Simulation of environmental change in response to operation of dams in Huaihe Basin

合集下载

淤泥质海岸航道回淤预报研究综述

淤泥质海岸航道回淤预报研究综述

中国港湾建设Research review on siltation prediction of channel on muddy coastCAI Xin-yu,SUN Lin-yun,SUN Bo,XIAO Li-min,TANG Lei(Nanjing Hydraulic Research Institute,Nanjing Jiangsu 210029,China )Abstract :The related problems of siltation prediction of channel on muddy channel was studied,the research methods were systematically summarized,especially the empirical formula method.The common characteristics of siltation formula of muddy channel and typical sediment concentration formula of muddy coast were analyzed and discussed.The main prediction method for future research on related problems were prospected.It is considered that numerical simulation will become the main method with its advantages of low cost,fast speed and great development potential.We put forward some thoughts on the application of the semi-theoretical and semi-empirical formula,and the formula which comprehensively considers the theory and the actual situation is deemed more suitable for the application.Key words :muddy coast;siltation formula;sediment concentration;numerical simulation;siltation prediction;review摘要:研究淤泥质海岸航道回淤预报相关问题。

全球变暖和海洋酸化背景下珊瑚礁生态响应的研究进展

全球变暖和海洋酸化背景下珊瑚礁生态响应的研究进展

DOI: 10.16562/ki.0256-1492.2020080501全球变暖和海洋酸化背景下珊瑚礁生态响应的研究进展李言达1,2,易亮31. 北京大学生命科学学院,北京 1008712. 中国科学院南京地质古生物研究所,现代古生物学和地层学国家重点实验室,南京 2100083. 同济大学海洋地质国家重点实验室,上海 200092摘要:生物礁是由珊瑚虫、藻类等造礁生物组成、具有抗浪结构的海相碳酸盐岩,是全球主要碳库之一,也是观察热带海洋影响中-高纬度环境过程的重要窗口。

近二、三十年以来,伴随着海洋水体的显著酸化和增温,全球热带海洋生物礁的主体——珊瑚礁系统遭受了不同程度的影响。

其中,对于高温强迫而言,海水温度上升诱发珊瑚白化、抑制珊瑚的自我修复;海洋酸化可以显著改变珊瑚钙化率、抑制珊瑚幼虫发育、引发珊瑚礁的溶解;两大因素均可改变珊瑚礁的群落结构。

针对这些环境要素的改变,珊瑚自身可以通过共生藻的种类转换以及调控基因表达等手段在一定程度上抵抗高温胁迫;但若温室气体的排放不受控制,绝大多数珊瑚礁到21世纪末都将遭受灾难性打击。

为应对未来不同场景下的珊瑚礁变化,还需要对高温、酸化等关键因子响应特征进行更深入的研究;珊瑚礁长序列研究有可能为珊瑚的长周期演化特征提供关键认识,也为现代观测提供有益补充。

关键词:珊瑚礁;气候变化;全球变暖;海洋酸化;响应机制中图分类号:P736 文献标识码:AA review on ecological response of coral reefs to global warming and oceanic acidificationLI Yanda 1,2, YI Liang 31. School of Life Sciences, Peking University, Beijing 100871, China2. State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008,China3. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, ChinaAbstract: Tropical reefs are anti-wave structures composed of corals, algae and other reef-building organisms. They are one of the world's major carbon banks and an important window to observe the linkages and interactions between the mid- to high-latitude environmental processes and tropical oceans. In the past decades, with the significant acidification and warming of global oceans, the tropical coral reefs are seriously under threat. Ocean acidification is a factor which may significantly affect coral calcification rates, inhibit the development of coral larvae, and trigger the dissolution of coral reefs. And high temperature may cause the rising of sea temperature, coral bleaching and inhibit the self-repair of coral reefs. In addition, both of the two factors may induce changes in the community structure of coral reefs. In response to the changes in these environmental factors, corals can resist heat stress to a certain extent by changing the types of symbiotic algae and regulating gene expression. However, if the emission of greenhouse gases is not properly controlled in the near future, most coral reefs on the Earth may face complete elimination by the end of this century. A more comprehensive understanding of coral reefs’ response to the key factors in the climate system change, including higher temperature and acidification, is required to cope better with changes of coral reefs in different possible scenarios in the future. The study of reef depositional sequences may provide key insights into the long-term evolving patterns of coral reefs, and serve as a valuable supplement for modern observations.Key words: coral reefs; climate changes; global warming; ocean acidification; response mechanism自工业革命以来,人类活动所排放的大量CO 2及其他温室气体进入大气圈后,对全球变暖产生了重大影响;就海洋而言,伴随海水温度和大气CO 2浓度的升高,极端事件更加频繁且剧烈,海水资助项目:上海市自然科学基金“晚新近纪渤海盆地陆-海转换的环境过程”(19ZR1459800)作者简介:李言达(1997―),男,本科生,主要从事古生物学研究,E-mail :************.cn通讯作者:易亮(1982―),男,副教授,主要从事海洋沉积与年代学研究,E-mail :******************.cn 收稿日期:2020-08-05;改回日期:2020-11-06. 蔡秋蓉编辑ISSN 0256-1492海 洋 地 质 与 第 四 纪 地 质第 41 卷 第 1 期CN 37-1117/PMARINE GEOLOGY & QUATERNARY GEOLOGYVol.41, No.1水体也逐渐酸化[1]。

基于Budyko理论的韩江流域径流变化敏感性分析及归因识别

基于Budyko理论的韩江流域径流变化敏感性分析及归因识别

亚热带资源与环境学报Journal of Subtropical Resources and Environment Vol. 15 No. 3September 2020第 15 卷 第 3 期2020 年 09 月出版刘洋,陈菡,谭学志.基于Budyko 理论的韩江流域径流变化敏感性分析及归因识别[J].亚热带资源与环境学报,2020, 15 (3): 9-16. LIU Y , CHEN H , TAN X Z. Sensitivity analysis and attribution of runoff variations in the Han River Basin based on the Budyko Theory [J]. Journal of Subtropical Resources and Environment , 2020, 15 (3): 9-16. DOI : 10. 19687/j. cnki. 1673-7105. 2020. 03. 002.基于Budyko 理论的韩江流域径流变化敏感性分析及归因识别刘洋二陈菌2,谭学志1*收稿日期: 2020-07-25基金项目:广东省自然科学基金面上项目(2019A1515011538);国家自然科学基金资助项目(51809295) 作者简介:刘洋(1994—),男,河南潢川人,硕士研究生,主要从事水文气象等方面的研究,****************。

