应用气体实验定律解决三类模型问题

合集下载

课时作业3:专题强化十四 应用气体实验定律解决“三类模型问题”

课时作业3:专题强化十四 应用气体实验定律解决“三类模型问题”

专题强化十四应用气体实验定律解决“三类模型问题”1.(2018·安徽省宣城市第二次调研)如图1甲所示,左端封闭、内径相同的U形细玻璃管竖直放置,左管中封闭有长为L=20 cm的空气柱,两管水银面相平,水银柱足够长.已知大气压强为p0=75 cmHg.图1(1)若将装置缓慢翻转180°,使U形细玻璃管竖直倒置(水银未溢出),如图乙所示.当管中水银静止时,求左管中空气柱的长度;(2)若将图甲中的阀门S打开,缓慢流出部分水银,然后关闭阀门S,右管水银面下降了H=35 cm,求左管水银面下降的高度.答案(1)20 cm或37.5 cm(2)10 cm解析(1)将装置缓慢翻转180°,设左管中空气柱的长度增加量为h,由玻意耳定律得p0L=(p0-2h)(L+h)解得h=0或h=17.5 cm则左管中空气柱的长度为20 cm或37.5 cm(2)设左管水银面下降的高度为x,左、右管水银面的高度差为y,由几何关系:x+y=H,由玻意耳定律得p0L=(p0-y)(L+x)联立两式解得x2+60x-700=0解得:x=10 cm,x=-70 cm(舍去),故左管水银面下降的高度为10 cm.2.(2018·江西省五市八校第二次联考)竖直平面内有一直角形内径处处相同的细玻璃管,A端封闭,C端开口,最初AB段处于水平状态,中间有一段水银将气体封闭在A端,各部分尺寸如图2所示,外界大气压强p0=75 cmHg.图2(1)若从C端缓慢注入水银,使水银与上端管口平齐,需要注入水银的长度为多少?(2)若在竖直平面内将玻璃管顺时针缓慢转动90°(水银未溢出),最终AB段处于竖直,BC段处于水平位置时,封闭气体的长度变为多少?(结果保留三位有效数字)答案 (1)24 cm (2)23.4 cm解析 (1)以cmHg 为压强单位.设A 侧空气柱长度为l 1=30 cm -10 cm =20 cm 时的压强为p 1; 当两侧水银面的高度差为h =25 cm 时,空气柱的长度为l 2,压强为p 2由玻意耳定律得p 1l 1=p 2l 2其中p 1=(75+5) cmHg =80 cmHg ,p 2=(75+25) cmHg =100 cmHg解得l 2=16 cm ,故需要注入的水银长度Δl =20 cm -16 cm +25 cm -5 cm =24 cm.(2)设顺时针转动90°后,水银未溢出,且AB 部分留有x 长度的水银,由玻意耳定律得p 1l 1=(p 0-x )(30-x )解得x 1=105-53372cm ≈6.6 cm>0符合题意, x 2=105+53372cm 不合题意,舍去. 故最终封闭气体的长度为30-x =23.4 cm.3.(2018·山西省晋中市适应性调研)一端开口的长直圆筒,在开口端放置一个传热性能良好的活塞,活塞与筒壁无摩擦且不漏气.现将圆筒开口端竖直向下缓慢地放入27 ℃的水中.当筒底与水平面平齐时,恰好平衡,这时筒内空气柱长52 cm ,如图3所示.当水温缓慢升至87 ℃时,试求稳定后筒底露出水面多少?(不计筒壁及活塞的厚度,不计活塞的质量,圆筒的质量为M ,水的密度为ρ水,大气压强为p 0)图3答案 10.4 cm解析 设气体压强为p ,活塞横截面积为S所以p =p 0+ρ水gh ①以圆筒作为研究对象,有pS -p 0S =Mg ②联立①②两式,得ρ水ghS =Mg所以h =M ρ水S可见,当温度发生变化时,液面高度保持不变,气体发生等压变化以气体作为研究对象,设稳定后筒底露出水面的高度为x 有V 1T 1=V 2T 2代入数据,有52 cm·S 300 K =(52 cm +x )S 360 K解得x =10.4 cm.4.(2016·全国卷Ⅲ·33(2))一U 形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管内汞柱及空气柱长度如图4所示.用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求此时右侧管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p 0=75.0 cmHg.环境温度不变.(保留三位有效数字)图4答案 144 cmHg 9.42 cm解析 设初始时,右管中空气柱的压强为p 1,长度为l 1;左管中空气柱的压强为p 2=p 0,长度为l 2.活塞被下推h 后,右管中空气柱的压强为p 1′,长度为l 1′;左管中空气柱的压强为p 2′,长度为l 2′.以cmHg 为压强单位.由题给条件得p 1=p 0+(20.0-5.00) cmHg =90 cmHg l 1=20.0 cm ①l 1′=(20.0-20.0-5.002) cm =12.5 cm ② 由玻意耳定律得p 1l 1S =p 1′l 1′S ③联立①②③式和题给条件得p 1′=144 cmHg ④依题意p 2′=p 1′⑤l 2′=4.00 cm +20.0-5.002cm -h =11.5 cm -h ⑥ 由玻意耳定律得p 2l 2S =p 2′l 2′S ⑦联立④⑤⑥⑦式和题给条件得h ≈9.42 cm.5.(2019·山西省大同市模拟)如图5所示,圆柱形喷雾器高为h ,内有高度为h 2的水,上部封闭有压强为p 0、温度为T 0的空气.将喷雾器移到室内,一段时间后打开喷雾阀门K ,恰好有水流出.已知水的密度为ρ,大气压强恒为p 0,喷雾口与喷雾器等高.忽略喷雾管的体积,将空气看作理想气体.(室内温度不变)图5(1)求室内温度.(2)在室内用打气筒缓慢向喷雾器内充入空气,直到水完全流出,求充入空气与原有空气的质量比.答案 (1)(1+ρgh 2p 0)T 0 (2)2p 0+3ρgh 2p 0+ρgh解析 (1)设喷雾器的横截面积为S ,室内温度为T 1,喷雾器移到室内一段时间后,封闭气体的压强p 1=p 0+ρg ·h 2,V 0=S ·h 2 气体做等容变化:p 0T 0=p 0+ρg ·h 2T 1解得:T 1=(1+ρgh 2p 0)T 0 (2)以充气结束后喷雾器内空气为研究对象,排完水后,压强为p 2,体积为V 2=hS .此气体经等温变化,压强为p 1时,体积为V 3则p 2=p 0+ρgh ,p 1V 3=p 2V 2即(p 0+ρg ·h 2)V 3=(p 0+ρgh )hS 同温度下同种气体的质量比等于体积比,设充入气体的质量为Δm则Δm m 0=V 3-V 0V 0代入得Δm m 0=2p 0+3ρgh 2p 0+ρgh6.(2018·福建省漳州市期末调研)如图6,一圆柱形绝热汽缸竖直放置,在距汽缸底2h 处有固定卡环(活塞不会被顶出).质量为M 、横截面积为S 、厚度可忽略的绝热活塞可以无摩擦地上下移动,活塞下方距汽缸底h 处还有一固定的可导热的隔板将容器分为A 、B 两部分,A 、B中分别封闭着一定质量的同种理想气体.初始时气体的温度均为27 ℃,B 中气体压强为1.5p 0,外界大气压为p 0,活塞距汽缸底的高度为1.5h .现通过电热丝缓慢加热气体,当活塞恰好到达汽缸卡环处时,求B 中气体的压强和温度.(重力加速度为g ,汽缸壁厚度不计)图6答案 3p 0 600 K解析 A 中气体做等压变化,其压强始终为p A =p 0+Mg S V A 1=0.5Sh ,T 1=300 K ,V A 2=Sh设活塞到达卡环处时气体温度为T 2根据盖-吕萨克定律:V A 1T 1=V A 2T 2解得:T 2=600 KB 中气体做等容变化p B 1=1.5p 0,T 1=300 K ,T 2=600 K设加热后气体压强为p B 2根据查理定律p B 1T 1=p B 2T 2得p B 2=3p 0.。

