苏教版高一数学指数函数4

合集下载

高中数学苏教版必修一《3.1.2指数函数第1课时指数函数的概念、图象与性质》课件

高中数学苏教版必修一《3.1.2指数函数第1课时指数函数的概念、图象与性质》课件

判断一个函数是否为指数函数,只需判定其解析式是否 符合 y=ax(a>0,a≠1)这一结构形式,其具备的特点为:
函数 y=(a2-3a+3)ax 是指数函数,求 a 的值.
【解】 ∵函数 y=(a2-3a+3)ax 是指数函数,
a2-3a+3=1, ∴a>0, a≠1,
解得 aa= >01,或a=2, a≠1,
∵-1.8>-2.6,
∴(23)-1.8<(23)-2.6.
(2)考察函数 y=(56)x,它在 R 上是单调减函数.
2
5
∵-3<0,∴
>(6)0=1,∴
>1.
(3)由指数函数性质知 1.80.4>1.80=1,0.75.1<0.70=1,故 1.80.4>0.75.1.
【思路探究】 本题主要考查指数型函数的定义域与值 域,求值域时,关键由定义域、单调性和指数函数的值域求 解.
一般来说,求复合函数的值域,通常先求函数的定义域 A,再由函数的定义域 A 求内函数的值域 B,然后以内函数的 值域作为外函数的定义域求出原函数的值域,如第(4)小题是 由函数 y=t2+2t-1 和函数 t=3x 复合而成,先求得原函数的 定义域为 R,再由 x∈R,得 t>0(即得到内函数的值域 B),然 后由 t>0,得到原函数的值域为{y|y>-1}.
3.解型如 af(x)>ag(x)(a>0 且 a≠1)的不等式,主要依据 指数函数的单调性,当 a>1 时,可转化为 f(x)>g(x),当 0<a<1 时,可转化为 f(x)<g(x).
1.下列函数中是指数函数的序号是________. (1)y=x4;(2)y=2-x;(3)y=-2x; (4)y=(-2)x;(5)y=πx. 【解析】 (1)(3)不满足指数函数的基本形式,即 y=ax, 故不是指数函数; (4)中 a=-2<0,不是指数函数;

高中数学苏教版必修一《3.1.2指数函数》课件

高中数学苏教版必修一《3.1.2指数函数》课件

• 三级
• 四级
• 五级
y 3x y 2x
2024/11/14
1 01
x
11yຫໍສະໝຸດ yy单击此处编辑母版标题样式

单击此处编辑母y版 文y12本xa x样y式
1 3
x
• 二级
(a 1)
• 三级
• 四级
• 五级
y 3x y 2x
y ax
(0 a 1)
1 0
2024/11/14
1
x
01
1
(4) 1.70.3 , 0.93.1
(5) 1.50.3, 0.81.2;
2024/11/14
16
单击此处编辑母版标题样式
• 单击此处• 变编式辑练母习版:文本已样知式下列不等式,比较m,n的大小.
• 二级 • (1)2m 2n • 三••级(四级2)0.2m 0.2n
• (• 3五)级a m a n (a 0且a 1)
• 单击此处编辑母版文本样式
• 二级 第一小组:作
• 三级
• 四级第二小组:作
• 五级
第三小组:作
y=2x 的图象
y= (1)X的图象 2
y=3x 的图象
第四小组:作
y=(
1 3
)X
的图象
2024/11/14
10
y
单击此处编辑母版标题样式

单击此处编辑母y版 文12 本x 样y式
1 3
x
• 二级
20
0x
x
12
单击此处编辑母版标题样式
• 单击此处编辑母版文定本义域样式
• 二级
• 三级
• 四级