*通信作者:谭学志(1987—),男,湖南浏阳人,副教授,博士,主要从事水文气象变化方面的研究,tanxuezhi@mail. sysu. edu. cn 。

(1.中山大学土木工程学院水资源与环境研究中心,广州510275;2.湖北省水利水电规划勘测设计院,武汉430064)摘要:采用韩江流域潮安、溪口及横山3个水文站逐日径流数据,对韩江流域及其子流域梅江 与汀江流域的径流变化特征进行敏感性分析及归因识别。

基于分布式时变增益水文模型和CN05

基于分布式时变增益水文模型和CN05

第45卷第3期人民珠江 2024年3月 PEARLRIVERhttp://www.renminzhujiang.cnDOI:10 3969/j issn 1001 9235 2024 03 003基金项目:国家自然科学基金资助项目(42371021、52109036);河海大学水灾害防御全国重点实验室“一带一路”水与可持续发展科技基金面上项目(2022491111、2021490611);水利部水文气象灾害机理与预警重点实验室开放基金(HYMED202203、HYMED202210)收稿日期:2023-07-08作者简介:钟奇(1999—),男,硕士研究生,主要从事水文水资源研究。

E-mail:zhongqi_zzq@163.com通信作者:付晓雷(1986—),男,教授,主要从事土壤水热数据同化、水文预报研究。

E-mail:fuxiaolei518@yzu.edu.cn钟奇,付晓雷,蒋晓蕾,等.基于分布式时变增益水文模型和CN05.1降水数据的赣江流域径流模拟研究[J].人民珠江,2024,45(3):18-29,108.基于分布式时变增益水文模型和CN05.1降水数据的赣江流域径流模拟研究钟 奇1,付晓雷1,2,3,蒋晓蕾1,2,章雨晨1,胡乐怡1,章丽萍1(1.扬州大学水利科学与工程学院,江苏 扬州 225009;2.水利部水文气象灾害机理与预警重点实验室,南京信息工程大学,江苏 南京 210044;3.河海大学水灾害防御全国重点实验室,江苏 南京 210098)摘要:水文模型是径流模拟的重要手段,降水是水文循环的重要组成部分,模型的选择和降水数据的质量对流域径流模拟都具有重要意义。

以赣江流域为研究区域,通过对比CN05.1降水数据与站点线性插值降水数据,分析CN05.1降水数据的可靠性,评估基于分布式时变增益水文模型(DTVGM)和CN05.1降水数据在赣江流域径流模拟的适用性。

研究表明:①CN05.1降水和站点插值降水多年月平均降水年内变化过程类似,空间分布相关性很高,R均值为0.90,CN05.1日降水与站点插值日降水相关性较高,RMSE均小于等于7.52mm,R均大于等于0.81;②基于CN05.1降水和站点插值降水数据模拟了赣江流域新田等6个水文站1961—2009年的流量,模拟流量在多数大流量处大于实测流量,表明模型对于大流量的模拟存在高估现象;③无论是日径流还是月径流,基于CN05.1降水数据的径流模拟精度均较高,且月径流模拟要优于日径流。

基于TMDL模式的九洲江流域水污染控制研究

基于TMDL模式的九洲江流域水污染控制研究

第45卷第7期2020年7月Vol.45No.7July2020环境科学与管理ENVIRONMENTAL SCIENCE AND MANAGEMENT文章编号:1674-6139(2020)07-0072-05基于TMDL模式的九洲江流域水污染控制研究徐荣乐,赵侣璇,黄业翔,宋晓薇,谢祎敏(广西壮族自治区环境保护科学研究院,广西南宁530022)摘裏:建立了基于最大9负荷量(TMDL)的九洲江流域水污染控制模式,利用负荷历时曲线法计算了流域允许负荷。

通过对流域点源和非点源污染负荷估算,明确了九洲江流域COD、氨氣和总确的污染负荷剤减比例,并提出较为具体的污染控制措施。

结果表明,九洲江流域主要污染物COD、氨氣、总确的实际负荷超出允许负荷,其负荷剤减比例分别达到30.12%、29.58%和33.62%,且畜禽养苑和生活污染源是主要的污染源,须采取有效措谨进行污染负荷剤减。

关键词:九洲江;TMDL;负荷历时曲线;污染负荷剤减中图分类号:X52文猷标志码:BResearch of Water Pollution Control for Jiuzhou Riverbased on Total Maximum Daily Load(TMDL)ModelXu Rongle,Zhao Lvxuan,Huang Yexiang,Song Xiaowei9Xie Yimin(Scientific Research Academy of Guangxi Environmental Protection,Nanning530022,China) Abstract:A water pollution control modd based on total maximum daily load(TMDL)was developed in this p^>er.Accord­ing to the hydrological and water quality data,load duration curve method was used to calculate the pennitted load of COD,am­monia nitrogen and TP・Then,through the estimation of the present point source and non-point source pollution load,pollution reduction rate were cleariy detennined and pollution control measures eventually put forward.The results showed that permitted load of COD,ammonia nitrogen and TP was below the actual load.The pollution reduction rate of COD,ammonia nitrogen and TP reached up to30.12%,29・58%and33・62%respectively.Particularly,livestock farming and domestic pollution sources were the main sources of pollution.It is necessary effective measures for reduction of pollution load.Key words:Jiuzhou river;TMDL;load duration curve;pollution reduction九洲江是中国南方较重要的一条跨广西、广东两省的独流入海河流,全长162公里,发源于广西陆川县沙坡镇,流经陆川、博白两县后,进入广东雷州半岛的鹤地水库。