2019年度高考物理一轮复习 第十三章 热学 专题强化十四 应用气体实验定律解决“三类模型问题”学案

2019年度高考物理一轮复习 第十三章 热学 专题强化十四 应用气体实验定律解决“三类模型问题”学案

专题强化十四 应用气体实验定律解决“三类模型问题”专题解读 1.本专题是气体实验定律在玻璃管液封模型、汽缸活塞类模型、变质量气体模型中的应用,高考在选考模块中通常以计算题的形式命题.2.学好本专题可以帮助同学们熟练的选取研究对象和状态变化过程,掌握处理三类模型问题的基本思路和方法.3.本专题用到的相关知识和方法有:受力分析、压强的求解方法、气体实验定律等.命题点一 “玻璃管液封”模型1.三大气体实验定律(1)玻意耳定律(等温变化):p 1V 1=p 2V 2或pV =C (常数). (2)查理定律(等容变化):p 1T 1=p 2T 2或pT=C (常数). (3)盖—吕萨克定律(等压变化):V 1T 1=V 2T 2或V T=C (常数). 2.利用气体实验定律及气态方程解决问题的基本思路3.玻璃管液封模型求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意: (1)液体因重力产生的压强大小为p =ρgh (其中h 为至液面的竖直高度); (2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力;(3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等;(4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷.类型1 单独气体问题例1 (2017·全国卷Ⅲ·33(2))一种测量稀薄气体压强的仪器如图1(a)所示,玻璃泡M 的上端和下端分别连通两竖直玻璃细管K 1和K 2.K 1长为l ,顶端封闭,K 2上端与待测气体连通;M 下端经橡皮软管与充有水银的容器R 连通.开始测量时,M 与K 2相通;逐渐提升R ,直到K 2中水银面与K 1顶端等高,此时水银已进入K 1,且K 1中水银面比顶端低h ,如图(b)所示.设测量过程中温度、与K 2相通的待测气体的压强均保持不变.已知K 1和K 2的内径均为d ,M 的容积为V 0,水银的密度为ρ,重力加速度大小为g .求:图1(1)待测气体的压强;(2)该仪器能够测量的最大压强.答案 (1)ρπgh 2d 24V 0+πd 2l -h (2)πρgl 2d24V 0解析 (1)水银面上升至M 的下端使玻璃泡中气体恰好被封住,设此时被封闭的气体的体积为V ,压强等于待测气体的压强p .提升R ,直到K 2中水银面与K 1顶端等高时,K 1中水银面比顶端低h ;设此时封闭气体的压强为p 1,体积为V 1,则V =V 0+14πd 2l①V 1=14πd 2h②由力学平衡条件得p 1=p +ρgh ③整个过程为等温过程,由玻意耳定律得pV =p 1V 1 ④联立①②③④式得p =ρπgh 2d 24V 0+πd 2l -h⑤(2)由题意知h ≤l ⑥联立⑤⑥式有p ≤πρgl 2d 24V 0⑦该仪器能够测量的最大压强为 p max =πρgl 2d 24V 0变式1 (2015·全国卷Ⅱ·33(2))如图2,一粗细均匀的U 形管竖直放置,A 侧上端封闭,B 侧上端与大气相通,下端开口处开关K 关闭;A 侧空气柱的长度为l =10.0 cm ,B 侧水银面比A 侧的高h =3.0 cm.现将开关K 打开,从U 形管中放出部分水银,当两侧水银面的高度差为h 1=10.0 cm 时将开关K 关闭.已知大气压强p 0=75.0 cmHg.图2(1)求放出部分水银后A 侧空气柱的长度;(2)此后再向B 侧注入水银,使A 、B 两侧的水银面达到同一高度,求注入的水银在管内的长度.答案 (1)12.0 cm (2)13.2 cm解析 (1)以cmHg 为压强单位.设A 侧空气柱长度l =10.0 cm 时的压强为p ;当两侧水银面的高度差为h 1=10.0 cm 时,空气柱的长度为l 1,压强为p 1. 由玻意耳定律得pl =p 1l 1①由力学平衡条件得p =p 0+h ②打开开关K 放出水银的过程中,B 侧水银面处的压强始终为p 0,而A 侧水银面处的压强随空气柱长度的增加逐渐减小,B 、A 两侧水银面的高度差也随之减小,直至B 侧水银面低于A 侧水银面h 1为止.由力学平衡条件有p 1=p 0-h 1③联立①②③式,并代入题给数据得l 1=12.0 cm ④(2)当A 、B 两侧的水银面达到同一高度时,设A 侧空气柱的长度为l 2,压强为p 2. 由玻意耳定律得pl =p 2l 2⑤ 由力学平衡条件有p 2=p 0⑥联立②⑤⑥式,并代入题给数据得l 2=10.4 cm ⑦ 设注入的水银在管内的长度为Δh ,依题意得 Δh =2(l 1-l 2)+h 1⑧联立④⑦⑧式,并代入题给数据得Δh =13.2 cm. 类型2 关联气体问题例2 (2016·全国卷Ⅲ·33(2))一U 形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管内汞柱及空气柱长度如图3所示.用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求此时右侧管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p 0=75.0 cmHg.环境温度不变.(保留三位有效数字)图3答案 144 cmHg 9.42 cm解析 设初始时,右管中空气柱的压强为p 1,长度为l 1;左管中空气柱的压强为p 2=p 0,长度为l 2.活塞被下推h 后,右管中空气柱的压强为p 1′,长度为l 1′;左管中空气柱的压强为p 2′,长度为l 2′.以cmHg 为压强单位.由题给条件得p 1=p 0+(20.0-5.00) cmHg =90 cmHg l 1=20.0 cm ① l 1′=(20.0-20.0-5.002) cm =12.5 cm ②由玻意耳定律得p 1l 1S =p 1′l 1′S ③联立①②③式和题给条件得p 1′=144 cmHg④ 依题意p 2′=p 1′⑤l 2′=4.00 cm +20.0-5.002cm -h =11.5 cm -h ⑥ 由玻意耳定律得p 2l 2S =p 2′l 2′S ⑦联立④⑤⑥⑦式和题给条件得h ≈9.42 cm.变式2 如图4所示,由U 形管和细管连接的玻璃泡A 、B 和C 浸泡在温度均为0 ℃的水槽中,B 的容积是A 的3倍.阀门S 将A 和B 两部分隔开.A 内为真空,B 和C 内都充有气体.U 形管内左边水银柱比右边的低60 mm.打开阀门S ,整个系统稳定后,U 形管内左右水银柱高度相等.假设U 形管和细管中的气体体积远小于玻璃泡的容积.图4(1)求玻璃泡C 中气体的压强(以mmHg 为单位);(2)将右侧水槽中的水从0 ℃加热到一定温度时,U 形管内左右水银柱高度差又为60 mm ,求加热后右侧水槽的水温. 答案 (1)180 mmHg (2)364 K解析 (1)在打开阀门S 前,两水槽水温均为T 0=273 K.设玻璃泡B 中气体的压强为p 1,体积为V B ,玻璃泡C 中气体的压强为p C ,依题意有p 1=p C +Δp①式中Δp =60 mmHg.打开阀门S 后,两水槽水温仍为T 0,设玻璃泡B 中气体的压强为p B ,依题意,有p B =p C ② 玻璃泡A 和B 中气体的体积V 2=V A +V B③根据玻意耳定律得p 1V B =p B V 2④联立①②③④式,并代入已知数据得p C =V BV AΔp =180 mmHg⑤(2)当右侧水槽的水温加热至T ′时,U 形管左右水银柱高度差为Δp ,玻璃泡C 中气体的压强p C ′=p B +Δp⑥玻璃泡C 中的气体体积不变,根据查理定律得p C T 0=p C ′T ′⑦联立②⑤⑥⑦式,并代入题给数据得T ′=364 K.命题点二 “汽缸活塞类”模型汽缸活塞类问题是热学部分典型的物理综合题,它需要考虑气体、汽缸或活塞等多个研究对象,涉及热学、力学等物理知识,需要灵活、综合地应用知识来解决问题. 1.一般思路(1)确定研究对象,一般地说,研究对象分两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统).(2)分析物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程. (3)挖掘题目的隐含条件,如几何关系等,列出辅助方程. (4)多个方程联立求解.对求解的结果注意检验它们的合理性. 2.常见类型(1)气体系统处于平衡状态,需综合应用气体实验定律和物体的平衡条件解题. (2)气体系统处于力学非平衡状态,需要综合应用气体实验定律和牛顿运动定律解题. (3)两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解.说明 当选择力学研究对象进行分析时,研究对象的选取并不唯一,可以灵活地选整体或部分为研究对象进行受力分析,列出平衡方程或动力学方程. 类型1 单独气体问题例3 (2015·全国卷Ⅰ·33(2))如图5,一固定的竖直汽缸由一大一小两个同轴圆筒组成,两圆筒中各有一个活塞.已知大活塞的质量为m 1=2.50 kg ,横截面积为S 1=80.0 cm 2;小活塞的质量为m 2=1.50 kg ,横截面积为S 2=40.0 cm 2;两活塞用刚性轻杆连接,间距保持为l =40.0 cm ;汽缸外大气的压强为p =1.00×105Pa ,温度为T =303 K.初始时大活塞与大圆筒底部相距l2,两活塞间封闭气体的温度为T 1=495 K.现汽缸内气体温度缓慢下降,活塞缓慢下移.忽略两活塞与汽缸壁之间的摩擦,重力加速度大小g 取 10 m/s 2.求:图5(1)在大活塞与大圆筒底部接触前的瞬间,汽缸内封闭气体的温度; (2)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强. 答案 (1)330 K (2)1.01×105Pa解析 (1)大小活塞在缓慢下移过程中,受力情况不变,汽缸内气体压强不变,由盖—吕萨克定律得V 1T 1=V 2T 2初状态V 1=l2(S 1+S 2),T 1=495 K末状态V 2=lS 2代入可得T 2=23T 1=330 K(2)对大、小活塞受力分析则有m 1g +m 2g +pS 1+p 1S 2=p 1S 1+pS 2可得p 1=1.1×105Pa缸内封闭的气体与缸外大气达到热平衡过程中,气体体积不变,由查理定律得p 1T 2=p 2T 3T 3=T =303 K ,解得p 2=1.01×105 Pa.变式3 如图6所示,两端开口的汽缸水平固定,A 、B 是两个厚度不计的活塞,可在汽缸内无摩擦滑动,面积分别为S 1=20 cm 2,S 2=10 cm 2,它们之间用一根水平细杆连接,B 通过水平细绳绕过光滑的轻质定滑轮与质量为M =2 kg 的重物C 连接,静止时汽缸中的气体温度T 1=600 K ,汽缸两部分的气柱长均为L ,已知大气压强p 0=1×105 Pa ,取g =10 m/s 2,缸内气体可看做理想气体.图6(1)活塞静止时,求汽缸内气体的压强;(2)若降低汽缸内气体的温度,当活塞A 缓慢向右移动L2时,求汽缸内气体的温度.答案 (1)1.2×105Pa (2)500 K解析 (1)设静止时汽缸内气体压强为p 1,活塞受力平衡p 1S 1+p 0S 2=p 0S 1+p 1S 2+Mg 代入数据解得p 1=1.2×105Pa(2)由活塞受力平衡可知缸内气体压强没有变化,设开始温度为T 1,变化后温度为T 2,由盖—吕萨克定律得S 1L +S 2LT 1=S 1·L 2+S 2·3L 2T 2代入数据解得T 2=500 K. 