盐碱土现状及植物耐盐性研究的意义汇总

合集下载

盐碱胁迫对植物生长的影响

盐碱胁迫对植物生长的影响

盐碱胁迫对植物生长的影响植物生长受到许多外部环境的影响,而盐碱胁迫是其中之一。

盐碱胁迫指的是植物在土壤中遭受过高盐分和碱性条件的影响,在长期的适应过程中,植物会出现一系列生理和形态上的变化,从而影响生长发育和产量。

本文将探讨盐碱胁迫对植物的影响以及影响机制。

一、盐碱胁迫带来的影响1. 形态上的变化在盐碱胁迫条件下,植物的生长状况会大幅变化。

例如,盐碱度越高的土壤中,植物的根系会变短,角质层变厚,并形成许多侧根;茎干变细,会出现萎缩和减少代谢物质的传输等等。

这些变化都会对植物的正常生长造成很大影响。

2. 生理上的变化盐碱胁迫对植物的代谢和生理过程也会产生影响。

在盐碱度高的土壤中,植物要通过吸收水分来平衡土壤水分和体内的水分,但这样会在细胞内形成浓度梯度,导致细胞收缩。

这样的过程会引起细胞膜的不同程度破裂和细胞器的功能障碍,影响植物生长。

3. 产量降低盐碱胁迫除了影响植物的生长外,对植物的产量也会有所影响。

由于受到盐碱条件的影响,植物的光合作用和水分利用效率降低,导致植物无法正常进行生长和发育,最终会导致植株的产量下降。

二、盐碱胁迫的影响机制盐碱胁迫导致植物生长受阻的原因,主要是因为土壤中的盐分和碱性离子对植物的影响,这影响植物的生理和代谢。

下面将阐述这方面的具体机制。

1. 盐分积累盐分是导致植物受盐碱胁迫的主要因素之一。

当土壤中出现过量的盐分,植物的根系将无法吸收足够的水分,且根内部的细胞也无法充分利用水分,这就会导致植株生长受阻或死亡。

2. 离子紊乱盐碱度高的土壤中主要会存在Na+、K+、Ca2+、Mg2+等阳离子和Cl-、SO42-、HCO3-等阴离子的离子紊乱现象。

这些离子会在植物体内形成浓度梯度,导致细胞膜的破裂和细胞器的功能障碍,也会影响植物无机元素的吸收和转运。

3. 水分利用效率降低在盐碱度高的土壤中,水分分配也会发生改变。

对于植物而言,将水分从根吸收并输送到叶片上,是实现光合作用和转运营养的必要条件。

盐碱地种植可行性研究报告

盐碱地种植可行性研究报告

盐碱地种植可行性研究报告一、研究背景我国盐碱地占地广泛,据统计,全国盐碱地耕种面积已超过1亿亩,其中大部分由于土地质量差、水分不足等原因,无法进行有效的种植,导致大量的土地资源浪费。

为了充分利用这一部分未开发的土地资源,提高农业生产能力,降低农业生产成本,不少地方政府和相关部门开始关注盐碱地种植的可行性,并进行相应的研究和推广。

二、研究目的本报告旨在通过对盐碱地种植的可行性进行深入研究,探讨在盐碱地上种植农作物的适宜性、种植方式、技术要点等方面的问题,为相关决策部门提供科学依据,推动盐碱地资源的有效利用。

三、研究内容1. 盐碱地的特点及类型2. 盐碱地种植的优势和挑战3. 盐碱地种植的技术指导4. 盐碱地种植的市场前景五、研究方法本报告采用文献综述、实地调研和专家访谈相结合的方法,对盐碱地种植的现状、前景和相关问题进行深入分析和探讨。