罗梭江鱼类替代生境量化评价

罗梭江鱼类替代生境量化评价

第38卷第2期Vol.38No.2水㊀资㊀源㊀保㊀护Water Resources Protection2022年3月Mar.2022㊀㊀基金项目:国家自然基金(52009082);国家重点研发计划(2019YFC0408901);江苏省水利重点科技项目(2019006)作者简介:彭依云(1995 ),女,博士研究生,主要从事梯级水库鱼类栖息地与生境研究㊂E-mail:Pengyiyi2020@ 通信作者:刘东升(1988 ),男,工程师,博士,主要从事河湖关键带水文地球化学过程研究㊂E-mail:dsliu@DOI :10.3880/j.issn.10046933.2022.02.026罗梭江鱼类替代生境量化评价彭依云1,2,洪迎新1,3,刘东升1,陈求稳1(1.南京水利科学研究院生态环境研究所,江苏南京㊀210029;2.四川大学水力学与山区河流开发保护国家重点实验室,四川成都㊀610065;3.中水珠江规划勘测设计有限公司,广东广州㊀510610)摘要:针对罗梭江替代生境适宜度及影响因素尚缺乏定量分析的问题,选取澜沧江干流特有经济鱼类中国结鱼(Tor sinensis )为目标物种,基于河流内流量增加法(IFIM ),结合二维水动力模型和鱼类栖息地适宜性曲线,建立了罗梭江典型鱼类的栖息地评价模型,分析了替代生境适宜度及其影响因子㊂结果表明:罗梭江作为澜沧江最大支流,能为中国结鱼提供良好产卵场,产卵场在丰水期(79月)数量和质量较优,高质量产卵场主要分布于河流蜿蜒处;罗梭江不适宜成鱼全年栖息,尤其在枯水期(2 4月),成鱼产卵及育肥适宜度最差㊂在罗梭江替代生境后期管理中,建议优先加强对河流弯道处的生境保护及捕捞管理,同时重视其关联干流的生态保护㊂关键词:替代生境适宜度;河流内流量增加法;栖息地评价模型;中国结鱼;澜沧江;罗梭江中图分类号:S937㊀㊀文献标志码:A㊀㊀文章编号:10046933(2022)02019007Quantitative evaluation of fish alternative habitats in the Luosuo River ʊPENG Yiyun 1,2,HONG Yingxin 1,3,LIU Dongsheng 1,CHEN Qiuwen 1(1.Eco-environmental Research Department ,Nanjing Hydraulic Research Institute ,Nanjing 210029,China ;2.State Key Laboratory of Hydraulics and Mountain River Engineering ,Sichuan University ,Chengdu 610065,China ;3.China Water Resources Pearl River Planning ,Surveying &Designing Co.,Ltd.,Guangzhou 510610,China )Abstract :In view of the lack of quantitative analysis on the alternative habitatsuitability and influencing factors in the Luosuo River,Tor sinensis ,a unique economic fish in the main stream of the Lancang River,was selected as the target species,and the habitat evaluation model of typical fish in theLuosuoRiver was established based on the intra-river flow increasing method (IFIM),two-dimensional hydrodynamic model and fish habitat suitability curve.The alternative habitat suitability and its influencing factors were analyzed.The results show that the Luosuo River,as the largest tributary of Langcang River,can provide a good spawning ground for Tor sinensis .The number and quality of spawning ground are better in wet season (July to September),and high-quality spawning ground is mainly distributed in the meandering part of the river.The tributaries of the Luosuo River are not suitable for adult fish to inhabit all year round,especially in the dry season (February to April),and the suitability of adult fish for spawning and fattening is the worst in this period.In the later management of the alternative habitat of the Luosuo River,it is recommended to give priority to strengthening the habitat protection and fishing management at the river bend,and pay attention to the ecological protection of its associated mainstreamat the same time.Key words :alternative habitat suitability;intra-river flow increasing method (IFIM );habitat assessment model;Tor sinensis ;Lancang River;Luosuo River㊀㊀梯级水电开发是利用水能资源的一个重要模式[1],在水能丰富地区合理地建设梯级大坝,会将河流生态系统分割成多个具有相似生境的水库生态系统[2]㊂河流受大坝阻隔,连续性遭到破坏,河流形态发生转变,由河相转为河相湖相交替,甚至出现湖相形式[3-4],大量鱼类洄游的行为也会受到大坝阻挡,排卵繁育受到影响,从而导致鱼类的物种多样性和数量显著减少[5-6]㊂此外,梯级水库的建成将改变径流的季节性调节㊁泥沙截留㊁水文条件以及水温时空分布,也将破坏原有河流鱼类的自然栖息环境,并影响鱼类个体行为特性及种群间的基因交流,导致遗传多样性的丧失[7]㊂为了减轻梯级水电开发对重要鱼类的不利影响,中国在水电开发和生态保护实践中逐渐形成了 干流开发,支流保护 的新思路[8],以支流生境条件补偿性保护干流中生境受水电开发破坏的鱼类,使流域水电开发和生态环境保护共同发展㊂栖息地模型是支流生境替代可行性分析和效果评价的常用方法,通过模拟目标生物在各生命时期行为对环境因子的响应关系以判断生境适宜性,对于栖息地评价较为全面和客观[9]㊂国内外针对鱼类栖息地模拟的研究已有不少成果,如赵尚飞等[10]使用River2D水生生物栖息地模型模拟了不同类型河道鱼类栖息地差㊁中㊁良3个等级的分布及变化;孙志毅[11]将MIKE11模型和PHABSIM模型进行耦合,建立了模拟交汇河流对特有鱼类生境影响的河流生态水力学模型;Ceola等[12]将三维水动力模型(estuary lake and coastal ocean model,ELCOM)和水生生态系统动态模型(computational aquatic ecosystem dynamics