类型2 关联气体问题例4 (2017·全国卷Ⅰ·33(2))如图7,容积均为V 的汽缸A 、B 下端有细管(容积可忽略)连通,阀门K 2位于细管的中部,A 、B 的顶部各有一阀门K 1、K 3;B 中有一可自由滑动的活塞(质量、体积均可忽略).初始时,三个阀门均打开,活塞在B 的底部;关闭K 2、K 3,通过K 1给汽缸充气,使A 中气体的压强达到大气压p 0的3倍后关闭K 1.已知室温为27 ℃,汽缸导热.图7(1)打开K 2,求稳定时活塞上方气体的体积和压强; (2)接着打开K 3,求稳定时活塞的位置;(3)再缓慢加热汽缸内气体使其温度升高20 ℃,求此时活塞下方气体的压强. 答案 (1)V2 2p 0 (2)B 的顶部(3)1.6p 0解析 (1)设打开K 2后,稳定时活塞上方气体的压强为p 1,体积为V 1.依题意,被活塞分开的两部分气体都经历等温过程.由玻意耳定律得p 0V =p 1V 1 ①(3p 0)V =p 1(2V -V 1)②联立①②式得V 1=V 2③ p 1=2p 0④(2)打开K 3后,由④式知,活塞必定上升.设在活塞下方气体与A 中气体的体积之和为V 2(V 2≤2V )时,活塞下气体压强为p 2,由玻意耳定律得(3p 0)V =p 2V 2⑤由⑤式得 p 2=3V V 2p 0⑥由⑥式知,打开K 3后活塞上升直到B 的顶部为止; 此时p 2为p 2′=32p 0(3)设加热后活塞下方气体的压强为p 3,气体温度从T 1=300 K 升高到T 2=320 K 的等容过程中,由查理定律得p 2′T 1=p 3T 2⑦将有关数据代入⑦式得p 3=1.6p 0变式4 (2014·新课标全国Ⅱ·33(2))如图8所示,两汽缸A 、B 粗细均匀,等高且内壁光滑,其下部由体积可忽略的细管连通;A 的直径是B 的2倍,A 上端封闭,B 上端与大气连通;两汽缸除A 顶部导热外,其余部分均绝热,两汽缸中各有一厚度可忽略的绝热轻活塞a 、b ,活塞下方充有氮气,活塞a 上方充有氧气.当大气压为p 0、外界和汽缸内气体温度均为7 ℃且平衡时,活塞a 离汽缸顶的距离是汽缸高度的14,活塞b 在汽缸正中间.图8(1)现通过电阻丝缓慢加热氮气,当活塞b 恰好升至顶部时,求氮气的温度;(2)继续缓慢加热,使活塞a 上升,当活塞a 上升的距离是汽缸高度的116时,求氧气的压强.答案 (1)320 K (2)43p 0解析 (1)活塞b 升至顶部的过程中,活塞a 不动,活塞a 、b 下方的氮气经历等压变化,设汽缸A 的容积为V 0,氮气初态的体积为V 1,温度为T 1,末态体积为V 2,温度为T 2,按题意,汽缸B 的容积为V 04,则V 1=34V 0+12×V 04=78V 0①V 2=34V 0+V 04=V 0②由盖—吕萨克定律有:V 1T 1=V 2T 2③由①②③式及所给的数据可得:T 2=320 K④(2)活塞b 升至顶部后,由于继续缓慢加热,活塞a 开始向上移动,直至活塞上升的距离是汽缸高度的116时,活塞a 上方的氧气经历等温变化,设氧气初态的体积为V 1′,压强为p 1′,末态体积为V 2′,压强为p 2′,由所给数据及玻意耳定律可得V 1′=14V 0,p 1′=p 0,V 2′=316V 0⑤p 1′V 1′=p 2′V 2′⑥由⑤⑥式可得:p 2′=43p 0.命题点三 “变质量气体”模型分析变质量气体问题时,要通过巧妙地选择研究对象,使变质量气体问题转化为定质量气体问题,用气体实验定律求解.(1)打气问题:选择原有气体和即将充入的气体作为研究对象,就可把充气过程中气体质量变化问题转化为定质量气体的状态变化问题.(2)抽气问题:将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可以看成是等温膨胀过程.(3)灌气问题:把大容器中的剩余气体和多个小容器中的气体整体作为研究对象,可将变质量问题转化为定质量问题.(4)漏气问题:选容器内剩余气体和漏出气体整体作为研究对象,便可使问题变成一定质量气体的状态变化,可用理想气体的状态方程求解.例5 如图9所示,一太阳能空气集热器,底面及侧面为隔热材料,顶面为透明玻璃板,集热器容积为V 0.开始时内部封闭气体的压强为p 0,经过太阳暴晒,气体温度由T 0=300 K 升至T 1=350 K.图9(1)求此时气体的压强;(2)保持T 1=350 K 不变,缓慢抽出部分气体,使气体压强再变回到p 0.求集热器内剩余气体的质量与原来总质量的比值. 答案 (1)76p 0 (2)67解析 (1)由题意知气体发生等容变化,由查理定律得p 0T 0=p 1T 1,解得p 1=T 1T 0p 0=350300p 0=76p 0.(2)抽气过程可等效为等温膨胀过程,设膨胀后气体的总体积为V 2,由玻意耳定律可得p 1V 0=p 0V 2 则V 2=p 1V 0p 0=76V 0 所以,集热器内剩余气体的质量与原来总质量的比值为ρV 0ρ·76V 0=67. 变式5 某自行车轮胎的容积为V ,里面已有压强为p 0的空气,现在要使轮胎内的气压增大到p ,设充气过程为等温过程,空气可看做理想气体,轮胎容积保持不变,则还要向轮胎充入温度相同、压强也是p 0、体积为________的空气. A.p 0p V B.pp 0V C.(p p 0-1)V D.(p p 0+1)V 答案 C解析 设充入的气体体积为V 0,根据玻意耳定律可得p 0(V +V 0)=pV ,解得V 0=(p p 0-1)V ,C 项正确.1.如图1所示,在长为l =57 cm 的一端封闭、另一端开口向上的竖直玻璃管内,用4 cm 高的水银柱封闭着51 cm 长的理想气体,管内外气体的温度均为33 ℃.现将水银徐徐注入管中,直到水银面与管口相平,此时管中气体的压强为多少?接着缓慢对玻璃管加热升温至多少时,管中刚好只剩下4 cm 高的水银柱?(大气压强为p 0=76 cmHg)图1答案 85 cmHg 318 K解析 设玻璃管的横截面积为S ,初态时,管内气体的温度为T 1=306 K ,体积为V 1=51S ,压强为p 1=80 cmHg.当水银面与管口相平时,水银柱高为H ,则管内气体的体积为V 2=(57-H )S ,压强为p 2=(76+H ) cmHg.由玻意耳定律得p 1V 1=p 2V 2,代入数据,得H 2+19H -252=0,解得H =9 cm 或H =-28 cm(舍去)所以p 2=85 cmHg设温度升至T 时,水银柱高为4 cm ,管内气体的体积为V 3=53S ,压强为p 3=80 cmHg.由盖—吕萨克定律得V 1T 1=V 3T,代入数据,解得T =318 K.2.(2017·河南六市一联)如图2所示,在两端封闭的均匀半圆管道内封闭有理想气体,管内有不计质量可自由移动的活塞P ,将管内气体分成两部分,其中OP 与管道水平直径的夹角θ=45°.两部分气体的温度均为T 0=300 K ,压强均为p 0=1.0×105 Pa.现对管道左侧气体缓慢加热,管道右侧气体温度保持不变,当可动活塞缓慢移到管道最低点时(不计摩擦).求:图2(1)管道右侧气体的压强;(2)管道左侧气体的温度.答案 (1)1.5×105Pa (2)900 K解析 (1)对于管道右侧气体,由于气体做等温变化,有: p 0V 1=p 2V 2V 2=23V 1解得p 2=1.5×105 Pa(2)对于管道左侧气体,根据理想气体状态方程,有 p 0V 1′T 0=p 2′V 2′TV 2′=2V 1′当活塞P 移动到最低点时,对活塞P 受力分析可得出两部分气体对活塞的压强相等,则有 p 2′=p 2解得T =900 K3.(2017·安徽江南十校联考)如图3所示,一圆柱形汽缸沿水平方向固定在桌面上,一定量的理想气体被活塞封闭其中,已知汽缸壁导热良好,活塞可沿汽缸壁无摩擦滑动.开始时气体压强为p ,活塞内表面相对汽缸底部的距离为L ,外界温度为T 0,现用一质量为m 的重锤通过不可伸长的轻质细绳跨过光滑轻质滑轮水平连接活塞,重新平衡后,重锤下降h .求:(已知外界大气的压强始终保持不变,重力加速度大小为g )图3(1)活塞的横截面积S .(2)若此后外界的温度变为T ,则重新达到平衡后汽缸内气柱的长度为多少?答案 (1)mg L +h ph (2)L +h T T 0解析 (1)由玻意耳定律可知pLS =p 1(L +h )S活塞受力平衡,有p 1S =pS -mg联立方程可得S =mg L +h ph(2)由盖—吕萨克定律有L +h S T 0=L 0S T解得:L 0=L +h T T 0. 4.如图4甲所示,左端封闭、内径相同的U 形细玻璃管竖直放置,左管中封闭有长为L =20 cm 的空气柱,两管水银面相平,水银柱足够长.已知大气压强为p 0=75 cmHg.图4(1)若将装置缓慢翻转180°,使U 形细玻璃管竖直倒置(水银未溢出),如图乙所示.当管中水银静止时,求左管中空气柱的长度;(2)若将图甲中的阀门S 打开,缓慢流出部分水银,然后关闭阀门S ,右管水银面下降了H =35 cm ,求左管水银面下降的高度.答案 (1)20 cm 或37.5 cm (2)10 cm解析 (1)将装置缓慢翻转180°,设左管中空气柱的长度增加量为h ,由玻意耳定律得p 0L =(p 0-2h )(L +h )解得h =0或h =17.5 cm则左管中空气柱的长度为20 cm 或37.5 cm(2)若将题图甲中阀门S 打开,缓慢流出部分水银,然后关闭阀门S ,右管水银面下降了H =35 cm ,设左管水银面下降的高度为l ,由玻意耳定律得p 0L =[p 0-(H -l )](L +l )解得l =10 cm 或l =-70 cm(舍去)即左管水银面下降的高度为10 cm.5.(2017·湖南六校联考)如图5所示,除右侧壁导热良好外,其余部分均绝热的汽缸水平放置,MN 为汽缸右侧壁.汽缸的总长度为L =80 m ,一厚度不计的绝热活塞将一定质量的氮气和氧气分别封闭在左右两侧(活塞不漏气).在汽缸内距左侧壁d =30 cm 处设有卡环A 、B (卡环体积忽略不计),使活塞只能向右滑动,开始时活塞在AB 右侧紧挨AB ,缸内左侧氮气的压强p 1=0.8×105 Pa ,右侧氧气的压强p 2=1.0×105Pa ,两边气体和环境的温度均为t 1=27 ℃,现通过左侧汽缸内的电热丝缓慢加热,使氮气温度缓慢升高.设外界环境温度不变.图5(1)求活塞恰好要离开卡环时氮气的温度;(2)继续缓慢加热汽缸内左侧氮气,使氮气温度升高至227 ℃,求活塞移动的距离. 答案 (1)375 K (2)5.6 cm解析 (1)活塞“恰好要离开卡环”即汽缸内氮气压强与氧气压强相等,取封闭的氮气为研究对象:初状态:p 1=0.8×105 Pa T 1=300 K V 1=dS末状态:p 1′=p 2=1.0×105 Pa T 1′ V 1′=V 1由查理定律,有p 1T 1=p 1′T 1′代入数据解得:T 1′=375 K(2)继续缓慢加热汽缸内气体,使氮气温度升高至T 3=(227+273) K =500 K ,设活塞移动的距离为x取氮气为研究对象:初状态:p 1=0.8×105 Pa T 1=300 K V 1=dS末状态:p 3 T 3=500 K V 3=dS +xS由理想气体状态方程,有p 1V 1T 1=p 3V 3T 3 取氧气为研究对象:初状态:p 2=1.0×105 Pa T 1=300 K V 2=(L -d )S末状态:p 2′=p 3 T 2′=300 K V 2′=LS -V 3由玻意耳定律:p 2V 2=p 2′V 2′代入数据解得:向右移动的距离x ≈5.6 cm。

