误.【解答】解:应为,故本选项错误;,应为,故本选项错误;,,正确;,应为,故本选项错误.故选.3.【答案】B【考点】科学记数法--表示较大的数−12019=−20191−12019A A 2+3a 2a 2=5a 2B (a +b =+2ab +)2a 2b 2C =−8(−2)a 23a 6D −2⋅3=−6a 3a 2a 5C此题暂无解析【解答】解:亿.故选.4.【答案】C【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】解:选项,既不是轴对称图形,也不是中心对称图形,故此选项错误;选项,是轴对称图形,不是中心对称图形,故此选项错误;,是轴对称图形,也是中心对称图形,故此选项正确;,不是轴对称图形,是中心对称图形,故此选项错误.故选.5.【答案】B【考点】平行线的性质【解析】根据“两直线平行,内错角相等”得到,再利用三角形的外角性质求解即可.【解答】解:如图,∵,∴,∵,,∴,∵,∴.故选.6.7065=706500000000=7.065×1011B A B C D C ∠2=∠4=50∘a//b ∠4=∠2=50∘∠1+∠3+∠5=180∘∠4+∠5=180∘∠1+∠3=∠4∠1=30∘∠3=∠4−∠1=−=50∘30∘20∘BD【考点】算术平均数中位数众数方差【解析】根据平均数、众数、中位数、方差的定义分析即可解答.【解答】解:,因为这一组数据没有众数,故错误;,因为,故错误;,因为把这一组数据按大小排列后处在最中间位置的是,所以中位数是,故错误;,,故正确.故选.7.【答案】D【考点】圆周角定理【解析】此题暂无解析【解答】解:∵ 与都是所对的圆周角,∴.故选.8.【答案】C【考点】反比例函数的图象一次函数的图象【解析】分两种情况讨论,当时,分析出一次函数和反比例函数所过象限;再分析出时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【解答】解:①当时,过一、二、三象限;过一、三象限;A A B ==5x ¯¯2+8+7+3+55B C 55C D =×[(2−5+s 215)2(8−5+(7−5)2)2+(5−5+(3−5]=)2)2 5.2D D ∠A ∠D BCˆ∠D =∠A D k >0k <0k >0y =kx+k y =k②当时,过二、三、四象限;过二、四象限.观察图象可知只有符合.故选.9.【答案】D【考点】扇形面积的计算三角形的外接圆与外心【解析】此题暂无解析【解答】此题暂无解答10.【答案】C【考点】数学常识由实际问题抽象出二元一次方程组【解析】分别利用大、小和尚一共人以及馒头大和尚一人分个,小和尚人分一个,馒头一共个分别得出等式得出答案.【解答】设大、小和尚各有,人,则可以列方程组:.11.【答案】D【考点】作图—基本作图线段垂直平分线的性质角平分线的性质【解析】①根据作图的过程可以判定是的角平分线;②利用角平分线的定义可以推知=,则由直角三角形的性质来求的度数;③利用等角对等边可以证得的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点在的中垂线上;④利用度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.k <0y =kx+k y =k xC C 10033100x y { x+y =1003x+=100y 3AD ∠BAC ∠CAD 30∘∠ADC △ADB D AB 30【解答】解:①根据作图的过程可知,是的平分线.故①正确;②如图,∵在中,,,∴.又∵是的平分线,∴,∴,即.故②正确;③∵,∴,∴点在的中垂线上.故③正确;④∵如图,在直角中,,∴,∴,.∴,∴.故④正确.综上所述,正确的结论是:①②③④,共有个.故选.12.【答案】C【考点】坐标与图形变化-旋转勾股定理含30度角的直角三角形【解析】作轴于,解直角三角形求出,即可.【解答】解:如图,作轴于点.由旋转的性质,得,,∴,∴,∴,∴,AD ∠BAC △ABC ∠C =90∘∠B =30∘∠CAB=60∘AD ∠BAC ∠1=∠2=∠CAB 12=30∘∠3=−∠290∘=60∘∠ADC=60∘∠1=∠B =30∘AD=BD D AB △ACD ∠2=30∘CD =AD 12BC =CD+BD =AD+AD =AD 1232=AC ⋅CD =AC ⋅AD S △DAC 1214=AC ⋅BC =AC ⋅AD =AC ⋅AD S △ABC 12123234:=AC ⋅AD :AC ⋅AD S △DAC S △ABC 1434=1:34D B'H ⊥x H H B ′OH B'H ⊥x H O ==2A ′A ′B ′∠O =A ′B ′120∘∠H =B ′A ′60∘∠H =A ′B ′30∘H ==1A ′12A ′B ′H ===B ′−A ′B ′2A ′H 2−−−−−−−−−−−√−2212−−−−−−√3–√,∴.