六、研究结果1. 盐碱地的特点及类型(1)盐碱地主要由于土壤中盐分和碱性较高而形成,对作物根系生长有一定的不利影响。

(2)根据盐碱地的不同特点和程度,可分为轻度盐碱地、中度盐碱地和重度盐碱地。

2. 盐碱地种植的优势和挑战(1)盐碱地种植的优势:可利用未开发的土地资源,提高农业生产效益,增加农民收入。

(2)盐碱地种植的挑战:需要解决土壤盐碱化、水分不足、病虫害防治等问题,技术和投入成本较高。

3. 盐碱地种植的技术指导(1)选择适宜的作物:盐碱地种植适宜作物包括耐盐碱作物和强生长力作物,如苜蓿、蓝莓等。

(2)改良土壤:可通过灌溉淋洗、石灰施用等方法改善盐碱地的土壤质量。

(3)科学施肥:根据土壤质量和作物需求,合理施用有机肥和无机肥。

(4)合理管理灌溉:采用滴灌等节水灌溉技术,提高水分利用效率。

4. 盐碱地种植的市场前景随着农业技术的不断发展和盐碱地种植技术的逐步成熟,盐碱地种植在我国农业生产中将发挥越来越重要的作用,具有广阔的市场前景。

七、结论与建议盐碱地种植具有重要的生态经济效益,是利用未开发土地资源的有效途径。

【盐碱地】滨海盐碱地生态修复现状及趋势

【盐碱地】滨海盐碱地生态修复现状及趋势

【盐碱地】滨海盐碱地生态修复现状及趋势滨海盐碱生态修复不仅改善滨海地区的生态环境,丰富当地绿化景观格局,为生物多样性提供新的生境,同时还能更好地解决滨海地区环境发展及经济发展中遇到的问题,为实现社会、经济和生态良性循环及可持续发展,提供广阔空间。

目前,国内外对滨海地区的盐碱治理多在土壤改良、耐盐植物品种、工程技术等方面进行单一的研究,尤其在气候改良方面存在较大空白。

因此,我们以盐碱环境因子——土壤、水体、植被、气候的研究进展为切入点,以期寻找出滨海盐碱地生态修复的可持续发展方向。

滨海盐碱地主要形成原因为海水影响、土壤蒸腾、填海造田工程、砍伐森林、围湖产盐。

其特点主要体现在土壤含盐量和地下水位高,土壤自然脱盐率低等因素上。

淡水资源缺乏,水文存在日变化及季节变化、植被品种多样性及数量性均较差,乡土树种及耐盐碱树种生长缓慢,不能迅速成林。

气候方面,生态环境易受台风、海潮、盐尘、盐雾的影响。

为充分提升盐碱地的生产力,世界各国均在盐碱地修复方面进行了深入研究。

本研究从土壤、水体、植被、气候4个方面进行了综述。

中国的盐碱地防治与修复有着极其悠久的历史,中国古代盐碱地改良技术主要有:引水种稻洗盐、淤灌压碱、深翻窝盐与压砂抗碱、生物治盐等。

这些在当代仍有一定的借鉴意义。

在20世纪30—40年代,以前苏联B.A.科夫达为代表的学者,建议修建排水网作为防治的主要手段,再采用其他措施结合。

经过长期的研究和实践,利用排水措施来治理改良盐碱化土壤得到广泛认同。

作物秸秆还田、种植绿肥、绿肥翻压、改土、培肥等农艺措施的原理是通过改良土壤物理结构及成分等起到改良盐碱土的作用。

除了常用的农艺措施,通过化学方法改良盐碱土也是一个有效的途径。

如在碱化土壤中加入含钙物质(石膏、磷石膏、亚硫酸钙)及酸性物质(如硫酸亚铁、黑矾、风化煤、糠醛渣)的方法改良。

随着化学改良方法研究的深入,从20世纪90年代开始,利用高聚物改良剂改良盐碱地的研究引起国际上的广泛关注。

作物抗盐生理研究进展

作物抗盐生理研究进展

作物抗盐性研究进展苏利荣摘要:植物耐盐性是多基因控制的复合遗传性状,植物的耐盐机理涉及到植物生理生化等多个方面的反应。

近年来,人们从不同方面对植物的耐盐性进行了研究,也取得了一定的成果。

本文就植物的耐盐机理、选育耐盐植物的方法和耐盐的生理指标等方面作一综述,以期为深入揭示植物抗盐机理,建立植物抗盐性评价生态指标体系以及筛选抗盐植物种质提供依据。

盐碱土又称盐渍,包括盐土、盐化土以及碱土、碱化土。

盐碱土是陆地上广泛分布的一种土壤类型,约占陆地总面积的25%。

我国从滨海到内陆,从低地到高原都分布着不同类型的盐碱土壤,总面积约3000多万hm2,其中已开垦的有600多万hm2,还有2000多万hm2盐荒地等待开垦利用[1]。