五级

苏教版数学高一苏教版必修1教案指数函数

苏教版数学高一苏教版必修1教案指数函数

2.2.2 指数函数整体设计教材分析本节主要学习指数函数的概念、图象、性质及性质的简单应用.学习过程中,可以让学生通过画出具体的指数函数的图象,观察其特征,将表达图象特征的通俗语言,归纳、转化为数学符号语言,从而得出指数函数的性质.在这一过程中,体现数形结合的数学思想,用到了分类讨论的数学方法及从特殊到一般的类比研究的方法.所以本节的教学重点是指数函数的图象与性质.根据前面的分析,对本节的学习提出如下的建议:指导学生在学习过程中注意对列表计算结果的分析;让学生自己动手,通过画指数函数的图象,来归纳指数函数的性质.可以根据学生探索新知的情况,在适当时机,利用现代化的教学设备演示,帮助学生理解指数函数的性质.让学生在自主学习、探究活动中,体验数学发现和创造的历程,发展他们的创新意识,体会数学的美,同时激发学生对数学学习的兴趣.在应用性质的过程中,对学习有困难的学生,时时提醒他们注意底数a对指数函数的性质的影响.三维目标1.理解指数函数的概念和意义,能借助计算器或计算机画出具体的指数函数的图象,探索并理解指数函数的单调性的特殊点.2.在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型.3.利用计算工具,比较指数函数增长差异;体会指数等不同函数的类型增长的含义.4.通过指数函数的图象和性质的教学,培养学生观察、分析、归纳等思维能力和数形结合的数学思想方法.5.利用计算机技术及相关的教学软件探讨指数函数的图象和性质,激发学生学习数学的兴趣,努力培养学生的创新意识,培养学生良好的心理素质,优化学生个性品质,使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质.重点难点教学重点:1.指数函数的图象和性质.2.通过数形结合,利用图象来认识、掌握函数的性质,增强学生分析问题、解决问题的能力.教学难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质.课时安排3课时教学过程第一课时指数函数(一)导入新课设计思路一(实际问题导入)从我国辽东半岛普兰店附近的泥炭中发掘出的古莲子至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可以用放射性碳法:在动植物的体内都含有微量的放射性14C.动植物死亡后,停止了新陈代谢,14C不再产生,且原有的14C会自动衰变.经过5 730年(14C的半衰期),它的残余量只有原始量的一半.经过科学测定,若14C的原始量为1,则经过x年后的残留量为y=a x这里a为常数,0<a<1.设计思路二(情境导入)相传达依尔是国际象棋的发明人,同时也是古印度的宰相,达依尔聪明能干,国王要奖赏他,问他需要什么,达依尔就对国王说:“国王,你只需在象棋的第一格放1粒麦子,在第二格放2粒麦子,在第三格放4粒麦子,以后按比例每一格是前一格的两倍,一直放到第64格,这就是我的要求,如能满足我的这个要求,我就感激不尽了,其他的我就什么都不要了.”国王心想,这有什么难的,不就是一点麦子吗,满足他就是了,于是下令,按照宰相的要求去做,谁知道,全国的粮食用完了还不够.国王很是奇怪,他怎么也想不明白,那么你能用数学知识帮助国王解决这个问题吗?另外按宰相达依尔的要求共需多少粒小麦? 再看下面的一个例子: 背景(实际问题):某细胞分裂时,第一次由1个分裂成2个,第二次由2个分裂成4个,第三次由4个分裂成8个,如此下去,如果第x 次分裂得到y 个细胞,那么细胞个数y 与分裂次数x 的函数关系式是什么?(答案:y=2x ) 推进新课 新知探究指数函数的概念根据上述例子,我们得到了形如y=a x 的函数,这些函数的自变量是指数,因此我们把这种函数称为指数函数.一般地,函数y=a x (a >0,a≠1)叫做指数函数,其中x 是自变量,x 的取值范围是R .为了对指数函数的形式有较为深刻的印象,不妨请同学思考下面的问题: ①函数y=x 2与函数y=2x 有什么区别?(答:函数y=x 2与函数y=2x 的区别是:函数y=2x 的指数为自变量,底数为常数,而函数y=x 2的底数为自变量,指数为常数)②为什么要规定底数a 是一个大于零且不等于1的常数?(答:如果a=0,⎪⎩⎪⎨⎧≤>;,0,0,0无意义时当恒等于时当xxa x a x如果a <0,例如y=(-2)x ,这时对于x=21,41,…,y=(-2)x 在实数范围内函数值不存在; 如果a=1,y=1x 是一个常数1,对于常数1没有研究的必要.