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13.【答案】【考点】根的判别式【解析】根据关于的一元二次方程没有实数根,得出,再进行计算即可.【解答】解:∵一元二次方程没有实数根,∴,∴的取值范围是.故答案为:.14.【答案】【考点】等边三角形的性质切线的性质解直角三角形【解析】根据切线长定理得出==,解直角三角形求得,即可求得,然后解直角三角形即可求得的值.【解答】解:如图,连接,作于,∵与等边三角形的两边,都相切,∴,∴,∴,∴,OH =O +H =3A ′A ′(3,)B ′3–√C k <−9x −2x−k =0x 2△=4+4k <0−6x−k =0x 2Δ=(−6−4×1×(−k)=36+4k <0)2k k <−9k <−93–√6∠OBC ∠OBA =∠ABC 1230∘BD CD OCD tan ∠OCB OB OD ⊥BC D ⊙O ABC AB BC ∠OBC=∠OBA =∠ABC 12=30∘tan ∠OBC =OD BD BD ===3OD tan30∘3–√3√3CD=BC −BD =9−3=6∠OCB ==3–√∴.故答案为:.15.【答案】小,【考点】二次函数的最值【解析】先把解析式配成顶点式,然后根据二次函数的性质求解.【解答】解:,当时,有最小值为.故答案为小,.16.【答案】【考点】解直角三角形的应用-仰角俯角问题【解析】此题暂无解析【解答】此题暂无解答17.【答案】或.【考点】等腰三角形的性质【解析】分角是顶角与底角两种情况讨论求解.【解答】解:①角是顶角时,三角形的顶角为,②角是底角时,顶角为,综上所述,该等腰三角形顶角的度数为或.故答案为:或.18.【答案】,tan ∠OCB ==OD CD 3–√63–√6−14y =(x+3−14)2x =−3y −14−14(50−50)6–√2–√78∘24∘80∘78∘78∘78∘−×2180∘78∘=24∘78∘24∘78∘24∘(16,4)(32,0)(,0)n+1,【考点】规律型:点的坐标【解析】根据题目中的信息可以发现、、各点坐标的关系为横坐标是,纵坐标都是,故可求得的坐标;、、各点的坐标的关系为横坐标是,纵坐标都为,从而可求得点的坐标.根据中发现的规律可以求得、点的坐标.【解答】解:∵,,,∴的横坐标为:,纵坐标为:,∴点的坐标为:.又∵,,,∴的横坐标为:,纵坐标为:,∴点的坐标为:.故答案为:.由,,,可以发现它们各点坐标的关系为横坐标是,纵坐标都是.故的坐标为:.由,,,可以发现它们各点坐标的关系为横坐标是,纵坐标都是.故的坐标为:.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19.【答案】原式;,由①得:,由②得:,则不等式组的解集为.【考点】解一元一次不等式组分式的混合运算【解析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】原式;,由①得:,由②得:,则不等式组的解集为.20.【答案】(,4)2n (,0)2n+1(1)A 1A 2A 32n 4A 4B 1B 2B 32n+10B 4(2)(1)A n B n (1)(2,4)A 1(4,4)A 2(8,4)A 3A 4=16244A 4(16,4)(4,0)B 1(8,0)B 2(16,0)B 3B 4=32250B 4(32,0)(16,4);(32,0)(2)(2,4)A 1(4,4)A 2(8,4)A 32n 4A n (,4)2n (4,0)B 1(8,0)B 2(16,0)B 32n+10B n (,0)2n+1(,4);(,0)2n 2n+1=÷=⋅=a +b −a 2b 2a a −b a (a +b)(a −b)a a a −b −≤63x−122x+132x+1<3(x−1)x ≤8.2x >44<x ≤8.2=÷=⋅=a +b −a 2b 2a a −b a (a +b)(a −b)a a a −b −≤63x−122x+132x+1<3(x−1)x ≤8.2x >44<x ≤8.2等级人数为(名),补全图形如图:树状图如图,共有种等可能的情况,其中恰好同时选中甲、乙两名同学的情况有种,所以恰好同时选中甲、乙两名同学的概率.