目前,全国约有600多万hm2的次生盐渍化土壤,约占10%耕地总面积。

我国人均资源无论是土地或是水都低于世界平均水平,在人口、粮食与耕地日益紧张的今天,特别是沙漠和干旱地区,合理开发与利用盐渍土资源成为重要课题。

因此,了解植物的耐盐机理,研究盐胁迫下植物的生理生化变化,对探讨盐胁迫作用机理及提高植物抗盐性具有重要的意义。

土壤盐渍化是影响农业生产和生态环境的严重问题,在盐胁迫下,植物生长缓慢,代谢受抑制,严重时出现萎蔫,甚至死亡。

因此,土壤盐渍化也已成为国际上和生物科学技术迫切需要解决的重大课题。

就我国而言,盐碱土主要分布在平原地区,地形平坦,土层深厚,一般都有较丰富的地下水源,对发展农业生产,尤其对于实现农业机械化、水利化极为有利,是一类潜力很大的土壤资源。

目前,人们主要通过两种方式来利用盐碱地:一是通过合理的排灌、淡水洗涤、施用化学改良药剂来改造土壤[2]。

实践证明,该方法成本高,效果并不理想;二是选育和培育耐盐植物品种以适应盐渍环境并最终达到改善土壤的目的,此方法更加具有应用前景。

1植物耐盐性1.1植物耐盐性的含义植物耐盐性是指植物在盐胁迫下维持生长、形成经济产量或完成生活史的能力,这种能力存在着明显的种间及种内差异。

盐胁迫对植物的影响及植物盐适应性研究进展

盐胁迫对植物的影响及植物盐适应性研究进展

盐胁迫对植物的影响及植物盐适应性研究进展一、本文概述盐胁迫,作为一种常见的非生物胁迫,对植物的生长和发育具有显著影响。

在盐碱地等极端环境中,植物常常面临高盐浓度的挑战,这对其生理代谢和生存策略提出了严峻的要求。

为了适应这种环境压力,植物发展出了一系列的盐适应性机制。

本文旨在综述盐胁迫对植物的影响,包括生长抑制、光合作用降低、离子平衡失调等方面,并深入探讨植物在盐胁迫下的适应性研究进展,包括离子转运、渗透调节、抗氧化防御等多个方面。