model,CAEDYM)进行耦合,并对红点鲑鱼在不同水文条件的栖息地下的变化情况进行了模拟预测;唐磊[13]通过建立一维生态河貌模型,结合目标鱼类的生境特征,定量评价了水坝拆除对支流替代生境的改善效果㊂尽管如此,目前鲜有模型应用于支流生境替代效果的分析,以至于缺乏替代生境适宜度及其影响因素的定量评价㊂已有研究表明,罗梭江作为澜沧江最大的支流,对干流受水电开发影响严重的鱼类起到了很好的替代保护作用[14-16]㊂其干支流水温差异㊁关键涨水过程以及河流联通性3个要素评价都达到最佳状态,重要鱼类保护程度㊁水污染状况㊁生态基流㊁生境多样性以及鱼类 三场 分布等要素评价结果良好㊂因此,本研究选择罗梭江作为研究对象,基于河流内流量增加法(intra-river flow increasing method, IFIM),结合EFDC(environmental fluid dynamics code)二维水动力模型和鱼类栖息地适宜性曲线,建立澜沧江典型鱼类中国结鱼的栖息地评价模型,通过计算目标鱼类栖息地适宜性指数(habitat suitability index,HSI)以及有效利用面积(weighted usable area,WUA)等关键因子,对罗梭江鱼类栖息地的数量和质量展开分析与探讨,评价不同水情下替代生境对目标鱼类的适宜度,对其生境替代效果进行量化评价,以期为罗梭江替代生境后期管理提供参考㊂1㊀研究区概况澜沧江湄公河发源于青藏高原唐古拉山北麓的小冰川,全长4880km,流域面积8320km2,是河长世界排名第6㊁流域面积世界排名第14的大河㊂罗梭江发源于普洱市宁洱县,是澜沧江湄公河的最大支流,主要河道长297.8km,流域面积7678.9km2[17-18],多年平均流量169.5m3/s㊂澜沧江湄公河生境发生变化后,罗梭江的流水生境成为喜流水性鱼类(如中国结鱼)的不二选择㊂2007年成立罗梭江州级鱼类保护区,主要保护对象包括叉尾鲇(Wallago attu)㊁丝尾鳠(Hemibagrus wyckioides)㊁中华鲱鲇(Clupisoma sinense)㊁中国结鱼(Tor sinensis)等[19-20]㊂其中,保护区核心段为磨者河和罗梭江汇合的河口与罗梭江和澜沧江汇合河口之间的河段,主要受保护鱼类为中国结鱼㊁丝尾鳠等㊂本文模拟江段选取罗梭江磨者河汇口至南醒河汇口,占罗梭江鱼类自然保护区核心区域的73%,全长29.2km,落差33m,平均比降1.13ɢ㊂模型上边界为磨者河汇口下游100m,下边界为南醒河汇口上游100m(图1)㊂图1㊀研究区水系及研究河段Fig.1㊀Water system and river reach in study area2㊀研究方法2.1㊀水动力模型采用EFDC模型对罗梭江进行水动力模拟研究,该模型可用于模拟地表水系统中的三维流场[21]㊁生物化学过程以及物质传输[22],研发较为成熟,目前被国内外广泛应用㊂考虑到模拟分辨率及计算效率,本研究采用正交曲线网格划分区域,沿流向划分500个网格,纵向平均长度为59.7m;由于河道较长,为确保网格质量,在河流宽度方向划分8个网格,平均宽度9.8m,共计4000个网格(图2)㊂为确保模拟的准确性,网格应适应模拟区域并保持正交性,计算网格的平均正交偏差应小于3.0ʎ㊂本次模拟计算的平均正交偏差为2.98ʎ,整体精度满足要求㊂图2㊀计算区域网格划分Fig.2㊀Grid division of caculation areaEFDC 模型使用的地形数据来自文献调研,其中曼安水文站以下河道河底高程来自Wang 等[19]2012年12月的实测数据,以上河段依据河床平均坡度及周围高程对断面进行手动插值,共获得43个断面高程数据㊂根据断面数据,再由EFDC 内置程序对研究区域全河段进行网格平均插值,插值计算完成后,对局部高程变化较大的区域进行了光滑处理㊂考虑到模型上边界至水文站及以下河段没有大型支流汇入,忽略一些小沟渠汇入的水量,将整个模型中的水量视为统一值,上边界输入流量为曼安水文站实测流量,下边界水位利用MIKE11构建一维模型进行推算㊂将曼安水文站1959 2008年的多年月平均径流量作为研究区的代表流量用于模型计算,时间步长设置为静态时间步长,取值1d㊂模型运行前,首先对降水量㊁气温㊁蒸发量等基本参数进行确定;曼宁系数可直观反映河道的粗糙度,与河流形态㊁河床结构底质等密切相关,本文参考‘天然河流糙率表“,取值为0.035㊂采用水位对EFDC 模型模拟结果进行率定验证㊂实测水位于2019年3月测得,为模拟河道沿水流方向的8个点位数据(图1),该模型使用3月多年月平均流量(33.95576m 3/s)进行模拟,S1~S4为率定点位,S5~S8为验证点位㊂率定点位的平均误差为0.035m,最大误差为0.04m;验证点位的平均误差为0.063m,最大误差为0.14m,结果表明EFDC 模型具有较高的可靠性和精准性㊂曼安水文站1959 2008年实际年径流量过程表明,径流量年际变化幅度不大,年际极值比较低;年径流累积量过程线也表明年径流没有很大波动,这说明EFDC 模型计算选用曼安水文站多年月平均径流作为研究区代表流量是可行的㊂为了满足EFDC 模型的计算要求,对于诸如边界㊁弯道等局部河段的网格的正交偏差也设置小于3.0ʎ㊂模型使用的河底高程数据来自文献调研,存在数据陈旧问题㊂然而,河底高程虽略有起伏,局部发生变化,但对于整个模拟河段来说,对河道的整体流场的影响较小㊂另外,根据本文模拟结果,高质量产卵场主要分布于河道蜿蜒处,说明栖息地适宜性主要受河道形态影响,而河道形态采用的是最新地形数据㊂从时间尺度上看,在河道形态及高程一致的情况下,影响流场的主要因素为不同月份所对应的流量与水位,即模型的边界条件㊂因此,河底高程数据的陈旧虽然会影响模型精度,但对本文整体规律和主要结论的影响是有限的㊂本文模型对水位的率定与验证平均误差均较小,证明了模型具有较高的可靠性与精准性㊂2.2㊀鱼类生境评价模型中国结鱼为澜沧江特有经济鱼类,栖于河道水流较缓处,为中下层鱼类,具有短距离洄游习性㊂幼鱼主要以摄取浮游动物为生,成鱼逐渐变为杂食性(植物的果实㊁鱼㊁甲壳动物与其他的无脊椎动物)㊂产卵期主要集中在7 9月,产卵时亲鱼上溯,选择卵石下的急流中繁殖[23]㊂本研究选取中国结鱼(图3)作为目标鱼类,评价生境适宜度,主要选择依据为:①鲤行目鱼类是澜沧江干支流的主要鱼类品种,且大部分喜急流环境㊁产沉性卵,中国结鱼作为其中最典型的一种,能很大程度上代表干支流鱼类的生活习性;②中国结鱼作为经济型鱼类,可围绕高效生态㊁优质安全的总体目标,推进罗梭江生态经济型渔业产业的可持续健康发展;③前人的研究表明,中国结鱼相关研究受到了较多关注,对于适宜环境因子的定量及生物学研究目前已经有不少研究成果[20,24]㊂相比较于其他种类的水生生物,鱼类在自身需要的生长环境中,倾向于选择有利于生长的空间和生境环境,避开不利条件[25]㊂所以可以通过分析河流生境特征来研究适于鱼类生活的区域特征参数,如水深㊁流速等[26]㊂在合适的水深条件中,鱼类能够更好地生存㊁栖息以及庇护自己,当水深过大时,容易影响沉性鱼卵及幼鱼的发育[27];流速综合反映了水流与河道坡度㊁河床糙率㊁河道宽度相互作用,一定流速条件下可以促进鱼类性腺生长发育,从而诱导其排卵[28]㊂综上所述,在保护鱼类栖息地方面,获取目标鱼类栖息地适宜性曲线非常重要,是建立栖息地模型的关键一环㊂本研究通过文献调研获取了中国结鱼流速㊁水深栖息地适宜性曲线[19],如图4所示㊂(a)活体(b)成鱼(663.1g)(c)幼鱼(27.7g)图3㊀中国结鱼Fig.3㊀Tor sinensis本研究基于IFIM法,结合EFDC二维水动力模型和鱼类栖息地适宜性曲线,建立了罗梭江典型鱼类中国结鱼的栖息地评价模型㊂IFIM法诞生于1970年代美国鱼类和野生动物保护中心[29],该方法通过将水力学模型和生物物理信息模型耦合,建立水动力因子与水生生物栖息地之间的偏好关系,为管理河流生态系统的健康提供依据[30]㊂IFIM法通过WUA和HSI[31]定量计算生物的有效生境的数量和质量,最后结合鱼类生活史对鱼类替代生境的可行性做出评价㊂为了表征支流生境对鱼类完整生活史的替代保护效果,本研究选取中国结鱼产卵和成鱼栖息两个阶段的适宜性进行评估㊂A WUA=ðn i=1I HS i A i(1)其中I HS i=V i D i C i式中:A WUA为WUA值;n为计算单元数;A i为计算单元i的面积;I HS i为计算单元i的HSI值;V i为计算单元i的适宜性流速;D i为计算单元i的适宜性水深;C i为计算单元i的河道适宜性指数(包括底质和覆盖物状况),本研究由于缺乏底质数据,暂不考虑河道指数,这里C