【考点】条形统计图扇形统计图列表法与树状图法【解析】(1)由等级人数及其所占百分比可得被调查的总人数;(2)用乘以等级人数所占比例即可得;(3)根据四个等级人数之和等于总人数求出等级人数,从而补全图形;(4)画树状图展示所有种等可能的结果数,找出恰好同时选中甲、乙两名同学的结果数,然后根据概率公式求解.【解答】解:本次共调查学生(名).故答案为:.在扇形统计图中,等级所对应的扇形的圆心角为.故答案为:.等级人数为(名),补全图形如图:树状图如图,共有种等可能的情况,50108(3)C 50−(4+13+15)=18(4)122=21216B 360∘DC 12(1)=501326%50(2)D ×=360∘1550108∘108(3)C 50−(4+13+15)=18(4)12其中恰好同时选中甲、乙两名同学的情况有种,所以恰好同时选中甲、乙两名同学的概率.21.【答案】解:把代入得:,当时,;当时,,,;作轴,垂足为,作轴,垂足为,的延长线交于点,则四边形是矩形,把代入中,得,则,则,,,则.【考点】反比例函数综合题【解析】由打定系数法求出反比例函数的解析式,再由的取值范围确定的取值范围.作轴,垂足为,作轴,垂足为,的延长线交于点,则四边形是矩形,求出的坐标,再用割补法求出 的面积.【解答】解:把代入得:,当时,;当时,,,;作轴,垂足为,作轴,垂足为,的延长线交于点,则四边形是矩形,把代入中,得,则,2=21216(1)A(6,1)y =k x k =6m=1n =6m=4n =1.5∵1≤m≤4∴1.5≤n ≤6(2)AH ⊥x H BF ⊥y F FB,HA G OHGF m=2y =6x n =3OF =3,OH =6,AH =1,BF =2,BG =4,AG =2=3×6=18S 矩形OFG H =2×4÷2=4S △BG A =1×6÷2=3,=2×3÷2=3S △AOH S △BOF =−−−=18−4−3−3=8S △BOA S 矩形OFG H S △BG A S △HOA S △BOF m n AH ⊥x H BF ⊥y F FB,HA G OHGF B △OBA (1)A(6,1)y =k xk =6m=1n =6m=4n =1.5∵1≤m≤4∴1.5≤n ≤6(2)AH ⊥x H BF ⊥y F FB,HA G OHGF m=2y =6xn =3OF =3,OH =6,AH =1,BF =2,BG =4,AG =2则,,,则.22.【答案】解:设该校在书城买了套书,则在当当网买了套书.根据题意,得.解得,(不合题意舍去),经检验,是原方程的解.则(套).答:该校在书城买了套书,在当当网买了套书.【考点】分式方程的应用【解析】设该校在书城买了套书,则在当当网买了套书.,根据等量关系:书店的售价-网上的售价元,列方程求解即可.【解答】解:设该校在书城买了套书,则在当当网买了套书.根据题意,得.解得,(不合题意舍去),经检验,是原方程的解.则(套).答:该校在书城买了套书,在当当网买了套书.23.【答案】证明:∵在矩形中,为对角线的中点,∴,,∴,,在和中,∴,∴,∵,∴四边形为平行四边形.解:∵在矩形中,,由知:,∴,∵四边形为平行四边形,,∴平行四边形为菱形,∴,∴在中,根据勾股定理,得,∴,解得.【考点】全等三角形的性质与判定平行四边形的性质与判定=3×6=18S 矩形OFG H =2×4÷2=4S △BG A =1×6÷2=3,=2×3÷2=3S △AOH S △BOF =−−−=18−4−3−3=8S △BOA S 矩形OFG H S △BG A S △HOA S △BOF x (25−x)−=101350−350x 135025−x =10x 1=250x 2=10x 125−10=151015x (25−x)=10x (25−x)−=101350−350x 135025−x =10x 1=250x 2=10x 125−10=151015(1)ABCD O AC AD//BC AO =CO ∠OAM =∠OCN ∠OMA =∠ONC △AOM △CON ∠OAM =∠OCN ,∠AMO =∠CNO ,AO =CO ,△AOM ≅△CON(AAS)AM =CN AM//CN ANCM (2)ABCD AD =BC (1)AM =CN DM =BN ANCM MN ⊥AC ANCM AM =AN =NC =AD−DM Rt △ABN A =N 2A +B B 2N 2(4−DM =)2+D 22M 2DM =32矩形的性质菱形的判定与性质勾股定理【解析】(1)在矩形中,为对角线的中点,可得,=,可以证明可得=,进而证明四边形为平行四边形;(2)根据,可得四边形为菱形;根据=,=,===,即可在中,根据勾股定理,求的长.