通过对这些适应性机制的研究,我们不仅可以更好地理解植物如何应对盐胁迫,而且可以为植物耐盐性的遗传改良和盐碱地的生态恢复提供理论支持和技术指导。

二、盐胁迫对植物生理生态的影响盐胁迫是指土壤中含盐量过高,对植物的生长和发育造成不良影响的环境压力。

盐胁迫对植物的影响表现在多个层面,涉及生理、生态、形态和分子等多个方面。

在生理层面,盐胁迫首先影响植物的水分平衡。

由于土壤中的高盐浓度,植物吸水变得困难,导致细胞内外的渗透压失衡,进而引发细胞脱水和生理功能紊乱。

盐胁迫还会破坏植物的光合作用系统,降低叶绿素的含量和光合效率,从而影响植物的光能利用和有机物的合成。

在生态层面,盐胁迫导致植物群落的结构和组成发生变化。

盐胁迫下,一些耐盐性强的植物种类或品种可能获得竞争优势,而一些对盐敏感的植物则可能因无法适应而死亡或生长受阻。

这种植物群落的演替过程可能导致生物多样性的降低,影响生态系统的稳定性和功能。

在形态层面,盐胁迫会导致植物出现一系列适应性的形态变化。

例如,耐盐植物往往具有较厚的叶片和茎秆,以减少水分蒸发和盐分积累;根系也更加发达,以增加对水分和养分的吸收面积。

一些植物还会通过减少地上部分的生物量分配,增加地下部分的生物量分配来适应盐胁迫环境。

在分子层面,盐胁迫会引发植物体内一系列的生理生化反应和基因表达变化。

例如,植物会通过调节渗透调节物质的合成和积累来维持细胞内外渗透压的平衡;一些与盐胁迫相关的基因也会被诱导表达,编码耐盐相关的蛋白质或酶类,以增强植物的耐盐能力。

盐胁迫对作物生长发育的影响及其机制研究

盐胁迫对作物生长发育的影响及其机制研究

盐胁迫对作物生长发育的影响及其机制研究现今,世界范围内的土地盐碱化日益严重,给农业生产和国际经济带来了极大的影响。

盐碱胁迫是大多数作物在干旱和缺水情况下的一种普遍现象,盐碱还可以进一步削弱植物的生长发育,甚至导致植物的死亡。

因此,研究盐胁迫对作物的影响及其机制,对减少盐碱土对农业生产的危害,提高农作物的耐盐碱性具有重要的意义。

盐胁迫的常见表现是植物器官生长迟缓、产量降低和光合作用受损。

一方面,盐碱胁迫使得土壤中的离子浓度升高,降低了作物根系吸收水分和养分的吸收能力,直接影响了作物生长发育;另一方面,盐碱胁迫会对作物代谢活动造成不良影响,如影响植物叶面的水气平衡,导致气孔关闭,光合作用减弱,从而限制了植物的生长速度。

目前,研究表明,盐胁迫会引起作物细胞内外环境的改变,以及一系列的代谢及蛋白质合成的变化。

因此,研究盐胁迫对作物生长机理,不仅从单一生理水平上进行研究,而且需要从细胞层面上探讨作物对盐碱胁迫的响应机制。

在细胞层面上,盐胁迫会引起植物细胞膜系统的改变,进而影响植物细胞活性氧(ROS)代谢、离子通道和转运等。

其中,ROS是植物细胞内一个重要信号物质,但是在过高或持续的盐胁迫下,ROS的过度积累会严重破坏植物的细胞膜系统、DNA结构和酶活性等,从而引起植物细胞死亡和器官失去功能。

为了适应盐胁迫的环境,植物在生长过程中逐渐发展出了一系列适应机制,其中包括盐碱适应基因的启动、细胞内osmo调节和活性氧清除等。

近年来,利用生物技术手段向作物中引入耐盐碱基因,以提高作物的耐盐碱性已经成为研究热点。

例如,研究发现在植物的耐盐性响应过程中,一些拟南芥的盐胁迫基因(SOS1,SOS2)以及转录因子(NAC)等起重要作用。

总的来说,盐胁迫对作物的影响是多方面的,作物的生长发育和代谢过程会受到重大影响。

因此,需要对盐胁迫相关基因和调控网络,在分子水平上的响应机制进行深入研究,从而为提高作物的耐盐碱性以及农业生产的可持续发展提供科学依据。

[整理]中国盐碱地现状与分布

[整理]中国盐碱地现状与分布

中国盐碱地现状与分布
一、中国盐渍土的分布与类型
中国盐碱土的分布比较广,由于统计的口径不一样,导致它的说法、面积不一样,但是我们认为中国盐碱土的面积约一亿公顷,相当于中国十八亿亩的耕地面积,可以了解到它具有很大的开发利用潜力。

其中,滨海盐碱地是我国重要的盐碱地土地类型,现有一万八千多公里的海岸线,分布位置比较广。

我国盐碱土分布区是根据它的土壤类型和气候条件变化决定的,分为滨海盐渍区、黄淮海平原盐渍区、荒漠及荒漠草原盐渍区、草原盐渍区四个大类型。

图1中国盐碱土类型分布图
二、中国盐生植物资源
在大面积的盐渍土里,盐生植物是特有的生态系统,里面滋生着很多特别的耐盐碱植物,根据现在的统计、科学调查与记录,我国耐盐碱植物种类大概500多种,其中赵可夫等(2002)调查统计,共有502种(变种),隶属71科,218属;徐恒刚(《中国盐生植被及盐渍化生态》,2004)介绍了:323种,隶属31科,133属。