i取值为1㊂(a)产卵流速(b)成鱼栖息流速(c)产卵水深(d)成鱼栖息水深图4㊀中国结鱼流速、水深栖息地适宜性曲线Fig.4㊀Habitat suitability curve of velocity andwater depth of Tor sinensis3㊀结果与分析3.1㊀替代生境质量评价由表1可见1959 2008年WUA均值年内变化情况,可见,产卵WUA值与成鱼WUA值年内变化趋势相同,均在8月达到峰值,分别为201.5万m2㊁211.9万m2;在4月达到最小值,分别为33.8万m 2㊁38.2万m 2㊂通过表1可算出,产卵和成鱼WUA 值变化趋势与流量表现出极显著正相关,相关系数分别为0.966㊁0.979(P <0.01)㊂7 10月产卵WUA 占河流面积超过50%,囊括了中国结鱼整个产卵期,同时,成鱼WUA 占比超过50%的时间也为7 10月,可见在一年中的绝大部分时间成鱼WUA 占河流面积比例均处于较低水平,在24月甚至低于20%(表1)㊂表1㊀栖息地总量计算结果Table 1㊀Calculation results of total habitats月份流量/(m 3㊃s -1)产卵WUA /万m 2产卵WUA 与河流面积比值成鱼WUA /万m 2成鱼WUA 与河流面积比值160.2661.60.2656.20.24244.0246.20.2045.70.19333.9636.40.1539.60.17431.3933.80.1438.20.16545.9748.10.2046.90.206116.41106.20.4591.50.397318.04182.50.77204.00.868426.71201.50.85211.90.899286.37174.90.74193.90.8210185.05141.80.60135.40.5711128.13113.50.4898.90.421281.18800.20.3469.60.29表2㊀鱼类栖息地适宜性指数赋分等级Table 2㊀Classification of fish habitat suitability index适宜性指数适宜性等级含义(0.7,1]适宜大部分水域的流速和水深条件,能为鱼类提供适宜的栖息生境(0.4,0.7]中等适宜大部分水域的流速和水深等条件,能为鱼类提供较适宜的栖息生境;或者有较多水域的流速和水深等条件,能为鱼类提供非常适宜或适宜的栖息生境(0.1,0.4]基本适宜大部分水域的流速和水深等条件,能为鱼类提供基本适宜的栖息生境;或者有较多水域的流速和水深等条件,能为鱼类提供基本适宜的栖息生境;或者有一定水域的流速和水深等条件,能为鱼类提供非常适宜或适宜的栖息生境(0,0.1]不适宜部分水域的域的流速和水深等条件差,不能为鱼类提供相对适宜的栖息生境3.2㊀替代生境适宜度时空变化特征参考Ding 等[32]所制定的栖息地适宜性标准,将栖息地质量分为不适宜㊁基本适宜㊁中等适宜及适宜4类(表2)㊂图5(a)为中国结鱼各月产卵栖息地质量等级占比情况,可见罗梭江中国结鱼产卵的适宜等级栖息地集中出现在6 11月,其中7 9月占河流面积比例较大,分别为65%㊁78%㊁60%,其他时间基本适宜栖息地占主导地位㊂图5(b)为中国结鱼各月成鱼栖息地质量等级占比情况,可见成鱼的适宜等级栖息地虽然全年均有出现,但占比较大者同样出现在7 9月,分别为82%㊁85%㊁75%,其余月份皆低于40%,而2 5月仅为10%左右㊂值得注意的是,不同于产卵栖息地占河流面积百分比总和在各月均达到100%,成鱼栖息地面积在大多数月份低于河流面积,即由于形成湖相区或者进入枯水季节,导致出现了HSI 值为0的区域,如2 5月各质量类型比值总和分别为56%㊁44%㊁41%㊁59%㊂(a)产卵(b)成鱼图5㊀中国结鱼各月产卵和成鱼栖息地质量等级占比Fig.5㊀Proportion of habitat quality grades of spawningand adult Tor sinensis in each month鉴于中国结鱼集中于7 9月有产卵栖息地需求,而成鱼栖息的替代生境适宜度由质量最差的时间段决定,因为此时鱼类将被迫离开该栖息地㊂因此,分别选取了7 9月产卵栖息地分布和2 4月成鱼栖息地分布(图6),进一步对鱼类栖息地的适宜度进行分析㊂由图6可见,8月研究河段处于适宜等级的面积占比最大,该月WUA 也处于最高水平;7月和9月相对8月适宜等级占比略小,WUA 也略低㊂总体而言,7 9月为集中产卵期,研究区域河段均表现出生境较为适宜,适宜等级产卵栖息地主要集中于河道蜿蜒处㊂成鱼栖息地在2 4月表现出极差的适宜性,不适宜等级占比最大,WUA 也相对较低㊂(a)7月产卵栖息地㊀㊀(b)8月产卵栖息地㊀㊀(c)9月产卵栖息地(d)2月成鱼栖息地㊀㊀(e)3月成鱼栖息地㊀㊀(f)4月成鱼栖息地图6㊀中国结鱼栖息地空间分布Fig.6㊀Spatial distribution of Tor sinensis habitat纵观各月栖息地情况,产卵栖息地和成鱼栖息地WUA 与各月流量大小紧密相关,当流量增大时,WUA 值也随之增加,相对应WUA 在研究河流面积中的占比也增大,说明栖息地加权可利用面积与各时期入河流量相关㊂而流量则反映了河道流速与水深的大小,因此表明流速与水深是影响栖息地适宜性指数的重要因素㊂在丰水期(7 9月),罗梭江多年月平均入河流量较大,水流流速相对较大,结合中国结鱼产卵期适宜水深与流速可知,随着入河流量的增加,流速及水深均发展到中国结鱼产卵期最适宜区间,这意味着该时期罗梭江为目标鱼类提供了高效且优质的产卵环境㊂其中,研究河段蜿蜒曲折处适宜等级占比最大,这表明罗梭江蜿蜒曲折河段对目标鱼类极其重要,可以为后期罗梭江鱼类自然保护区建设提供参考㊂通常而言,栖息地保护常因为保护区面积较大且位于山区,给后期维护工作带来较大困难[17],而对高质量栖息地的识别及优先管控将有效地改善这种困境㊂在枯水期(2 4月),由于低流量导致河流水深较浅㊁水流流速较慢的原因,成鱼栖息地表现出极差的适宜性,绝大部分河道为不适宜等级,而此时成鱼栖息地WUA 也相应处于最低值,表明罗梭江进入枯水期后,鱼类进入越冬期,支流生境适宜性降低,目标鱼类成鱼栖息空间大大缩小,绝大部分鱼类将不得不离开支流,返回干流深水区寻找适宜栖息地㊂4㊀结㊀论a.罗梭江WUA 值与流量呈正相关关系,水位是影响低流量条件下WUA 值的主要因素;在时间维度上,WUA 值在7 9月较高,2 4月较低,并且年内分布不均匀㊂b.罗梭江可为中国结鱼提供有效的产卵栖息环境,尤其是在集中产卵期(7 9月),河流内分布着数量众多且质量较高的产卵栖息地;高质量产卵栖息地大多分布于河流蜿蜒处,建议在罗梭江替代生境后期管理时,优先加强对河流弯道处的环境保护及渔业管理㊂c.罗梭江并不能全年为目标保护鱼类提供有效的成鱼栖息环境,尤其是枯水期(2 4月)㊂以中国结鱼为代表的澜沧江下游洄游鱼类生活史目前最好的模式为 干流肥育支流繁殖 ㊂这意味着保护关联干流的生态环境也是罗梭江支流替代生境产生效应的关键㊂参考文献:[1]吕军,汪雪格,刘伟,等.松花江流域主要干支流纵向连通性与鱼类生境[J].水资源保护,2017,33(6):155-160.(LYU Jun,WANG Xuege,LIU Wei,et al.Longitudinal connectivity and fish habitat of main tributaries in Songhuajiang River Basin[J].Water Resources Protection,2017,33(6):155-160.(in Chinese))[2]何大明,冯彦,胡金明.中国西南国际河流水资源利用与生态保护[M].北京:科学出版社,2007.[3]邱阳凌.黑水河生态河貌模拟及鱼类替代生境评价[D].重庆:重庆交通大学,2018.[4]王强,庞旭,李秀明,等.水电梯级开发对河流生境质量及纵向连通性影响评价:以五布河和藻渡河为例[J].生态学报,2019,39(15):5508-5516.(WANG Qiang, PANG Xu,LI Xiuming,et al.Assessment method for the influence of hydroelectric dams on the physical habitat quality and longitudinal connectivity of rivers:a case study of the Wubu and Zaodu rivers[J].Acta Ecologica Sinica, 2019,39(15):5508-5516.