2019年度高考物理一轮复习第十三章热学专题强化十四应用气体实验定律解决“三类模型问题”学案

2019年度高考物理一轮复习第十三章热学专题强化十四应用气体实验定律解决“三类模型问题”学案

专题强化十四应用气体实验定律解决“三类模型问题”专题解读 1.本专题是气体实验定律在玻璃管液封模型、汽缸活塞类模型、变质量气体模型中的应用,高考在选考模块中通常以计算题的形式命题.2.学好本专题可以帮助同学们熟练的选取研究对象和状态变化过程,掌握处理三类模型问题的基本思路和方法.3.本专题用到的相关知识和方法有:受力分析、压强的求解方法、气体实验定律等.命题点一“玻璃管液封”模型1.三大气体实验定律(1)玻意耳定律(等温变化):p1V1=p2V2或pV=C(常数).(2)查理定律(等容变化):p1T1=p2T2或pT=C(常数).(3)盖—吕萨克定律(等压变化):V1T1=V2T2或VT=C(常数).2.利用气体实验定律及气态方程解决问题的基本思路3.玻璃管液封模型求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意:(1)液体因重力产生的压强大小为p=ρgh(其中h为至液面的竖直高度);(2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力;(3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等;(4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷.类型1 单独气体问题例1(2017·全国卷Ⅲ·33(2))一种测量稀薄气体压强的仪器如图1(a)所示,玻璃泡M 的上端和下端分别连通两竖直玻璃细管K1和K2.K1长为l,顶端封闭,K2上端与待测气体连通;M下端经橡皮软管与充有水银的容器R连通.开始测量时,M与K2相通;逐渐提升R,直到K2中水银面与K1顶端等高,此时水银已进入K1,且K1中水银面比顶端低h,如图(b)所示.设测量过程中温度、与K2相通的待测气体的压强均保持不变.已知K1和K2的内径均为d,M 的容积为V0,水银的密度为ρ,重力加速度大小为g.求:图1(1)待测气体的压强;(2)该仪器能够测量的最大压强.答案(1)ρπgh2d24V0+πd2l-h(2)πρgl2d24V0解析(1)水银面上升至M的下端使玻璃泡中气体恰好被封住,设此时被封闭的气体的体积为V,压强等于待测气体的压强p.提升R,直到K2中水银面与K1顶端等高时,K1中水银面比顶端低h;设此时封闭气体的压强为p1,体积为V1,则V=V0+14πd2l ①V1=14πd2h ②由力学平衡条件得p1=p+ρgh ③整个过程为等温过程,由玻意耳定律得pV=p1V1 ④联立①②③④式得p=ρπgh2d24V0+πd2l-h⑤(2)由题意知h≤l ⑥联立⑤⑥式有p≤πρgl2d24V0⑦该仪器能够测量的最大压强为p max=πρgl2d24V0变式1(2015·全国卷Ⅱ·33(2))如图2,一粗细均匀的U形管竖直放置,A侧上端封闭,B侧上端与大气相通,下端开口处开关K关闭;A侧空气柱的长度为l=10.0 cm,B侧水银面比A侧的高h=3.0 cm.现将开关K打开,从U形管中放出部分水银,当两侧水银面的高度差为h1=10.0 cm时将开关K关闭.已知大气压强p0=75.0 cmHg.图2(1)求放出部分水银后A侧空气柱的长度;(2)此后再向B侧注入水银,使A、B两侧的水银面达到同一高度,求注入的水银在管内的长度.答案(1)12.0 cm (2)13.2 cm解析(1)以cmHg为压强单位.设A侧空气柱长度l=10.0 cm时的压强为p;当两侧水银面的高度差为h1=10.0 cm时,空气柱的长度为l1,压强为p1.由玻意耳定律得pl=p1l1 ①由力学平衡条件得p=p0+h ②打开开关K放出水银的过程中,B侧水银面处的压强始终为p0,而A侧水银面处的压强随空气柱长度的增加逐渐减小,B、A两侧水银面的高度差也随之减小,直至B侧水银面低于A 侧水银面h1为止.由力学平衡条件有p1=p0-h1 ③联立①②③式,并代入题给数据得l1=12.0 cm ④(2)当A、B两侧的水银面达到同一高度时,设A侧空气柱的长度为l2,压强为p2.由玻意耳定律得pl=p2l2 ⑤由力学平衡条件有p2=p0 ⑥联立②⑤⑥式,并代入题给数据得l2=10.4 cm ⑦设注入的水银在管内的长度为Δh,依题意得Δh=2(l1-l2)+h1 ⑧联立④⑦⑧式,并代入题给数据得Δh=13.2 cm.类型2 关联气体问题例2(2016·全国卷Ⅲ·33(2))一U形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管内汞柱及空气柱长度如图3所示.用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求此时右侧管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p0=75.0 cmHg.环境温度不变.(保留三位有效数字)图3答案144 cmHg 9.42 cm解析设初始时,右管中空气柱的压强为p1,长度为l1;左管中空气柱的压强为p2=p0,长度为l2.活塞被下推h后,右管中空气柱的压强为p1′,长度为l1′;左管中空气柱的压强为p2′,长度为l2′.以cmHg为压强单位.由题给条件得p1=p0+(20.0-5.00) cmHg=90 cmHg l1=20.0 cm ①l1′=(20.0-20.0-5.002) cm=12.5 cm ②由玻意耳定律得p1l1S=p1′l1′S ③联立①②③式和题给条件得p1′=144 cmHg ④依题意p2′=p1′⑤l2′=4.00 cm+20.0-5.002cm-h=11.5 cm-h ⑥由玻意耳定律得p2l2S=p2′l2′S ⑦联立④⑤⑥⑦式和题给条件得h≈9.42 cm.变式2如图4所示,由U形管和细管连接的玻璃泡A、B和C浸泡在温度均为0 ℃的水槽中,B的容积是A的3倍.阀门S将A和B两部分隔开.A内为真空,B和C内都充有气体.U 形管内左边水银柱比右边的低60 mm.打开阀门S,整个系统稳定后,U形管内左右水银柱高度相等.假设U形管和细管中的气体体积远小于玻璃泡的容积.图4(1)求玻璃泡C中气体的压强(以mmHg为单位);(2)将右侧水槽中的水从0 ℃加热到一定温度时,U形管内左右水银柱高度差又为60 mm,求加热后右侧水槽的水温.答案(1)180 mmHg (2)364 K解析(1)在打开阀门S前,两水槽水温均为T0=273 K.设玻璃泡B中气体的压强为p1,体积为V B,玻璃泡C中气体的压强为p C,依题意有p1=p C +Δp ①式中Δp=60 mmHg.打开阀门S后,两水槽水温仍为T0,设玻璃泡B中气体的压强为p B,依题意,有p B=p C ②玻璃泡A和B中气体的体积V2=V A+V B ③根据玻意耳定律得p1V B=p B V2 ④联立①②③④式,并代入已知数据得p C=V BV AΔp=180 mmHg ⑤(2)当右侧水槽的水温加热至T′时,U形管左右水银柱高度差为Δp,玻璃泡C中气体的压强p C′=p B+Δp ⑥玻璃泡C中的气体体积不变,根据查理定律得p CT0=p C′T′⑦联立②⑤⑥⑦式,并代入题给数据得T′=364 K.命题点二“汽缸活塞类”模型汽缸活塞类问题是热学部分典型的物理综合题,它需要考虑气体、汽缸或活塞等多个研究对象,涉及热学、力学等物理知识,需要灵活、综合地应用知识来解决问题.1.一般思路(1)确定研究对象,一般地说,研究对象分两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统).(2)分析物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程.(3)挖掘题目的隐含条件,如几何关系等,列出辅助方程.(4)多个方程联立求解.对求解的结果注意检验它们的合理性.2.