世界上共有6000多种,因此,我国耐盐碱植物总资源在世界耐盐碱植物种类中占有很重要的地位。

中国耐盐碱植物资源分为八大分区,包括内陆盆地极端干旱盐渍土分布区;内陆盆地干旱盐渍土分布区;宁蒙高原干旱盐渍土分布区;东北平原半干旱半湿润盐渍土分布区;黄淮海平原半干旱半湿润盐渍土分布区;滨海盐渍土分布区;西藏高原高寒和干旱盐渍土分布区;热带滨海盐渍化沼泽分布区。

根据耐盐植物的不同类型分为
表1 中国盐生植物的类型
种植盐生和耐盐植物一年后,与对照相比,盐碱土中氮含量增加了50%-100%,磷含量增加了28%-150%,钾含量增加了14%-24%,土壤肥力改良效果显著,这是非常有好处的。

藜麦种质资源及抗旱和耐盐的研究进展

藜麦种质资源及抗旱和耐盐的研究进展

藜麦种质资源及抗旱和耐盐的研究进展1. 引言1.1 研究背景在全球气候变暖、干旱和盐碱地区的面积不断扩大的背景下,藜麦的耐盐和抗旱特性成为农业生产中不可或缺的重要因素。

深入研究藜麦的种质资源及其抗旱和耐盐机制,对于推动藜麦产业的发展,提高农作物的抗逆性和适应性,具有重要意义。

本文将对藜麦种质资源及抗旱和耐盐的研究进展进行系统总结,为进一步探讨藜麦抗旱和耐盐育种提供理论依据和参考。

1.2 研究意义研究藜麦的抗旱和耐盐性状,可以为我国北方干旱半干旱地区的杂粮种植提供重要的科学依据,提高农作物的适应性和抗逆性,进一步推动农业结构调整和转型升级。

加强藜麦抗旱和耐盐性状的研究,还能为全球气候变化下农业可持续发展提供可供借鉴的经验和技术支持,推动杂粮作物在全球范围内的推广和应用。

开展藜麦抗旱和耐盐性状研究具有重要的现实意义和广阔的发展前景。

2. 正文2.1 藜麦种质资源的分类与特点藜麦是一种古老的杂粮作物,具有丰富的遗传资源,种质资源丰富多样,主要可分为植物内源和外源资源。

植物内源资源是指来自藜麦自身的种质资源,包括各种地理种质、野生种质和栽培种质。

而外源资源主要是指来自于其他藜麦品种或相关物种的种质资源,通过杂交等方法引入。

藜麦种质资源的分类主要是根据形态性状、生物学性状、抗逆性状等进行的。

藜麦的种质资源具有多样性和遗传变异性,表现在植株高度、生育期、籽粒颜色等性状上呈现出丰富的表型差异。

在形态性状方面,藜麦种质资源可以分为矮生种、中生种和高生种等不同类型,这些种质资源在种植适应性、产量性状等方面存在差异。

藜麦的生物学性状也是其种质资源的重要特点之一,主要包括生长发育特性、生殖生理特性等方面的遗传变异。

藜麦种质资源的分类与特点主要表现在形态性状、生物学性状等方面的多样性和遗传变异性上,这为藜麦抗旱和耐盐性状的研究提供了丰富的遗传资源和材料基础。

通过对种质资源的分类和特点的深入研究,可以为藜麦的育种工作提供重要的理论支持和实践指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 盐碱土现状及植物耐盐性研究的意义盐碱土是民间对盐土和碱土的统称。

土壤含盐量在0.1%-0.2%以上,或者土壤胶体吸附一定数量的交换性钠,碱化度在15%-20%以上,对作物的正常生长产生严重影响,这样的土属于盐碱土,盐碱土又称盐渍土。