(in Chinese))[5]王成友.长江中华鲟生殖洄游和栖息地选择[D].武汉:华中农业大学,2012.[6]王煜,李金峰,翟振男.优化中华鲟产卵场水动力环境的梯级水库联合调度研究[J].水利水电科技进展, 2020,40(1):56-63.(WANG Yu,LI Jinfeng,ZHAI Zhennan.Research on joint operation of cascade reservoirs to optimize hydrodynamic environment for Chinese sturgeon spawning ground[J].Advances in Science and Technology of Water Resources,2020,40(1):56-63.(in Chinese))[7]DAVIES K F,MARGULES C R.Effects of habitatfragmentation on carabid beetles:experimental evidence [J].Journal of Animal Ecology,1998,3(67):460-471.[8]高婷,李翀,廖文根.实施支流生境替代保护的基本原则[J].中国水利水电科学研究院学报,2012,10(4): 267-272.(GAO Ting,LI Chong,LIAO Wengen.The basic principles in applying tributary habitat alternative protection[J].Journal of China Institute of Water Resources and Hydropower Research,2012,10(4):267-272.(in Chinese))[9]侯俊,黄喻威,苗令占,等.基于鱼类栖息地需求的雅鲁藏布江中游环境流量计算[J].水资源保护,2020,36(4):8-12.(HOU Jun,HUANG Yuwei,MIAO Lingzhan,et al.Calculating environmental flows in middle reach of Yarlung Tsangpo River based on fish habitat requirements [J].Water Resources Protection,2020,36(4):8-12.(in Chinese))[10]赵尚飞,杜彦良,王瑜,等.松花江梧桐河生态修复工程鱼类栖息地模拟及调查[J].水生态学杂志,2019,40(5):1-8.(ZHAO Shangfei,DU Yanliang,WANG Yu,etal.Wutong River fish habitat survey and modeling under ecological restoration[J].Journal of Hydroecology,2019, 40(5):1-8.(in Chinese))[11]孙志毅.基于栖息地生态适宜度指数模型的河流鱼类生境模拟分析[J].水利规划与设计,2020(6):86-90.(SUN Zhiyi.Simulation analysis of river fish habitat based on habitat ecological suitability index model[J].Water Resources Planning and Design,2020(6):86-90.(in Chinese))[12]CEOLA S,PUGLISES A,VENTUR A M,et al.Hydro-power pro-duction and fish habitat suitability:assessing impact and effective-ness of ecological flows at regional scale[J].Advances in Water Resources,2018,116: 29-39.[13]唐磊.金沙江下游梯级水电开发影响下鱼类支流生境替代方案研究[D].南京:河海大学,2020. [14]林诗芸.补远江干流鱼类生境特征与鱼类多样性的关联研究[D].昆明:云南大学,2016.[15]赵进勇,董哲仁,孙东亚.河流生物栖息地评估研究进展[J].科技导报,2008(17):82-88.(ZHAO Jinyong, DONG Zheren,SUN Dongya.State of the art in the field of river habitat assessment[J].Science and Technology Review,2008(17):82-88.(in Chinese)) [16]杨青瑞,陈声威,何建宽,等.支流生境替代保护效果评价指标体系与评价方法研究[J].中国水利水电科学研究院学报,2015,13(6):408-413.(YANG Qingrui, CHEN Shengwei,HE Jiankuan,et al.Evaluation index system of tributary habitat alternative protective effect[J].Journal of China Institute of Water Resources and Hydropower Research,2015,13(6):408-413.(in Chinese))[17]黄光明,王海龙,王伟营.澜沧江流域鱼类栖息地保护实践[J].水生态学杂志,2015,6(36):86-91.(HUANG Guangming,WANG Hailong,WANG Weiying.Fish habitat conservation in the Lancang River Basin[J].Journal of Water Ecology,2015,6(36):86-91.(in Chinese)) [18]康斌,胡文娴,祈文龙,等.补远江鱼类多样性研究[J].渔业科学进展,2010,31(3):6-15.(KANG Bin, HU Wenxian,QI Wenlong,et al..Research on fish species diversity in the Buyuan River[J].Progress in Fishery Sciences,2010,31(3):6-15.(in Chinese)) [19]WANG Y,WANG D S,YANG Q R,et al.Rationalitystudy of establishing nature reserve in Luosuo River from the point of fish[J].Applied Mechanics&Materials, 2014,641/642:1146-1150.[20]王莹.澜沧江中下游鱼类栖息地的水文㊁水力学特征研究[D].北京:中国水利水电科学研究院,2015.(下转第202页)of various contaminants from water[J].Water Research,2013,47(9):3037-3046.[10]郑怀礼,刘克万.无机高分子复合絮凝剂的研究进展及发展趋势[J].水处理技术,2004,30(6):315-319.(ZHENG Huaili,LIU Kewan.Research progress and development trendofinorganicpolymercompositeflocculants[J].Echnology of Water Treatment,2004,30(6):315-319.(in Chinese))[11]PAN G,ZHANG M M,CHEN H,et al.Removal ofcyanobacterial blooms in Taihu Lake using local soils.I.Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available claysand minerals[J].Environmental Pollution,2006,141(2):195-200.