为了避免上述情况,所以规定a >0,a≠1)下面我们来研究指数函数的性质:(在初中学生已经学过描点法画函数的图象,因此先让学生按照描点法的一般步骤:列表—描点—连接来画函数的图象)在同一坐标系中画出下列函数的图象: (1)y=10x ; (2)y=2x ; (3)y=(21)x .我们通过观察函数图象的特征来研究函数的性质:图象特征 函数性质a >1 0<a <1 A >1 0<a <1 向x 、y 轴正负方向无限延伸 函数的定义域为R 图象关于原点和y 轴不对称 非奇非偶函数图象都在x 轴上方 函数的值域为R + 函数图象都过定点(0,1) a 0=1自左向右看,图象逐渐上升 自左向右看,图象逐渐下降增函数 减函数在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1x >0,a x >1 x >0,a x <1在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1x <0,a x <1 x <0,a x >1图象上升趋势是越来越陡 图象上升趋势是越来越缓函数值开始增长较慢,到了某一值后增长速度极快 函数值开始减小极快,到了某一值后减小速度较慢利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,f(x)=a x (a >0且a≠1)值域是[f(a),f(b)]或[f(b),f(a)]; (2)若x≠0,则f(x)≠1;f(x)取遍所有正数当且仅当x ∈R ; (3)对于指数函数f(x)=a x (a >0且a≠1),总有f(1)=a ; (4)当a >1时,若x 1<x 2,则f(x 1)<f(x 2). 应用示例思路1例1 指数函数f(x)=a x (a >0,且a≠1)的图象经过点(3,π),求f(0)、f(1)、f(-3)的值.分析:要求f(0)、f(1)、f(-3)的值,我们需要先求出指数函数f(x)=a x (a >0,且a≠1)的解析式,也就是要先求a 的值.根据函数图象经过定点(3,π)这一个条件,可以求得底数a 的值. 解:设f(x)=a x (a >0,且a≠1),因为f(x)=a x (a >0,且a≠1)的图象经过点(3,π), 所以f(3)=π,即a 3=π,解得a=π31, 于是f(x)=π3x ,所以,f (0)=π0=1,f(1)=π31=3π,f(-3)=π-1=π1. 点评:从本题看出,要想确定一个指数函数,只需一个条件即可,因为表达式中只有1个参数a.例2 比较下列各组数中两个值的大小.(1)1.52.5,1.53.2; (2)0.5-1.2,0.5-1.5; (3)1.50.3,0.81.2分析:比较数的大小,可以利用函数的单调性,所给的几组数都是指数式,所以考虑利用指数函数的单调性来解.解:(1)考察指数函数y=1.5x ,因为1.5>1,所以指数函数y=1.5x 在R 上是单调增函数.又因为2.5<3.2,所以1.52.5<1.53.2.(2)考察指数函数y=0.5x ,因为0<0.5<1,所以指数函数y=0.5x 在R 上是单调减函数.又因为-1.2>-1.5,所以0.5-1.2<0.5-1.5.(3)由指数函数的性质知1.50.3>1.50=1,0.81.2<0.80=1,所以1.50.3>0.81.2.点评:比较两数的大小,一般方法是将其转化为同一函数的两个不同的函数值,利用函数的单调性进行比较,如果出现不能直接看成同一函数的两个值时,通常可在这两个数之间找一个中间值比如数1,然后将这两个数与1进行比较,从而比较出两个数的大小. 例3 (1)已知5x ≥50.5,求实数x 的取值范围; (2)已知0.25x <16,求实数x 的取值范围.分析:因为5x 、50.5的底数相同,而0.25x 、16可以将底数化为相同的底数0.25,所以可以考虑用指数函数的单调性来求解.解:(1)因为5>1,所以指数函数f(x)=5x 在R 上是单调增函数.由5x ≥50.5,可得x≥0.5,即x 的取值范围为[0.5,+∞).(2)因为0<0.25<1,所以指数函数f(x)=0.25x 在R 上是单调减函数. 因为16=(41)-2=0.25-2,所以0.25x <0.25-2,由此可得x >-2,即x 的取值范围为(-2,+∞). 点评:在解指数不等式(方程)时,可以考虑运用指数函数的单调性来解.对于(2)我们还可以将底数化为4来解.可参照课本第51页例2. 例4 求下列函数的定义域和值域: (1)y=241-x ;(2)y=(32)-|x|;(3)y=4x +2x+1+1;④(4)=10112-+x x .分析:由于指数函数y=a x (a >0,且a≠1)的定义域为R ,所以函数y=a f(x)与函数f(x)的定义域相同,利用指数函数的单调性求值域.解:(1)令x-4≠0,得x≠4,∴定义域为{x|x ∈R ,且x≠4}.