在亚洲、非洲和北美西部地区有不同程度的分布,是一种重要的土地资源。

按照形成原因,盐碱土包括原生盐渍化土地和次生盐渍土。

据不完全统计,全世界大约有9.5亿公顷盐碱地[1-2]。

由于世界范围内环境问题日益加剧,未经处理的工业废水乱排,工业垃圾废料不规范的堆积,世界范围内乱砍滥伐普遍存在,原始森林和原始湿地破坏严重,全球气候日趋异常;在农业生产中,节水农业尚未普及,大水漫灌等浇灌方式依然流行,在许多发展中国家,为了增加片面增加土地的单位面积产量,不合理的使用化肥,诸多自然或人为因素,导致世界范围内的次生盐渍土地日益增多,农业的可持续发展受到严重抑制[3-6]。

中国的盐碱地主要分布在华北、东北和西北的内陆干旱、半干旱地区,东部沿海的滨海地区也有分布。

世界人口逐年增多,可供耕地则因人为的不合理利用以及自然灾害频发而日渐减少,人均可耕地面积更是呈直线下降。

然而,与此同时,世界范围内大面积的盐碱地仍未得到有效的利用。

对盐碱地的综合开发利用日益走入人们的视野,人们试图从农业、化学、生物等方向对盐碱土地进行开发利用。

依据改良措施的不同,对于盐碱地的开发利用可以取得不同的效果。

改良盐土可以通过排水、洗盐等措施,或用种植绿肥、施有机肥或种水稻等农作物对其盐进行改良。

这些方法对盐碱土的改良虽然有一定的效果,但是效果不稳定,并且在实践应用中,大量的人力、物力以及财力的投入无形中极大增加了该项措施的成本[7]。

这种方法治标却不能治本。

通过引种盐土植物,培育新的耐盐品种,利用盐生植物对盐碱土壤的改良作用,这种方式称为生物措施。

生物措施可以将盐碱土中的盐分、离子富集在植物体中,从而从根本上解决盐碱土上植物无法正常生长的现状,选择适当的经济作物,既可以获得可观的经济效益,还能绿化环境,获得生态效益。

由于盐渍化会降低作物的发芽率,普通作物在盐碱条件下难以生长存活,因此耐盐碱作物的引进及品种的培育,成为当前研究的热点[8]。

种植植物可以增加盐碱地的植被覆盖面积,减少土壤水分蒸发,降低土壤盐分;另外利用某些植物还可以吸收土壤中的盐分,降低土壤含盐量,增加土壤有机质和土壤肥力,改善土壤结构和物理性质,从而改良盐碱土壤[9]。

这一措施从经济、保护环境等角度出发,是最经济有效的方法[10]。

全世界约有8亿公顷土壤盐渍化,我国盐渍土壤总面积约1亿公顷,而且面积逐渐扩大。

最新研究显示,现代盐渍化土壤约37万公顷,残余盐渍化土壤约45万公顷,潜在盐渍化土壤约17万公顷,海涂土壤占海岸带土壤总面积的17%[11]。

我国目前盐渍地面积,主要分布于新疆、内蒙、青海,占盐渍化土壤的88%[12],并且每年盐渍化土壤面积呈递增趋势,仅山东黄河三角洲地带每年新增盐碱地就达6000多hm2[13]。

甜高粱作为一种能源作物,有着广泛的应用前景。

所以充分利用盐碱地,种植甜高粱发展生物能源,可以缓解耕地资源的紧张[14]。

因此,筛选出耐盐碱甜高粱品种和研究它的配套栽培技术,对充分利用盐碱地和发展生物质能源具有重要的意义。

2 盐胁迫对植物生长的影响盐胁迫是影响植物生长的最为严重的非生物因子之一[15]。

盐渍化土壤中盐离子浓度较高,高浓度的盐离子易造成土壤水势下降,因此对植物产生水分胁迫,同时还产生离子胁迫,破坏细胞内的离子平衡;盐渍条件还会导致植物体内活性氧的积累,从而伤害细胞甚至将它杀死;另外,在盐渍化土壤中生长的植物,往往会缺Ca2+和K+,使植物产生营养胁迫,这样植物的生长发育就会不正常[16]。