常见类型(1)气体系统处于平衡状态,需综合应用气体实验定律和物体的平衡条件解题.(2)气体系统处于力学非平衡状态,需要综合应用气体实验定律和牛顿运动定律解题.(3)两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解.说明当选择力学研究对象进行分析时,研究对象的选取并不唯一,可以灵活地选整体或部分为研究对象进行受力分析,列出平衡方程或动力学方程.类型1 单独气体问题例3(2015·全国卷Ⅰ·33(2))如图5,一固定的竖直汽缸由一大一小两个同轴圆筒组成,两圆筒中各有一个活塞.已知大活塞的质量为m1=2.50 kg,横截面积为S1=80.0 cm2;小活塞的质量为m2=1.50 kg,横截面积为S2=40.0 cm2;两活塞用刚性轻杆连接,间距保持为l =40.0 cm;汽缸外大气的压强为p=1.00×105 Pa,温度为T=303 K.初始时大活塞与大圆筒底部相距l2,两活塞间封闭气体的温度为T1=495 K.现汽缸内气体温度缓慢下降,活塞缓慢下移.忽略两活塞与汽缸壁之间的摩擦,重力加速度大小g取 10 m/s2.求:图5(1)在大活塞与大圆筒底部接触前的瞬间,汽缸内封闭气体的温度;(2)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强.答案(1)330 K (2)1.01×105 Pa解析(1)大小活塞在缓慢下移过程中,受力情况不变,汽缸内气体压强不变,由盖—吕萨克定律得V1T1=V2T2初状态V1=l2(S1+S2),T1=495 K末状态V2=lS2代入可得T 2=23T 1=330 K(2)对大、小活塞受力分析则有m 1g +m 2g +pS 1+p 1S 2=p 1S 1+pS 2可得p 1=1.1×105Pa缸内封闭的气体与缸外大气达到热平衡过程中,气体体积不变,由查理定律得p 1T 2=p 2T 3T 3=T =303 K ,解得p 2=1.01×105Pa.变式3如图6所示,两端开口的汽缸水平固定,A、B 是两个厚度不计的活塞,可在汽缸内无摩擦滑动,面积分别为S 1=20 cm 2,S 2=10 cm 2,它们之间用一根水平细杆连接,B 通过水平细绳绕过光滑的轻质定滑轮与质量为M =2 kg 的重物C 连接,静止时汽缸中的气体温度T 1=600 K ,汽缸两部分的气柱长均为L ,已知大气压强p 0=1×105Pa ,取g =10 m/s 2,缸内气体可看做理想气体.图6(1)活塞静止时,求汽缸内气体的压强;(2)若降低汽缸内气体的温度,当活塞A 缓慢向右移动L2时,求汽缸内气体的温度.答案(1)1.2×105Pa(2)500 K解析(1)设静止时汽缸内气体压强为p 1,活塞受力平衡p 1S 1+p 0S2=p 0S 1+p 1S 2+Mg 代入数据解得p 1=1.2×105Pa(2)由活塞受力平衡可知缸内气体压强没有变化,设开始温度为T 1,变化后温度为T 2,由盖—吕萨克定律得S 1L +S 2L T 1=S 1·L2+S 2·3L2T 2代入数据解得T 2=500 K.类型2 关联气体问题例4(2017·全国卷Ⅰ·33(2))如图7,容积均为V 的汽缸A 、B 下端有细管(容积可忽略)连通,阀门K 2位于细管的中部,A 、B 的顶部各有一阀门K 1、K 3;B 中有一可自由滑动的活塞(质量、体积均可忽略).初始时,三个阀门均打开,活塞在B 的底部;关闭K 2、K 3,通过K 1给汽缸充气,使A 中气体的压强达到大气压p 0的3倍后关闭K 1.已知室温为27 ℃,汽缸导热.图7(1)打开K2,求稳定时活塞上方气体的体积和压强;(2)接着打开K3,求稳定时活塞的位置;(3)再缓慢加热汽缸内气体使其温度升高20 ℃,求此时活塞下方气体的压强.答案(1)V22p0(2)B的顶部(3)1.6p0解析(1)设打开K2后,稳定时活塞上方气体的压强为p1,体积为V1.依题意,被活塞分开的两部分气体都经历等温过程.由玻意耳定律得p0V=p1V1 ①(3p0)V=p1(2V-V1) ②联立①②式得V1=V2③p1=2p0 ④(2)打开K3后,由④式知,活塞必定上升.设在活塞下方气体与A中气体的体积之和为V2(V2≤2V)时,活塞下气体压强为p2,由玻意耳定律得(3p0)V=p2V2 ⑤由⑤式得p2=3VV2p0 ⑥由⑥式知,打开K3后活塞上升直到B的顶部为止;此时p2为p2′=3 2 p0(3)设加热后活塞下方气体的压强为p3,气体温度从T1=300 K升高到T2=320 K的等容过程中,由查理定律得p2′T1=p3T2⑦将有关数据代入⑦式得p3=1.6p0变式4(2014·新课标全国Ⅱ·33(2))如图8所示,两汽缸A、B粗细均匀,等高且内壁光滑,其下部由体积可忽略的细管连通;A的直径是B的2倍,A上端封闭,B上端与大气连通;两汽缸除A顶部导热外,其余部分均绝热,两汽缸中各有一厚度可忽略的绝热轻活塞a、b,活塞下方充有氮气,活塞a上方充有氧气.当大气压为p0、外界和汽缸内气体温度均为7 ℃且平衡时,活塞a离汽缸顶的距离是汽缸高度的14,活塞b在汽缸正中间.图8(1)现通过电阻丝缓慢加热氮气,当活塞b恰好升至顶部时,求氮气的温度;(2)继续缓慢加热,使活塞a上升,当活塞a上升的距离是汽缸高度的116时,求氧气的压强.答案(1)320 K (2)4 3 p0解析(1)活塞b升至顶部的过程中,活塞a不动,活塞a、b下方的氮气经历等压变化,设汽缸A的容积为V0,氮气初态的体积为V1,温度为T1,末态体积为V2,温度为T2,按题意,汽缸B的容积为V04,则V1=34V0+12×V04=78V0 ①V2=34V0+V04=V0 ②由盖—吕萨克定律有:V1 T1=V2T2③由①②③式及所给的数据可得:T2=320 K ④(2)活塞b升至顶部后,由于继续缓慢加热,活塞a开始向上移动,直至活塞上升的距离是汽缸高度的116时,活塞a上方的氧气经历等温变化,设氧气初态的体积为V1′,压强为p1′,末态体积为V2′,压强为p2′,由所给数据及玻意耳定律可得V1′=14V0,p1′=p0,V2′=316V0 ⑤p1′V1′=p2′V2′⑥由⑤⑥式可得:p2′=43p0.命题点三“变质量气体”模型分析变质量气体问题时,要通过巧妙地选择研究对象,使变质量气体问题转化为定质量气体问题,用气体实验定律求解.(1)打气问题:选择原有气体和即将充入的气体作为研究对象,就可把充气过程中气体质量变化问题转化为定质量气体的状态变化问题.(2)抽气问题:将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可以看成是等温膨胀过程.(3)灌气问题:把大容器中的剩余气体和多个小容器中的气体整体作为研究对象,可将变质量问题转化为定质量问题.(4)漏气问题:选容器内剩余气体和漏出气体整体作为研究对象,便可使问题变成一定质量气体的状态变化,可用理想气体的状态方程求解.例5如图9所示,一太阳能空气集热器,底面及侧面为隔热材料,顶面为透明玻璃板,集热器容积为V 0.开始时内部封闭气体的压强为p 0,经过太阳暴晒,气体温度由T 0=300 K升至T 1=350 K.图9(1)求此时气体的压强;(2)保持T 1=350 K 不变,缓慢抽出部分气体,使气体压强再变回到p 0.求集热器内剩余气体的质量与原来总质量的比值.答案(1)76p 0(2)67解析(1)由题意知气体发生等容变化,由查理定律得p 0T 0=p 1T 1,解得p 1=T 1T 0p 0=350300p 0=76p 0.(2)抽气过程可等效为等温膨胀过程,设膨胀后气体的总体积为V 2,由玻意耳定律可得p 1V 0=p 0V 2则V 2=p 1V 0p 0=76V 0所以,集热器内剩余气体的质量与原来总质量的比值为ρV 0ρ·76V 0=67. 变式5某自行车轮胎的容积为V ,里面已有压强为p 0的空气,现在要使轮胎内的气压增。

12.高考必考十四大经典物理专题集锦 应用气体实验定律解决“三类模型问题”(原卷版)

12.高考必考十四大经典物理专题集锦 应用气体实验定律解决“三类模型问题”(原卷版)