∵41-x ≠0,∴241-x ≠1,∴y=241-x 的值域为{y|y >0,且y≠1}.(2)定义域为R . ∵|x|≥0,∴y=(32)-|x|=(23)|x|≥(23)0=1,故y=(32)-|x|的值域为{y|y≥1}. (3)定义域为R .∵y=4x +2x+1+1=(2x )2+2·2x +1=(2x +1)2,且2x >0,∴y >1. 故y=4x +2x+1+1的值域为{y|y >1}. (4)令12+x x ≥0,得11+-x x ≥0,解得x <-1或x≥1,故y=10112-+x x 函数定义域为{x|x <-1或x≥1},值域为{y|y≥1,且y≠10}.点评:求与指数函数有关的函数的值域时,要注意充分考虑并利用指数函数本身的要求和所具有的性质,例如指数函数的单调性等.例5 作出下列函数的图象,并说明它们之间的相互关系. (1)y=3x ;(2)y=3x-1;(3)y=3x+1.分析:画函数的图象常用的方法是描点法,描点法的一般步骤是:列表—描点—连线. 当我们熟悉了一些基本的初等函数的图象特征后,可以考虑运用图象的变换的方法来实现作函数的图象.解:运用描点法可以作出函数(1)y=3x ;(2)y=3x-1;(3)y=3x+1的图象,如右图所示.由图象可以得知:函数y=3x+1的图象是由函数y=3x 的图象向左平移一个单位得到的;函数y=3x-1的图象是由函数y=3x 的图象向右平移一个单位得到的.点评:本题主要考查函数的图象及其平移变换,其变换的一般规律是:设a >0. (1)将函数y=f(x)的图象向左平移a 个单位,就得到函数y=f(x+a)的图象; (2)将函数y=f(x)的图象向右平移a 个单位,就得到函数y=f(x-a)的图象; (3)将函数y=f(x)的图象向下平移a 个单位,就得到函数y=f(x)-a 的图象; (4)将函数y=f(x)的图象向上平移a 个单位,就得到函数y=f(x)+a 的图象. 简单地说就是“左加右减,上加下减”.拓展思维:函数图象的变换除了平移变换外还有其他的变换,例如对称变换等,对于对称变换:一般地,函数y=f(x)的图象与函数y=f(-x)的图象关于y 轴对称;函数y=f(x)的图象与函数y=-f(x)的图象关于x 轴对称,函数y=f(x)的图象与函数y=-f(-x)的图象关于原点对称.思路2例1 指数函数y=f(x)的图象经过点(π,e),求f(0)、f(1)、f(-π)的值. 分析:要求函数值,只要求出函数的解析式就可以了.解:设y=f(x)=a x (a >0,且a≠1),因为y=f(x)的图象经过点(π,e),所以e=a π,得a=e π1,于是f(x)=(e π1)x .所以,f(0)=(e π1)0=1,f(1)=(e π1)1=e π1,f(-π)=(e π1)-π=e1. 例2 将下列各数由小到大排列起来:(-3)32,(32)21,(32)31,(-32)32-,(-3)31,(31-)3,(23)34,(21-)-2.分析:这些数按从小到大的顺序排列起来,最好的方法是先将这些数进行分类:首先可考虑是正数还是负数,如果是负数,则再进一步分成小于-1还是介于-1与0之间,是正数的再进一步分成0与1之间的及大于1的,然后再将以上各类数中的每一类数作进一步的比较,最后将它们由小到大排列起来.解:在所给的数中,负数有:(-3) 31,(31-)3,且(-3) 31<-1,-1<(31-)3<0,所以(-3)31<(31-)3<0. 正数有:(-3)32,(32)21,(32)31,(-32)32-,(23)34,(21-)-2,且(-3)32=332,(32)21,(32)31,(-32)32-=(23),(23)34,(21-)-2=(-2)2=4,其中大于0而小于1的有:(32)21,(32)31=(23)32,且(32)21<(32)31,大于1的有:(-3)32=332,(-32)32-=(23)32,(23)34,(21-)-2=4.综上所述,所给的数由小到大排列的顺序为:(-3)31<(31-)3<(32)21<(32)31<(-32)32-<(23)34<(-3)32<(21-)-2.点评:多个幂值的比较大小,常常采取先分组再比较的方法,即先将所给的各个数值进行分类,在每类数值中比较大小,若底数相同可利用指数函数的单调性进行比较;若底数、指数都不相同时,可以利用中间量搭建“桥梁”进行比较.若数值中含有字母,应对所含字母的取值进行讨论.例3 求下列函数的定义域和值域:(1)y=xx 212+;(2)y=2713-x. 解:(1)函数y=x x212+的定义域为R .∵y=xx212+,∴(y-1)2x =-y ,即(1-y)2x =y , 显然,y≠1,∴2x =y y-1>0,∴函数y=xx 212+的值域为(0,1). (2)∵3x -271≥0,∴3x ≥3-3,∴x≥-3.