[12]ZOU H,PAN,G,CHEN,H,et al.Removal ofcyanobacterial blooms in Taihu Lake using local soils Ⅱ.Effective removal of Microcystis aeruginosa using local soilsandsedimentsmodifiedbychitosan [J ].Environmental Pollution,2006,141(2):201-205.[13]HOU J,YANG Z,WANG P,et al.Changes in Microcystisaeruginosa cell integrity and variation in microcystin-LR and proteins during Tanfloc flocculation and floc storage[J ].Science of the Total Environment,2018,626:264-273.[14]BARRADO-MORENO M M,BELTRAN-HEREDIA J,MARTIN-GALLARDO J.Microalgal removal with natural coagulants[J].Phycologia,2016,55(6):688-695.[15]郭文景,符志友,汪浩,等.水华过程水质参数与浮游植物定量关系的研究:以太湖梅梁湾为例[J].中国环境科学,2018,38(4):1517-1525.(GUO Wenjing,FU Zhiyou,WANG Hao,et al.The quantitative relation of aquatic parameters and phytoplankton biomass in the process of algal blooms:the case of Meiliang Bay in TaihuLake[J].China Environmental Science,2018,38(4):1517-1525.(in Chinese))[16]WANG D,PILLAI S C,HO S H,et al.Plasmonic-based nanomaterials for environmental remediation[J].Applied Catalysis B:Environmental,2018,237:721-741.[17]ROSELET F,BURKERT J,ABERU P C.Flocculation ofNannochloropsis oculata using a tannin-based polymer:bench scale optimization and pilot scale reproducibility[J].Biomass &Bioenergy,2016,87:55-60.(收稿日期:2021-02-20㊀编辑:王芳)ʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏ(上接第196页)[21]HAMRICK J M.A three-dimensional environmental fluiddynamics computer code:theoretical and computational aspects[R].Virginia:The College of William and Mary,Virginia Institute of Marine Science,1992.[22]余昭辉,夏建新,任华堂.黄河甘宁蒙河段突发水污染事故预警模型[J].人民黄河,2014,36(4):37-40.(YU Zhaohui,XIA Jianxin,REN Huatang.Water pollution accident emergency response and early-warning model in Gansu-Ningxia-Inner Mongolia Section of the Yellow River [J].Yellow River,2014,36(4):37-40.(in Chinese))[23]易雨君,侯传莹,唐彩红.澜沧江中游河段中国结鱼栖息地模拟[J].水利水电技术,2019,50(5):82-89.(YI Yujun,HOUChuanying,TANGCaihong.Habitatsimulation of Tor sinensis in middle reaches of LancangRiver[J].Water Resources and Hydropower Engineering,2019,50(5):82-89.(in Chinese))[24]黄福江,马秀慧,叶超.中国结鱼性腺发育的组织学观察[J].四川动物,2013,32(3):406-409.(HUANG Fujiang,MA Xiuhui,YE Chao.Observation on the gonadaldevelopment of Tor sinensis [J].Sichuan Zoology,2013,32(3):406-409.(in Chinese))[25]CLARKE K R,WARWICK R M.Change in marinecommunities:an approach to statistical analysis andinterpretation[M].Plymouth:PRIMER-E,2001.[26]SIEN J P,HERRICKS E E.Investigating the causes of fishcommunity change in the Dahan River(Taiwan)using anautecology matrix [J ].Hydrobiologia,2006,568(1):317-330.[27]曹龙智.济南市鱼类功能群及其与水环境因子的关系[J].水资源保护,2019,35(1):79-86.(CAO Longzhi.Fish functional groups and their relationship with water environmental factors in Jinan City[J].Water ResourcesProtection,2019,35(1):79-86.(in Chinese))[28]郑从奇,武玮,魏杰,等.黄河下游支流大汶河鱼类多样性及影响因子分析[J].水资源保护,2020,36(6):31-38.(ZHENG Congqi,WU Wei,WEI Jie,et al.Fish diversity and its influencing factors in the Dawen River,a tributary of the lower Yellow River[J].Water Resources Protection,2020,36(6):31-38.(in Chinese))[29]孙嘉宁.白鹤滩水库回水支流黑水河的鱼类生境模拟研究[D].杭州:浙江大学,2013.[30]英晓明.基于IFIM 方法的河流生态环境模拟研究[D].南京:河海大学,2006.[31]BOVEE K D.Guide to stream habitat analysis using the instream flow incremental methodology[R].Washington,D.C.:USDI Fish and Wildlife Service,1982.[32]DING Chengzhi,JIANG Xiaoming,WANG Lieen,et al.Fish assemblage responses to a low-head dam removal inthe Lancang River [J].Chinese Geographical Science,2019,29(1):26-36.(收稿日期:2020-11-10㊀编辑:王芳)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Water Science and Engineering,2009,2(3):27-36 doi:l0.3882/j.issn.1674・2370.2009.03.003 