【专题12】应用气体实验定律解决“三类模型问题”(原卷版)考点分类:考点分类见下表考点内容常见题型及要求考点一 “玻璃管液封”模型 计算题 考点二 “汽缸活塞类”模型 计算题 考点三 “变质量气体”模型 计算题考点一: “玻璃管液封”模型1.三大气体实验定律(1)玻意耳定律(等温变化):p 1V 1=p 2V 2或pV =C (常数). (2)查理定律(等容变化):p 1T 1=p 2T 2或pT =C (常数).(3)盖—吕萨克定律(等压变化):V 1T 1=V 2T 2或VT =C (常数).2.利用气体实验定律及气态方程解决问题的基本思路3.玻璃管液封模型求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意:(1)液体因重力产生的压强大小为p=ρgh(其中h为至液面的竖直高度);(2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力;(3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等;(4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷.考点二“汽缸活塞类”模型汽缸活塞类问题是热学部分典型的物理综合题,它需要考虑气体、汽缸或活塞等多个研究对象,涉及热学、力学等物理知识,需要灵活、综合地应用知识来解决问题.1.一般思路(1)确定研究对象,一般地说,研究对象分两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统).(2)分析物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程.(3)挖掘题目的隐含条件,如几何关系等,列出辅助方程.(4)多个方程联立求解.对求解的结果注意检验它们的合理性.2.常见类型(1)气体系统处于平衡状态,需综合应用气体实验定律和物体的平衡条件解题.(2)气体系统处于力学非平衡状态,需要综合应用气体实验定律和牛顿运动定律解题.(3)两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解.说明当选择力学研究对象进行分析时,研究对象的选取并不唯一,可以灵活地选整体或部分为研究对象进行受力分析,列出平衡方程或动力学方程.考点三:“变质量气体”模型分析变质量气体问题时,要通过巧妙地选择研究对象,使变质量气体问题转化为定质量气体问题,用气体实验定律求解.(1)打气问题:选择原有气体和即将充入的气体作为研究对象,就可把充气过程中气体质量变化问题转化为定质量气体的状态变化问题.(2)抽气问题:将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可以看成是等温膨胀过程.(3)灌气问题:把大容器中的剩余气体和多个小容器中的气体整体作为研究对象,可将变质量问题转化为定质量问题.(4)漏气问题:选容器内剩余气体和漏出气体整体作为研究对象,便可使问题变成一定质量气体的状态变化,可用理想气体的状态方程求解.★考点一:“玻璃管液封”模型◆典例一:(单独气体问题)(2019广东深圳二模)某同学设计了测量液体密度的装置。

2024届高考物理知识点复习:气体实验定律的综合应用(解析版)

2024届高考物理知识点复习:气体实验定律的综合应用(解析版)

气体实验定律的综合应用目录题型一 气体实验定律的理解和应用 题型二 应用气体实验定律解决“三类模型”问题 类型1 “玻璃管液封”模型 类型2 “汽缸活塞类”模型类型3 变质量气体模型题型三 热力学第一定律与气体实验定律的综合应用题型一气体实验定律的理解和应用1理想气体状态方程与气体实验定律的关系p 1V 1T 1=p 2V 2T 2温度不变:p 1V 1=p 2V 2(玻意耳定律)体积不变:p 1T 1=p 2T 2(查理定律)压强不变:V 1T 1=V 2T 2(盖-吕萨克定律)2两个重要的推论(1)查理定律的推论:Δp =p 1T 1ΔT (2)盖-吕萨克定律的推论:ΔV =V 1T 1ΔT 3利用气体实验定律解决问题的基本思路1(2023·广东深圳·校考模拟预测)为方便抽取密封药瓶里的药液,护士一般先用注射器注入少量气体到药瓶里后再抽取药液,如图所示,某种药瓶的容积为0.9mL ,内装有0.5mL 的药液,瓶内气体压强为1.0×105Pa ,护士把注射器内横截面积为0.3cm 2、长度为0.4cm 、压强为1.0×105Pa 的气体注入药瓶,若瓶内外温度相同且保持不变,气体视为理想气体。

(1)注入气体后与注入气体前相比,瓶内封闭气体的总内能如何变化?请简述原因。

(2)求此时药瓶内气体的压强。

【答案】(1)总内能增加,原因见解析;(2)p1=1.3×105Pa【详解】(1)注入气体后与注入气体前相比,瓶内封闭气体的总内能增加;注入气体后,瓶内封闭气体的分子总数增加,温度保持不变故分子平均动能保持不变,因此注入气体后瓶内封闭气体的总内能增加。

(2)以注入后的所有气体为研究对象,由题意可知瓶内气体发生等温变化,设瓶内气体体积为V1,有V1=0.9mL-0.5mL=0.4mL=0.4cm3注射器内气体体积为V2,有V2=0.3×0.4cm3=0.12cm3根据玻意耳定律有p0V1+V2=p1V1代入数据解得p1=1.3×105Pa2.(2023·山东·模拟预测)某同学利用实验室闲置的1m长的玻璃管和一个标称4.5L的导热金属容器做了一个简易温度计。

2021届高三物理一轮的复习——应用气体实验定律解决“三类模型”问题

2021届高三物理一轮的复习——应用气体实验定律解决“三类模型”问题

2021届高三物理一轮的复习——应用气体实验定律解决“三类模型”问题专题解读 1.本专题是气体实验定律在玻璃管液封模型、汽缸活塞类模型、变质量气体模型中的应用,高考在选考模块中通常以计算题的形式命题.2.学好本专题可以帮助同学们熟练地选取研究对象和状态变化过程,掌握处理“三类模型”问题的基本思路和方法.3.本专题用到的相关知识和方法有:受力分析、压强的求解方法、气体实验定律等.1.气体实验定律(1)玻意耳定律(等温变化):p 1V 1=p 2V 2或pV =C (常数).(2)查理定律(等容变化):p 1T 1=p 2T 2或p T=C (常数). (3)盖—吕萨克定律(等压变化):V 1T 1=V 2T 2或V T=C (常数). 2.解题基本思路3.玻璃管液封模型求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意:(1)液体因重力产生的压强大小为p =ρgh (其中h 为液面的竖直高度);(2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力;(3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等;(4)当液体为水银时,可灵活应用压强单位“cmHg ”等,使计算过程简捷.类型1 单独气体问题例1 (2019·全国卷Ⅲ·33(2))如图1,一粗细均匀的细管开口向上竖直放置,管内有一段高度为2.0 cm的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为2.0 cm.若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同.已知大气压强为76 cmHg,环境温度为296 K.图1(1)求细管的长度;(2)若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度.答案(1)41 cm(2)312 K解析(1)设细管的长度为L,横截面的面积为S,水银柱高度为h;初始时,设水银柱上表面到管口的距离为h1,被密封气体的体积为V,压强为p;细管倒置时,被密封气体的体积为V1,压强为p1.由玻意耳定律有pV=p1V1①由力的平衡条件有p=p0+ρgh②p1=p0-ρgh③式中,ρ、g分别为水银的密度和重力加速度的大小,p0为大气压强.由题意有V=S(L-h1-h)④V1=S(L-h)⑤由①②③④⑤式和题给条件得L=41 cm⑥(2)设气体被加热前后的温度分别为T0和T,由盖-吕萨克定律有V T0=V1T⑦由④⑤⑥⑦式和题给数据得T=312 K.变式1(2019·安徽蚌埠市第二次质量检测)如图2所示,U形管内盛有水银,一端开口,另一端封闭一定质量的理想气体,被封闭气柱的长度为10 cm,左右两管液面高度差为1.7 cm,。

第十三章 专题强化十四 用气体实验定律解决三类模型(课前预习)


命题点一 “玻璃管液封”模型
1.三大气体实验定律 (1)玻意耳定律(等温变化):p1V1=p2V2或pV=C(常数). (2)查理定律(等容变化):Tp11=Tp22或Tp=C(常数). (3)盖—吕萨克定律(等压变化):VT11=VT22或VT=C(常数).
2.利用气体实验定律及气态方程解决问题的基本思路
3.玻璃管液封模型 求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程, 要注意: (1)液体因重力产生的压强大小为p=ρgh(其中h为至液面的竖直高度); (2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力; (3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水 平面上各处压强相等; (4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷.
第十三章 热学
专题强化十四 应用气体实验定律解决“三类模型问题”
专题解读
1.本专题是气体实验定律在玻璃管液封模型、汽缸活塞类模型、变质量气体 模型中的应用,高考在选考模块中通常以计算题的形式命题. 2.学好本专题可以帮助同学们熟练的选取研究对象和状态变化过程,掌握处 理三类模型问题的基本思路和方法. 3.本专题用到的相关知识和方法有:受力分析、压强的求解方法、气体实验 定律等.
命题点二 “汽缸活塞类”模型
汽缸活塞类问题是热学部分典型的物理综合题,它需要考虑气体、汽缸或活 塞等多个研究对象,涉及热学、力学等物理知识,需要灵活、综合地应用知 识来解决问题. 1.一般思路 (1)确定研究对象,一般地说,研究对象分两类:一类是热学研究对象(一定 质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统). (2)分析物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依 据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力 学规律列出方程. (3)挖掘题目的隐含条件,如几何关系等,列出辅助方程. (4)多个方程联立求解.对求解的结果注意检验它们的合量气体问题时,要通过巧妙地选择研究对象,使变质量气体问题转化 为定质量气体问题,用气体实验定律求解. (1)打气问题:选择原有气体和即将充入的气体作为研究对象,就可把充气过程 中气体质量变化问题转化为定质量气体的状态变化问题. (2)抽气问题:将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不 变,故抽气过程可以看成是等温膨胀过程. (3)灌气问题:把大容器中的剩余气体和多个小容器中的气体整体作为研究对象, 可将变质量问题转化为定质量问题. (4)漏气问题:选容器内剩余气体和漏出气体整体作为研究对象,便可使问题变 成一定质量气体的状态变化,可用理想气体的状态方程求解.