【解答】证明:∵在矩形中,为对角线的中点,∴,,∴,,在和中,∴,∴,∵,∴四边形为平行四边形.解:∵在矩形中,,由知:,∴,∵四边形为平行四边形,,∴平行四边形为菱形,∴,∴在中,根据勾股定理,得,∴,解得.24.【答案】解:∵,,∴,,∴.∵,∴,∴,∴,∴.证明:∵,∴.∵,∴,∴,ABCD O AC AD//BC AO CO △AOM ≅△CON AM CN ANCM MN ⊥AC ANCM AD 4AB 2AM AN NC AD−DM Rt △ABN DM (1)ABCD O AC AD//BC AO =CO ∠OAM =∠OCN ∠OMA =∠ONC △AOM △CON ∠OAM =∠OCN ,∠AMO =∠CNO ,AO =CO ,△AOM ≅△CON(AAS)AM =CN AM//CN ANCM (2)ABCD AD =BC (1)AM =CN DM =BN ANCM MN ⊥AC ANCM AM =AN =NC =AD−DM Rt △ABN A =N 2A +B B 2N 2(4−DM =)2+D 22M 2DM =32(1)∠ACB =90∘∠CAD =30∘CD =AD 12∠CDA =60∘AD =2CD =2×8=16CE ⊥AD ∠CED =90∘∠DCE =30∘DE =CD =412AE =AD−DE =16−4=12(2)∠ACB =90∘∠CAD+∠CDA =90∘CE ⊥AD ∠CED =90∘∠DCF +∠CDA =90∘∴.证明:过点作交的延长线于,∴,∴.在和中,∴,∴,.∵,∴,∴,∴.在和中,∴,∴.∵,∴.【考点】全等三角形的性质与判定等腰直角三角形含30度角的直角三角形【解析】此题暂无解析【解答】解:∵,,∴,,∴.∵,∴,∴,∠BCF =∠CAD (3)B BG//AC CF G ∠ACB =∠CBG =90∘∠CBG =∠ACD =90∘△ACD △CBG ∠CAD =∠BCG,AC =BC,∠ACD =∠CBG,△ACD ≅△CBG CD =BG =BD AD =CG AC =BC ∠CBA =45∘∠FBG =∠CBG−∠CBA =−=90∘45∘45∘∠FBG =∠FBD △BDF △BGF BF =BF,∠FBD =∠FBG,BD =BG,△BDF ≅△BGF DF =GF AD =CG =CF +FG AD =CF +DF (1)∠ACB =90∘∠CAD =30∘CD =AD 12∠CDA =60∘AD =2CD =2×8=16CE ⊥AD ∠CED =90∘∠DCE =30∘E =CD =41∴,∴.证明:∵,∴.∵,∴,∴,∴.证明:过点作交的延长线于,∴,∴.在和中,∴,∴,.∵,∴,∴,∴.在和中,∴,∴.∵,∴.25.【答案】解:∵二次函数的图象与轴交于和两点,对称轴为直线,∴,设二次函数解析式为:,把代入得:,解得:,∴二次函数解析式为:,即:,∵直线经过点,∴,解得:;由得:直线的解析式为:,DE =CD =412AE =AD−DE =16−4=12(2)∠ACB =90∘∠CAD+∠CDA =90∘CE ⊥AD ∠CED =90∘∠DCF +∠CDA =90∘∠BCF =∠CAD (3)B BG//AC CF G ∠ACB+∠CBG =90∘∠CBG =∠ACD =90∘△ACD △CBG ∠CAD =∠BCG,AC =BC,∠ACD =∠CBG,△ACD ≅△CBG CD =BG =BD AD =CG AC =BC ∠CBA =45∘∠FBG =∠CBG−∠CBA =−=90∘45∘45∘∠FBG =∠FBD △BDF △BGF BF =BF,∠FBD =∠FBG,BD =BG,△BDF ≅△BGF DF =GF AD =CG =CF +FG AD =CF +DF (1)x A B(−3,0)x =−1A(1,0)y =a(x−1)(x+3)C(0,−3)−3=a(0−1)(0+3)a =1y =(x−1)(x+3)y =−4(x+1)2y =−2x+m A 0=−2×1+m m=2(2)(1)AF y =−2x+2又∵直线与轴交于点,与抛物线交于点,∴当时,即,联立,解得,,∵点在第二象限,∴,过点作轴于点,∵,,∴,∴;过点作 ,交轴于点 ,可得.