http:/Ikkb.hhu.edu.cn e-mail:wse@hhu.edu.ca 

Simulatiof dronmental chang,‘toimulatlon or-envlronmenta change in response to operatiof‘ta ‘Huaihe Basineration ot ams in ‘ 

Yah JIANG* ,Jun XIA ,Gang—sheng WANG ,Chang—sen ZHAO J.China Institute ofWater Resources and Hydropower Research,BeOing 100038, R.China 2.Institute of Geographic Sciences and Natural Resources Research,Chinese Academy ofSciences, Beijing 100101. R.China 

Abstract:This paper describes the model simulation of a portion of the Huaihe Basin upstream of the river mouth at Hongze Lake.with an area of 130 520 km .The MIKE 1 1 modeling system was used to assess the flows and water quality in the Huaihe,Shayinghe,Honghe,Guohe,and Pihe rivers.The hydraulic part of the model was used to study the propagation of flows in the Huaihe River,which was calibrated with data from 2002.2003 and verified with data from 2004—2005.In genera1.there was agreement between measured and simulated discharges at alI the hydrological stations.Except for some places close to 1arge gates,there was reasonable agreement between measured and simulated water levels in the simulated rivers.The MIKE l1 WQ(water qu ̄ity) model was used to study gener ̄sanitary parameters describing the river water quality in areas influenced by human activities.The water quality model simulated dissolved oxygen(D0), chemica1 oxygen demand fCoD)and ammonia nitrogen(NH3-N).The difference between the simulated and observed concentrations was wimin the range that could be expected from water quality modeling,taking into account uncertainties such as pollution loads,and monitoring and sampling ̄equency.This model setup was also suitable for the subsequent scenario modeling of periods of water project operation.In the simulation of the Pihe River,increasing the discharge at Hengpaitou Dam was shown to cause a significant improvement in water quality downstream of Lu’an City.In the Shayinghe and Huaihe rivers.the effect was less visible.This suggests that the poor water quality in the Huaihe Basin is mainly caused by extensive discharge of domestic and industrial wastewater. Key words:Huaihe River;hydrodynamic model;water quality model;dam control 

1 Introduction The Huaihe River is one of the seven largest rivers in China,which is located between the Yangtze River and the Yellow River.Its basin covers all area of 2.7×10 km .The river stretches across the four provinces of Henan,Anhui,Jiangsu and Shandong,originating in the Tongpo Mountains in Henan Province,in the western part of the basin,and then crossing 

This work was supposed by the National Natural Science Foundation of China(Grant No.50709033),and the Key Project of the International Cooperation of the Natural Science Foundation of China(Grant No. 4072 1 140020). Corresponding author(e-mail:jiangyan@iwhr.com) Received Jun.1,2009;accepted Aug.20,2009 Anhui Province before flowing into Hongze Lake in Jiangsu Province and finally discharging into the Yangtze River.The main stream of the Huaihe River is about 1 000 km long,with 120 

main tributaries.The average annual rainfall in the basin is about 900 finn,of which 70%一80% 

occurs during the summer.There is,therefore,considerable variability in the river flow.The Huaihe River has an average annual flow of 853 m3/s,a discharge of over 1.1 x 104 m3/s flood 

season,and a discharge that drops to nearly zero in the dry season.There are four main flood control gates on the Huaihe River,about 4 300 sluices,and over 5 000 reservoirs,of which 1 6 are major reservoirs.The estimated annual volume of water resources in the basin is about 8.54 x 10 。m3,consisting of 6.21 x 10 。m3 of surface water and 2.33 x 10 。m3 of groundwater. During the 1980s and the beginning of the 1990s,with rapid economic development in the 

basin,water pollution became more and more serious,causing many incidents of severe contamination of the river.According to the monitoring data,the total wastewater discharge in the basin reached 3.68 x 10 m (including both industrial and domestic discharge from cities and towns)in 2000,with a total COD 1oad of about 1.5 x 1 0。t.Organic matter causes most of the Huaihe Basin’s water pollution.The Chinese Govemment presently pays great attention to pollution control in the basin. Undoubtedly,the development of renewable hydropower resources is vital to social and economic development,in terms of water supply,flood control and power generation.It also helps maintain moderate local temperatures,humidity and the regional micro—climate.However, the construction and operation of large—scale reservoirs and sluices greatly changes the flow regime,water-sediment proportion and habitat,and the changes in the habitat of organisms living in or along the river affect the natural ecosystem and environment significantly(Liu and Xia 2004;Stone and Jia 2006;Wang et al:2006;Xia and Chen 2001).The natural flow regime, sediment transport,estuary formation,and habitats of biological species also change to some extent due to dams’obstruction of flow and consequent hydraulic modifications(Scodanibbio and Mafiez 2005;Le et a1.2007;Graf 2006). In recent years,many researchers have considered flow regulation one of the important factors in the health of river ecosystems,since the flow always determines other key factors of aquatic habitats,such as velocity and depth(Jansson et a1.2000).Changes in natural runoff and water quality particularly affect the balance of the environmental ecosystem(Richter et a1.2003; Rosenberg et a1.2000;Kite 2001).Human activities have both direct and indirect effects on the global water system,including land—use change,river works,irrigation,water loss,and the disappearance and pollution of aquatic habitats(VOr6smarty et a1.2004).The impact of large water conservancy projects on the global water system and water security is very important (Alcamo et a1.2005).At present,the impact of human activities on natural ecosystems is one of the critical issues in hydrology and water resources research.The simulation of flow regime change and wastewater pollutant distribution,under the conditions of global climate change and continued operation of water conservancy projects,helps us to understand the 

相关文档
最新文档