2022版高考物理一轮复习第十二章热学专题强化十二应用气体实验定律解决“三类模型”问题学案新人教版

专题强化十二 应用气体实验定律解决“三类模型”问题1.三大气体实验定律 (1)玻意耳定律(等温变化)p 1V 1=p 2V 2或pV =C (常数)(2)查理定律(等容变化)p 1T 1=p 2T 2或pT=C (常数) (3)盖—吕萨克定律(等压变化)V 1T 1=V 2T 2或VT=C (常数) 2.理想气体状态方程p 1V 1T 1=p 2V 2T 2或pV T=C 3.利用气体实验定律解决问题的基本思路选对象:根据题意,选出所研究的某一部分一定质量气体找参量:分别找出这部分气体状态发生变化前后的p 、V 、T 数值或表达式,压强的确定是关键认过程:认清变化过程,正确选用物理规律列方程:选择实验定律列式求解,有时要讨论结果的合理性 一、“玻璃管液封”模型求液柱封闭的气体压强时,一般以液片或液柱为研究对象分析受力、列平衡方程,要注意:(1)液体因重力产生的压强大小为p =ρgh (其中h 为液面的竖直高度); (2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力;(3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等;(4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷.例1 (2019·全国卷Ⅲ)如图,一粗细均匀的细管开口向上竖直放置,管内有一段高度为2.0 cm 的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为2.0 cm 。

若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同。

已知大气压强为76 cmHg ,环境温度为296 K 。

(1)求细管的长度;(2)若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度。

[解析] (1)设细管的长度为L,横截面的面积为S,水银柱高度为h;初始时,设水银柱上表面到管口的距离为h1,被密封气体的体积为V,压强为p;细管倒置时,气体体积为V1,压强为p1。

课时作业2:专题强化十四 应用气体实验定律解决“三类模型问题”

专题强化十四 应用气体实验定律解决“三类模型问题”1.如图1所示,在长为l =57 cm 的一端封闭、另一端开口向上的竖直玻璃管内,用4 cm 高的水银柱封闭着51 cm 长的理想气体,管内外气体的温度均为33 ℃.现将水银徐徐注入管中,直到水银面与管口相平,此时管中气体的压强为多少?接着缓慢对玻璃管加热升温至多少时,管中刚好只剩下4 cm 高的水银柱?(大气压强为p 0=76 cmHg)图1答案 85 cmHg 318 K解析 设玻璃管的横截面积为S ,初态时,管内气体的温度为T 1=306 K ,体积为V 1=51S ,压强为p 1=80 cmHg.当水银面与管口相平时,水银柱高为H ,则管内气体的体积为V 2=(57-H )S ,压强为p 2=(76+H ) cmHg.由玻意耳定律得p 1V 1=p 2V 2,代入数据,得H 2+19H -252=0,解得H =9 cm 或H =-28 cm(舍去)所以p 2=85 cmHg设温度升至T 时,水银柱高为4 cm ,管内气体的体积为V 3=53S ,压强为p 3=80 cmHg.由盖—吕萨克定律得V 1T 1=V 3T,代入数据,解得T =318 K. 2.(2017·河南六市一联)如图2所示,在两端封闭的均匀半圆管道内封闭有理想气体,管内有不计质量可自由移动的活塞P ,将管内气体分成两部分,其中OP 与管道水平直径的夹角θ=45°.两部分气体的温度均为T 0=300 K ,压强均为p 0=1.0×105 Pa.现对管道左侧气体缓慢加热,管道右侧气体温度保持不变,当可动活塞缓慢移到管道最低点时(不计摩擦).求:图2(1)管道右侧气体的压强;(2)管道左侧气体的温度.答案 (1)1.5×105 Pa (2)900 K解析 (1)对于管道右侧气体,由于气体做等温变化,有:p 0V 1=p 2V 2V 2=23V 1 解得p 2=1.5×105 Pa(2)对于管道左侧气体,根据理想气体状态方程,有p 0V 1′T 0=p 2′V 2′TV 2′=2V 1′当活塞P 移动到最低点时,对活塞P 受力分析可得出两部分气体对活塞的压强相等,则有 p 2′=p 2解得T =900 K3.(2017·安徽江南十校联考)如图3所示,一圆柱形汽缸沿水平方向固定在桌面上,一定量的理想气体被活塞封闭其中,已知汽缸壁导热良好,活塞可沿汽缸壁无摩擦滑动.开始时气体压强为p ,活塞内表面相对汽缸底部的距离为L ,外界温度为T 0,现用一质量为m 的重锤通过不可伸长的轻质细绳跨过光滑轻质滑轮水平连接活塞,重新平衡后,重锤下降h .求:(已知外界大气的压强始终保持不变,重力加速度大小为g )图3(1)活塞的横截面积S .(2)若此后外界的温度变为T ,则重新达到平衡后汽缸内气柱的长度为多少? 答案 (1)mg (L +h )ph (2)(L +h )T T 0解析 (1)由玻意耳定律可知pLS =p 1(L +h )S活塞受力平衡,有p 1S =pS -mg联立方程可得S =mg (L +h )ph(2)由盖—吕萨克定律有(L +h )S T 0=L 0S T解得:L 0=(L +h )T T 0. 4.如图4甲所示,左端封闭、内径相同的U 形细玻璃管竖直放置,左管中封闭有长为L =20 cm 的空气柱,两管水银面相平,水银柱足够长.已知大气压强为p 0=75 cmHg.图4(1)若将装置缓慢翻转180°,使U形细玻璃管竖直倒置(水银未溢出),如图乙所示.当管中水银静止时,求左管中空气柱的长度;(2)若将图甲中的阀门S打开,缓慢流出部分水银,然后关闭阀门S,右管水银面下降了H=35 cm,求左管水银面下降的高度.答案(1)20 cm或37.5 cm(2)10 cm解析(1)将装置缓慢翻转180°,设左管中空气柱的长度增加量为h,由玻意耳定律得p0L=(p0-2h)(L+h)解得h=0或h=17.5 cm则左管中空气柱的长度为20 cm或37.5 cm(2)若将题图甲中阀门S打开,缓慢流出部分水银,然后关闭阀门S,右管水银面下降了H=35 cm,设左管水银面下降的高度为l,由玻意耳定律得p0L=[p0-(H-l)](L+l)解得l=10 cm或l=-70 cm(舍去)即左管水银面下降的高度为10 cm.5.(2017·湖南六校联考)如图5所示,除右侧壁导热良好外,其余部分均绝热的汽缸水平放置,MN为汽缸右侧壁.汽缸的总长度为L=80 m,一厚度不计的绝热活塞将一定质量的氮气和氧气分别封闭在左右两侧(活塞不漏气).在汽缸内距左侧壁d=30 cm处设有卡环A、B(卡环体积忽略不计),使活塞只能向右滑动,开始时活塞在AB右侧紧挨AB,缸内左侧氮气的压强p1=0.8×105 Pa,右侧氧气的压强p2=1.0×105 Pa,两边气体和环境的温度均为t1=27 ℃,现通过左侧汽缸内的电热丝缓慢加热,使氮气温度缓慢升高.设外界环境温度不变.图5(1)求活塞恰好要离开卡环时氮气的温度;(2)继续缓慢加热汽缸内左侧氮气,使氮气温度升高至227 ℃,求活塞移动的距离. 答案 (1)375 K (2)5.6 cm解析 (1)活塞“恰好要离开卡环”即汽缸内氮气压强与氧气压强相等,取封闭的氮气为研究对象:初状态:p 1=0.8×105 Pa T 1=300 K V 1=dS末状态:p 1′=p 2=1.0×105 Pa T 1′ V 1′=V 1由查理定律,有p 1T 1=p 1′T 1′代入数据解得:T 1′=375 K(2)继续缓慢加热汽缸内气体,使氮气温度升高至T 3=(227+273) K =500 K ,设活塞移动的距离为x取氮气为研究对象:初状态:p 1=0.8×105 Pa T 1=300 K V 1=dS末状态:p 3 T 3=500 K V 3=dS +xS由理想气体状态方程,有p 1V 1T 1=p 3V 3T 3取氧气为研究对象:初状态:p 2=1.0×105 Pa T 1=300 K V 2=(L -d )S末状态:p 2′=p 3 T 2′=300 K V 2′=LS -V 3由玻意耳定律:p 2V 2=p 2′V 2′代入数据解得:向右移动的距离x ≈5.6 cm。

高考物理一轮复习第十三章热学专题强化十四应用气体实验定律解决“三类模型问题”学案(2021年整理)

2019年度高考物理一轮复习第十三章热学专题强化十四应用气体实验定律解决“三类模型问题”学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年度高考物理一轮复习第十三章热学专题强化十四应用气体实验定律解决“三类模型问题”学案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年度高考物理一轮复习第十三章热学专题强化十四应用气体实验定律解决“三类模型问题”学案的全部内容。

专题强化十四应用气体实验定律解决“三类模型问题”专题解读 1。

本专题是气体实验定律在玻璃管液封模型、汽缸活塞类模型、变质量气体模型中的应用,高考在选考模块中通常以计算题的形式命题。

2。

学好本专题可以帮助同学们熟练的选取研究对象和状态变化过程,掌握处理三类模型问题的基本思路和方法。

3.本专题用到的相关知识和方法有:受力分析、压强的求解方法、气体实验定律等.命题点一“玻璃管液封”模型1.三大气体实验定律(1)玻意耳定律(等温变化):p1V1=p2V2或pV=C(常数).(2)查理定律(等容变化):错误!=错误!或错误!=C(常数).(3)盖—吕萨克定律(等压变化):错误!=错误!或错误!=C(常数)。

2.利用气体实验定律及气态方程解决问题的基本思路3。

玻璃管液封模型求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意:(1)液体因重力产生的压强大小为p=ρgh(其中h为至液面的竖直高度);(2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力;(3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等;(4)当液体为水银时,可灵活应用压强单位“cmHg"等,使计算过程简捷.类型1 单独气体问题例1(2017·全国卷Ⅲ·33(2))一种测量稀薄气体压强的仪器如图1(a)所示,玻璃泡M的上端和下端分别连通两竖直玻璃细管K1和K2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用气体实验定律解决三类模型问题

Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】 专题强化十四 应用气体实验定律解决“三类模型问题” 专题解读 1.本专题是气体实验定律在玻璃管液封模型、汽缸活塞类模型、变质量气体模型中的应用,高考在选考模块中通常以计算题的形式命题. 2.学好本专题可以帮助同学们熟练的选取研究对象和状态变化过程,掌握处理三类模型问题的基本思路和方法. 3.本专题用到的相关知识和方法有:受力分析、压强的求解方法、气体实验定律等. 命题点一 “玻璃管液封”模型 1.三大气体实验定律 (1)玻意耳定律(等温变化):p1V1=p2V2或pV=C(常数).