∵,∴ ,即:,∴,即:,解得:,∴综上所述:点的坐标为或;∵点、均为定点,∴线段长为定值,∵,∴当为最小值时,四边形的周长最小,作直线,将点向左平移个单位得到,作点关于的对称点,连接与直线交于点,过点作,交直线于点,由作图可知: 又: , 三点共线,∴ ,此时, 的值最小,∵点为直线与直线的交点,∴,∴,又∵,∴,延交线段于点,∵与直线平行,,∵在中,由勾股定理得:,在中,由勾股定理得:,∴四边形的周长最小值.【考点】二次函数综合题【解析】y =−2x+2y D E x =0y =2D(0,2){y =−2x+2y =−4(x+1)2{=−5x 1=12y 1{=1x 2=0y 2E E(−5,12)E EP ⊥y P ∠ADO =∠EDP ∠DOA =∠DPE =90∘△EDP ∼△ADO P (0,12)E E ⊥AE P ′y P ′△DE ∼△ADO P ′∠ED +∠PED =∠PE +∠PED =P ′P ′90∘∠ADO =∠ED =∠PE P ′P ′tan ∠ADO =tan ∠PEP ′=OA OD PP EP =12PP ′5P =2.5P ′(0,14.5)P ′P (0,12)(0,14.5)(3)E F EF MN =2EM +FN MEFN y =1F 2F ′E y =1E ′E ′F ′y =1M F FN//E ′F ′y =1N EM =M,M =FNE ′F ′E M F ′EM +FN =EM +FM =EF EM +FN F y =−2x+2x =−1F (−1,4)(−3,4)F ′E(−5,12)(−5,−10)E ′fF ′EE ′W FF ′y =1∴FW ⊥EE ′Rt △EWF EF ==4+(12−4)2(−1+5)2−−−−−−−−−−−−−−−−−√5–√Rt △W E ′F ′E ==10F ′+(4+10)2(−3+5)2−−−−−−−−−−−−−−−−−√2–√MEFN =ME+FN +EF +MN =EF +EF +MN =10+4+22–√5–√此题暂无解析【解答】解:∵二次函数的图象与轴交于和两点,对称轴为直线,∴,设二次函数解析式为:,把代入得:,解得:,∴二次函数解析式为:,即:,∵直线经过点,∴,解得:;由得:直线的解析式为:,又∵直线与轴交于点,与抛物线交于点,∴当时,即,联立,解得,,∵点在第二象限,∴,过点作轴于点,∵,,∴,∴;过点作 ,交轴于点 ,可得.∵,∴ ,即:,∴,即:,解得:,∴综上所述:点的坐标为或;∵点、均为定点,∴线段长为定值,∵,∴当为最小值时,四边形的周长最小,作直线,将点向左平移个单位得到,作点关于的对称点,连接与直线交于点,过点作,交直线于点,由作图可知: 又: , 三点共线,∴ ,此时, 的值最小,∵点为直线与直线的交点,∴,∴,又∵,∴,延交线段于点,(1)x A B(−3,0)x =−1A(1,0)y =a(x−1)(x+3)C(0,−3)−3=a(0−1)(0+3)a =1y =(x−1)(x+3)y =−4(x+1)2y =−2x+m A 0=−2×1+m m=2(2)(1)AF y =−2x+2y =−2x+2y D E x =0y =2D(0,2){y =−2x+2y =−4(x+1)2{=−5x 1=12y 1{=1x 2=0y 2E E(−5,12)E EP ⊥y P ∠ADO =∠EDP ∠DOA =∠DPE =90∘△EDP ∼△ADO P (0,12)E E ⊥AE P ′y P ′△DE ∼△ADO P ′∠ED +∠PED =∠PE +∠PED =P ′P ′90∘∠ADO =∠ED =∠PE P ′P ′tan ∠ADO =tan ∠PEP ′=OA OD PP EP =12PP ′5P =2.5P ′(0,14.5)P ′P (0,12)(0,14.5)(3)E F EF MN =2EM +FN MEFN y =1F 2F ′E y =1E ′E ′F ′y =1M F FN//E ′F ′y =1N EM =M,M =FNE ′F ′E M F ′EM +FN =EM +FM =EF EM +FN F y =−2x+2x =−1F (−1,4)(−3,4)F ′E(−5,12)(−5,−10)E ′fF ′EE ′W∵与直线平行,,∵在中,由勾股定理得:,在中,由勾股定理得:,∴四边形的周长最小值.FF ′y =1∴FW ⊥EE ′Rt △EWF EF ==4+(12−4)2(−1+5)2−−−−−−−−−−−−−−−−−√5–√Rt △W E ′F ′E ==10F ′+(4+10)2(−3+5)2−−−−−−−−−−−−−−−−−√2–√MEFN =ME+FN +EF +MN =EF +EF +MN =10+4+22–√5–√。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 22 平均数,中位数,众数,方差 一、选择题 1.为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如下表: 甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表