盐胁迫对植物生长发育的整体表现为抑制组织和器官的生长,加速发育过程,缩短营养生长和生殖期。

有研究表明,盐胁迫导致作物的功能叶片减少,株高降低,干物质的积累量下降;盐分还导致绿叶面积减少,一方面盐分引起老叶死亡,另一方面嫩叶卷曲变黄[17]。

Munns认为盐分对植物生长发育造成的影响主要有三方面的原因:一是盐土中的低水势引起植物叶片水势下降,导致气孔导度下降是盐影响多种生理生化过程的根本原因;二是盐害降低光合作用速率,减少同化物和能量供给,从而限制植物的生长发育;三是盐害影响某些特定的酶或代谢过程[18]。

盐胁迫下,抑制植物的生长是盐分胁迫,对植物最明显直接的效应。

植物为了能在盐胁迫的环境中生存,植物自身会进行渗透和离子调节,但这一过程会消耗能量,这样就使得植物用于自身生长的能量减少,进而生长量也随之降低[19]。

总而言之,耐盐碱植物的特点有植物矮小、叶子不发达、蒸腾面积缩小、气孔下陷、表皮具厚的外皮、常有灰白色的绒毛等;该种植物的细胞间隙小,栅栏组织发达,有的具有肉质性叶,有特殊的贮水细胞,能使同化细胞不受高浓度盐份的伤害;细胞浓度特别高,能吸收高浓度土壤溶液的水分,例如盐角草。

有的植物本身有盐腺,它能把吸收进去多余的盐,通过茎和叶的表面排出来,再被风吹雨淋的洗掉,如红树。

有研究表明,短期盐胁迫对植物的抑制主要来自于根系,由于植物根系受到水分胁迫,并产生相应的生理反应,从而影响地上部分的生长。

长期盐胁迫下,植物根系生长受到很大程度的抑制,从而抑制植物地上部分生长,进而影响光合作用等过程[19]。

盐胁迫会造成植物发育迟缓,不同植物对盐胁迫的反应不同,植物的生物量是对盐胁迫反应的一个综合体现,具体表现为抑制植物本身组织和器官的生长,植物叶面积扩展速率降低、茎及根的鲜重降低。

一般情况下盐胁迫对植物幼苗的株高、根长的影响与盐浓度呈负相关[20]。

盐胁迫在低浓度下,盐生植物的生物量有所增加,如碱蓬;而非盐生植物生长量则降低,如黄瓜幼苗[21]。

在离子方面,根据近代植物生理学的研究,已经将Na+和Cl-归于植物生长发育中的必要营养物质,但植物对Na+和Cl-的需要量极少,一般超过50mM有些植物就会受害。

当Na+和Cl-浓度过高时就会产生离子毒害。

(1) Na+ 和Cl-大量进入非盐生植物体后,首先抑制植物细胞内多种酶的活性,影响植物的多种代谢功能,从而影响植物的生长和发育;(2) 影响其它必须离子的吸收,促进硫和镁的吸收,而抑制钾和钙的吸收;(3) 破坏细胞内离子间的平衡,从而干扰植物的正常代谢活动。