(2)查理定律(等容变化):p1T1=p2T2或pT=C(常数).

(3)盖—吕萨克定律(等压变化):V1T1=V2T2或VT=C(常数). 2.利用气体实验定律及气态方程解决问题的基本思路 3.玻璃管液封模型 求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意: (1)液体因重力产生的压强大小为p=ρgh(其中h为至液面的竖直高度); (2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力; (3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等; (4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷. 类型1 单独气体问题 例1 (2017·全国卷Ⅲ·33(2))一种测量稀薄气体压强的仪器如图1(a)所示,玻璃泡M的上端和下端分别连通两竖直玻璃细管K1和长为l,顶端封闭,K2上端与待测气体连通;M下端经橡皮软管与充有水银的容器R连通.开始测量时,M与K2相通;逐渐提升R,直到K2中水银面与K1顶端等高,此时水银已进入K1,且K1中水银面比顶端低h,如图(b)所示.设测量过程中温度、与K2相通的待测气体的压强均保持不变.已知K1和K2的内径均为d,M的容积为V0,水银的密度为ρ,重力加速度大小为g.求: 图1 (1)待测气体的压强; (2)该仪器能够测量的最大压强.

答案 (1)ρπgh2d24V0+πd2l-h (2)πρgl2d24V0 解析 (1)水银面上升至M的下端使玻璃泡中气体恰好被封住,设此时被封闭的气体的体积为V,压强等于待测气体的压强p.提升R,直到K2中水银面与K1顶端等高时,K1中水银面

比顶端低h;设此时封闭气体的压强为p1,体积为V1,则

V=V0+14πd2l ① V1=14πd2h ② 由力学平衡条件得 p1=p+ρgh ③ 整个过程为等温过程,由玻意耳定律得 pV=p1V1 ④ 联立①②③④式得

p=ρπgh2d24V0+πd2l-h ⑤ (2)由题意知 h≤l ⑥ 联立⑤⑥式有

p≤πρgl2d24V0 ⑦ 该仪器能够测量的最大压强为 pmax=πρgl2d24V0 变式1 (2015·全国卷Ⅱ·33(2))如图2,一粗细均匀的U形管竖直放置,A侧上端封闭,B侧上端与大气相通,下端开口处开关K关闭;A侧空气柱的长度为l= cm,B侧水银面比A侧的高h= cm.现将开关K打开,从U形管中放出部分水银,当两侧水银面的高度差为h1= cm时将开关K关闭.已知大气压强p0= cmHg. 图2 (1)求放出部分水银后A侧空气柱的长度; (2)此后再向B侧注入水银,使A、B两侧的水银面达到同一高度,求注入的水银在管内的长度. 答案 (1) cm (2) cm 解析 (1)以cmHg为压强单位.设A侧空气柱长度l= cm时的压强为p;当两侧水银面的高度差为h1= cm时,空气柱的长度为l1,压强为p1.

由玻意耳定律得pl=p1l1 ①

由力学平衡条件得p=p0+h ②

打开开关K放出水银的过程中,B侧水银面处的压强始终为p0,而A侧水银面处的压强随

空气柱长度的增加逐渐减小,B、A两侧水银面的高度差也随之减小,直至B侧水银面低于A侧水银面h1为止.由力学平衡条件有 p1=p0-h1 ③ 联立①②③式,并代入题给数据得l1= cm ④

(2)当A、B两侧的水银面达到同一高度时,设A侧空气柱的长度为l2,压强为p2. 由玻意耳定律得pl=p2l2 ⑤

由力学平衡条件有p2=p0 ⑥

联立②⑤⑥式,并代入题给数据得l2= cm ⑦

设注入的水银在管内的长度为Δh,依题意得 Δh=2(l1-l2)+h1 ⑧

联立④⑦⑧式,并代入题给数据得Δh= cm. 类型2 关联气体问题 例2 (2016·全国卷Ⅲ·33(2))一U形玻璃管竖直放置,左端开口,右端封闭,左端上部有一 光滑的轻活塞.初始时,管内汞柱及空气柱长度如图3所示.用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求此时右侧管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p0= cmHg.环境温度不变.(保留三位有效数字) 图3 答案 144 cmHg cm 解析 设初始时,右管中空气柱的压强为p1,长度为l1;左管中空气柱的压强为p2=p0,长度为l2.活塞被下推h后,右管中空气柱的压强为p1′,长度为l1′;左管中空气柱的压强

为p2′,长度为l2′.以cmHg为压强单位.由题给条件得

p1=p0+- cmHg=90 cmHg l1= cm ① l1′=-错误!) cm= cm ② 由玻意耳定律得p1l1S=p1′l1′S ③

联立①②③式和题给条件得 p1′=144 cmHg ④ 依题意p2′=p1′ ⑤

l2′= cm+错误! cm-h= cm-h ⑥ 由玻意耳定律得p2l2S=p2′l2′S ⑦

联立④⑤⑥⑦式和题给条件得 h≈ cm. 变式2 如图4所示,由U形管和细管连接的玻璃泡A、B和C浸泡在温度均为0 ℃的水槽中,B的容积是A的3倍.阀门S将A和B两部分隔开.A内为真空,B和C内都充有气体.U形管内左边水银柱比右边的低60 mm.打开阀门S,整个系统稳定后,U形管内左右水银柱高度相等.假设U形管和细管中的气体体积远小于玻璃泡的容积. 图4 (1)求玻璃泡C中气体的压强(以mmHg为单位); (2)将右侧水槽中的水从0 ℃加热到一定温度时,U形管内左右水银柱高度差又为60 mm,求加热后右侧水槽的水温. 答案 (1)180 mmHg (2)364 K 解析 (1)在打开阀门S前,两水槽水温均为T0=273 K. 设玻璃泡B中气体的压强为p1,体积为VB,玻璃泡C中气体的压强为pC,依题意有p1=pC +Δp ① 式中Δp=60 mmHg. 打开阀门S后,两水槽水温仍为T0,

设玻璃泡B中气体的压强为pB,依题意,有pB=pC ②

玻璃泡A和B中气体的体积V2=VA+VB ③

根据玻意耳定律得p1VB=pBV2 ④

联立①②③④式,并代入已知数据得

pC=VB

VA

Δp=180 mmHg ⑤

(2)当右侧水槽的水温加热至T′时,U形管左右水银柱高度差为Δp,玻璃泡C中气体的压强pC′=pB+Δp ⑥

玻璃泡C中的气体体积不变,根据查理定律得pCT0=pC′T′ ⑦

联立②⑤⑥⑦式,并代入题给数据得T′=364 K. 命题点二 “汽缸活塞类”模型 汽缸活塞类问题是热学部分典型的物理综合题,它需要考虑气体、汽缸或活塞等多个研究对象,涉及热学、力学等物理知识,需要灵活、综合地应用知识来解决问题. 1.一般思路 (1)确定研究对象,一般地说,研究对象分两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统). (2)分析物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程. (3)挖掘题目的隐含条件,如几何关系等,列出辅助方程. (4)多个方程联立求解.对求解的结果注意检验它们的合理性. 2.常见类型 (1)气体系统处于平衡状态,需综合应用气体实验定律和物体的平衡条件解题. (2)气体系统处于力学非平衡状态,需要综合应用气体实验定律和牛顿运动定律解题. (3)两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解. 说明 当选择力学研究对象进行分析时,研究对象的选取并不唯一,可以灵活地选整体或部 分为研究对象进行受力分析,列出平衡方程或动力学方程. 类型1 单独气体问题 例3 (2015·全国卷Ⅰ·33(2))如图5,一固定的竖直汽缸由一大一小两个同轴圆筒组成,两圆筒中各有一个活塞.已知大活塞的质量为m1= kg,横截面积为S1= cm2;小活塞的质量为m2= kg,横截面积为S2= cm2;两活塞用刚性轻杆连接,间距保持为l= cm;汽缸外大气

的压强为p=×105 Pa,温度为T=303 K.初始时大活塞与大圆筒底部相距l2,两活塞间封闭气体的温度为T1=495 K.现汽缸内气体温度缓慢下降,活塞缓慢下移.忽略两活塞与汽缸壁之间的摩擦,重力加速度大小g取 10 m/s2.求: 图5 (1)在大活塞与大圆筒底部接触前的瞬间,汽缸内封闭气体的温度; (2)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强. 答案 (1)330 K (2)×105 Pa 解析 (1)大小活塞在缓慢下移过程中,受力情况不变,汽缸内气体压强不变,由盖—吕萨

克定律得V1T1=V2

T2

初状态V1=l2(S1+S2),T1=495 K

末状态V2=lS2

代入可得T2=23T1=330 K

(2)对大、小活塞受力分析则有 m1g+m2g+pS1+p1S2=p1S1+pS2 可得p1=×105 Pa

缸内封闭的气体与缸外大气达到热平衡过程中,气体体积不变,由查理定律得p1T2=p2

T3

T3=T=303 K,解得p2=×105 Pa. 变式3 如图6所示,两端开口的汽缸水平固定,A、B是两个厚度不计的活塞,可在汽缸内无摩擦滑动,面积分别为S1=20 cm2,S2=10 cm2,它们之间用一根水平细杆连接,B通过水平细绳绕过光滑的轻质定滑轮与质量为M=2 kg的重物C连接,静止时汽缸中的气体温度T1=600 K,汽缸两部分的气柱长均为L,已知大气压强p0=1×105 Pa,取g=10 m/s2,缸内气体可看做理想气体. 图6

相关文档
最新文档