有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( ) A、甲的方差大于乙的方差,所以甲的成绩比较稳定; B、甲的方差小于乙的方差,所以甲的成绩比较稳定; C、乙的方差小于甲的方差,所以乙的成绩比较稳定; D、乙的方差大于甲的方差,所以乙的成绩比较稳定; 答案:C 2.(2020最新模拟淅江金华)金华火腿闻名遐迩。某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500克的火腿心片。现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是( ) A、甲 B、乙 C、丙 D、不能确定 2 / 22
答案:A 3.(2020最新模拟浙江义乌)国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003年至2007年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是( )
A.6969元 B.7735元 C.8810元 D.10255元 答案:B
4.(2020最新模拟湖南益阳)某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25, 这组数据的中位数和众数分别是 A. 23,25 B. 23,23 C. 25,23 D. 25,25 答案:D 3 / 22
5.(2020最新模拟年浙江省绍兴市)在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是( ) A.甲 B.乙 C.丙 D.丁 答案:B
6.(2020最新模拟年四川巴中市)下列命题是真命题的是( ) A.对于给定的一组数据,它的平均数一定只有一个 B.对于给定的一组数据,它的中位数可以不只一个 C.对于给定的一组数据,它的众数一定只有一个 D.对于给定的一组数据,它的极差就等于方差 答案:A
7.(2020最新模拟年四川巴中市)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为( ) A.14.15 B.14.16 C.14.17 D.14.20 答案:B
8.(2020最新模拟年陕西省)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中8位工作者的捐款分别是 4 / 22
5万,10万,10万,10万,20万,20万,50万,100万.这组数据的众数和中位数分别是( ) A.20万,15万 B.10万,20万 C.10万,15万 D.20万,10万 答案:C
9.(2020最新模拟北京)众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( ) A.50,20 B.50,30 C.50,50 D.135,50 答案:C
10.(2020最新模拟湖北鄂州)数据的众数为,则这组数据的方差是( ) A.2 B. C. D. 答案:B
11.(2020最新模拟年浙江省嘉兴市)已知甲、乙两组数据的平均数分别是,,方差分别是,,比较这两组数据,下列说法正确的是( ) A.甲组数据较好 B.乙组数据较好 5 / 22
C.甲组数据的极差较大 D.乙组数据的波动较小 答案:D
12.(2020最新模拟年山东省枣庄市)小华五次跳远的成绩如下(单位:m):3.9,4.1, 3.9, 3.8, 4.2.关于这组数据,下列说法错误的是( ) A.极差是0.4 B.众数是3.9 C.中位数是3.98 D.平均数是3.98 答案:B