有研究表明,盐胁迫下胡萝卜幼苗的生长收到抑制,导致胡萝卜的生长量及含水量都明显下降[22];盐胁迫下甜瓜生长高度、叶面积、地上地下部分干鲜重都会下降[23]。

李尉霞等[24]通过对大麦耐盐性研究发现,低NaCl浓度会促进大麦的生长,在0.4% NaCl浓度下,其地上和地下部分的干鲜重达到最大值。

相同盐浓度下,果树的生长量与其耐盐性一致,且根部生长受抑制程度较为明显[25]。

在NaCl胁迫下高粱生长受到明显抑制,随着NaCl浓度升高,其幼苗的生长速率明显下降,且不同品种表现趋势一致[26]。

随着NaCl浓度的增高,甜高粱的干鲜重和株高随之下降[27]。

植物处于不同的营养元素下,他的生长速率和形态建成以及养分在体内的运输和分配等也不一样,植物对营养元素的需求主要是N,P,K。

特别是一些重要过程都会受到供N水平的控制。

N缺乏抑制了植株的光合作用,从而减缓植株的生长,导致生物量的累积也会减少。

供N水平的不同及N源的不同也会影响植物对营养元素的吸收、运输和分配等过程。

低N条件降低了植物的根系正常生长及内部需求,从而也会导致抑制植物对各种营养元素的吸收。

N胁迫会强烈抑制非盐生植物蓖麻对N素和其他营养元素的吸收及植株的光和作用,抑制植株的正常生长。

与充分供N条件下的植株根系相比,低N植株的根系将会得到更多的碳、氮和其他营养元素的分配,而且在供应硝态氮时,当外界供N浓度逐渐增加时,蓖麻植株木质部中的硝态氮占总N的比例也会随之增大。

植物在生长过程中经常会遭遇到营养胁迫,过低或过高浓度的营养元素导致植物体内营养失衡。

各种适应机制在植物漫长进化过程中逐渐形成,以保证植物在营养胁迫下顺利地完成其生长发育周期。

如在缺N、P、Mg等重要营养元素时,植物会首先活化老叶中相应的营养元素,随后将其运至幼嫩部分来保证正常的生长;或者是植物根系生长加快,而地上部分生长相对减缓,从而增加自身的根冠比,这些适应性都在一定程度上增加了植物对营养胁迫的适应性。

盐胁迫对植物地上部分的影响,主要表现在对其光合作用的影响,光合作用是植物生长发育的基础,它为植物的生长发育提供物质和能量,因此研究盐胁迫对光合作用的影响有重要的意义。

盐胁迫条件下,不同植物的光合作用所受到的影响不同,对于盐胁迫下植物净光合速率下降的原因,目前为止也未形成统一的认识。

有报道指出在短期盐胁迫下,光合作用降低的主要因子是气孔限制,而长期盐胁迫中,非气孔因素为主[28]。

赵昕等[29]研究发现盐胁迫下,气孔因素是光合能力下降的主要因素。

研究表明,不同的海岛棉品种所受盐的影响与盐浓度不同[30]。

张川红等[31]研究发现,盐胁迫下杨树净光合速率下降是影响其生长的主要因素。

海滨锦葵在盐胁迫下,随着盐浓度升高光合速率下降越明显[32]。

Larcher提出的植物在盐胁迫发生初期,植物生长下降,在其抗性阶段植物有一定的恢复,但如果胁迫继续存在,植物的生长便会继续降低[33]。

NaCl影响光合作用的途径通常认为有三种:(1)渗透伤害,盐胁迫造成水势降低,从而导致气孔与非气孔效应,进而影响光合作用。

(2)离子伤害,包括离子(Na+与Cl-)过量与离子(K+与Ca2+)亏缺两种。

大量研究表明当植物生长在盐胁迫环境中,叶片中的Na+与Cl-含量升高,同化率降低,但也有研究发现这两种离子的上升并不引起光合速率的降低[34]。

有解释是因为不同植物叶肉细胞对不同离子的区域化能力不同,造成盐胁迫对不同植物光合作用影响不同[35-36]。

(3)糖分积累造成反馈机制,由于植物生长在盐胁迫中,组织中糖的浓度增加,从而反馈性的抑制光合作用[37]。

总之,盐胁迫影响光合作用的根本原因,目前还没有形成统一的认识。

3 植物耐盐性机理根据植物对盐度的适应,可以将盐生植物分为三种类型:一是稀盐盐生植物,稀盐盐生植物藜科最多;二是泌盐盐生植物;三是拒盐盐生植物,主要是禾本科。

根据它们的生态学特点也可将盐生植物分成旱生盐生植物、中生盐生植物、水生盐生植物。

Breckle(1995)将盐生植物分类为1.真盐生植物(enhalophyte)其中包括:叶肉质化真盐生植物(leaf succulent enhalophyte)和茎肉质化真盐生植物(stem succulent enhalophyte);2.泌盐盐生植物(recretohlophyte),其中包括盐腺泌盐的盐生植物和利用囊泡泌盐的盐生植物;3.假盐生植物(pseudohalophyte)。

相关文档
最新文档