13.(2020最新模拟山东济南)“迎奥运,我为先”联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题.联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10张,发现有2张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是( ) A.60张 B.80张 C.90张 D.110 答案:B 6 / 22
14.(2020最新模拟湖北黄石)若一组数据2,4,,6,8的平均数是6,则这组数据的方差是( ) A. B.8 C. D.40 答案:B
15.(2020最新模拟 湖南 益阳)某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25, 这组数据的中位数和众数分别是( ) A. 23,25 B. 23,23 C. 25,23 D. 25,25 答案:D
16.(2020最新模拟 重庆)数据2,1,0,3,4的平均数是( ) A、0 B、1 C、2 D、3 答案:C 17.(08厦门市)某鞋店试销一种新款女鞋,销售情况如下表所示:
鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是( ) A.平均数 B.众数 C.中位数 D.方差 答案:C 7 / 22
18.(08乌兰察布市)十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则有( ) A. B. C. D. 答案:B 19.(08绵阳市)某校初三·一班6名女生的体重(单位:kg)为:35 36 38 40 42 42则这组数据的中位数等于( ). A.38 B.39 C.40 D.42 答案:B 20.(2020最新模拟浙江金华)金华火腿闻名遐迩。某火腿公司有甲、乙、丙三台切割包装机, 同时分别装质量为500克的火腿心片。现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是( )
A、甲 B、乙 C、丙 D、不能确定 答案:A 8 / 22
21.(2020最新模拟佳木斯市)已知5个正数的平均数是,且,则数据的平均数和中位数是( ) A. B. C. D. 答案:D 22. (2020最新模拟福建省泉州市)已知一组数据的平均数为8,则另一组数据 的平均数为( )。 A. 6 B. 8 C. 10 D. 12 答案:C 23.(2020最新模拟年四川省南充市)某地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:34,35,36,34,36,37,37,36,37,37(单位:℃),则这组数据的中位数和众数分别是( ) A.36,37 B.37,36 C.36.5,37 D.37,36.5 答案:A
24.(2020最新模拟新疆乌鲁木齐市)一名射击运动员连续打靶8次,命中的环数如图1所示, 这组数据的众数与中位数分别为( ) A.9与8 B.8与9 C.8与8.5 D.8.5与9 9 / 22
答案:C 25.(2020最新模拟云南省)彩云中学九年级(一)班同学举行“奥运在我心中”演讲比赛.第三小组的六名同学成绩如下(单位:分): , , , , , .则这组数据的众数是( ) A. B. C. D. 答案:B
26..(2020最新模拟宁夏)甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S=0.006,乙10次立定跳远成绩的方差S=0.035,则( ) A.甲的成绩比乙的成绩稳定 B.乙的成绩比甲的成绩稳定 C.甲、乙两人的成绩一样稳定 D.甲、乙两人成绩的稳定性不能比较 答案:A 10 / 22
27.(2020最新模拟湖南益阳市)某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25, 这组数据的中位数和众数分别是 A. 23,25 B. 23,23 C. 25,23 D. 25,25 答案:D
28.(2020最新模拟湖南常德市)北京奥组委为了更好地传播奥运匹克知识,倡导奥林匹克精神,鼓励广大民众到现场观看精彩的比赛,小明一家积极响应,上网查得部分项目的门票价格如下:
这些门票价格的中位数和众数分别是 ( ) A.50, 50 B.67.5, 50 C.40, 30 D.50, 30 答案:A 29.(2020最新模拟广东肇庆市)数据1,1,2,2,3,3,3的极差是( ) A.1 B.2 C.3 D.6 答案:B