∴函数y=2713-x的定义域为{x|x≥-3|,函数y=2713-x值域为[0,+∞).点评:一般来说,函数y=a f(x)的定义域就是f(x)的定义域,其值域不但要考虑f(x)的值域,还要考虑a >1还是0<a <1,例如f(x)∈[-4,+∞)时,若a >1,则a f(x)∈[a -4,+∞),若0<a <1,则a f(x)∈(0,a -4]. 例4 利用函数f(x)=(21)x的图象,作出下列函数的图象: (1)f(x-1);(2)f(x+1);(3)f(x)-1. 分析:作图前先分别探究每一个函数的定义域和值域以及单调性,再研究探索各个函数的图象间是否有对称性及平移的相互关系,从而掌握图象的大致变化趋势,利用函数图象的相应变化,作出相应的函数图象. 解:各函数的图象如下图:点评:利用熟悉的函数图象作图,主要是利用图象的平移变换,平移需分清平移的方向以及平移的量,即平移多少个单位. 知能训练课本第52页练习1、2、3、4、5. 解答:1.C(提示:0<a-1<1).2.(1)3.10.5<3.12.3;(2)(32)-0.3>(32)-0.24; (3)2.3-2.5<0.2-0.1(提示:2.3-2.5<2.30=1,0.2-0.1>0.20=1).3.(1){x|x≠0,x ∈R };(2){x|x≥0,x ∈R }.4.(1)x >3;(2)x <-3;(3)x <21;(4)x <0. 5.A(提示:y=2-x ,即y=(21)x ). 点评:进一步熟练掌握指数函数的图象及其性质的应用. 课堂小结指数函数是中学阶段所学的重要的初等函数之一,因此在学习中要特别注意,尤其是指数函数是新接触的函数,所以要特别加以重视.本节课的重点内容是指数函数的定义、图象和性质,要求能熟记指数函数的图象特征以及指数函数的基本性质,这是学好指数函数的关键.除此之外,还要学会根据指数函数的图象特征来探究指数函数的性质,并能根据实际需要,对指数函数的底数a 分两种情况加以讨论,体会其中的数形结合的思想和分类讨论的思想,通过图象变换的讨论研究,懂得世界上的万事万物之间存在必然的、内在的联系,因此,在研究图象的平移和对称变换的时候,注意对变换的方法和规律的总结,并能正确地运用这些方法和规律解决有关函数图象的问题,加深对指数函数的图象和性质的认识和理解. 作业一、习题2.2(2)第1、2、4、5题. 二、阅读课本第49页至第53页内容.设计感想在设计本节课的教学过程时,围绕以下几点进行:一是以《新课程标准》的基本理念为指导,着眼于培养学生自主学习的能力,因此在设计教学过程时,注意让学生多动手实践,使学生从动手操作的过程中体会函数问题研究的方法和过程;二是从学生现有的认知基础出发,在课堂教学中以本节课的知识结构为主线,充分发挥学生学习的主观能动性,让学生自主探索并获取新的知识和应用新的知识解决实际问题;三是采用层层深入的方式,分散学生学习时可能遇到的难点;四是教学中注意讲练结合,借助多媒体手段进行多方位教学,从而实现教学方式多样化,从实例出发,引用典故,激发学生的学习兴趣,使教与学做到有机结合,使课堂教学达到最佳状态.(设计者:赵家法)第二课时 指数函数(二)导入新课设计思路一(复习导入)在上一节课中,我们学习了指数函数的概念、图象以及性质,下面我们一起来回顾一下相关的内容.(由学生回答,再由教师归纳总结) 设计思路二(习题导入) 请同学们完成下列习题:1.形如y=a x 的函数叫做______________函数,其中底数a 满足的条件是_____________;2.已知函数y=(m 2-3m-3)·3x 为指数函数,则m=_________;3.若-1<x <0,则2x ,(21)x,0.2x 由小到大的排列顺序是__________. 答案:1.指数,a >0,且a≠1;2.m=-1或4;3.2x <(21)x<0.2x . 思考如何判断函数y=1212-+x x 的奇偶性以及单调性?推进新课 新知探究复习指数函数的相关知识: 1.指数函数的定义. 2.指数函数的性质:指数函数y=a x 的图象和性质a >10<a <1图象性质(1)定义域:R (2)值域:(0,+∞) (3)图象过定点(0,1)(4)在(-∞,+∞)上是单调增函数 在(-∞,+∞)上是单调减函数应用示例思路1例1 求函数y=(21)232+-x x 的定义域、值域及单调区间.分析:这是一个求复合函数的单调性的问题,对于这类问题必须弄清楚函数是由哪几个函数复合而成,这些函数的单调性如何,这样才能正确求解.解:函数y=(21)232+-x x 的定义域为R . 设u=x 2-3x+2=(x-23)2-41,所以u=x 2-3x+2的值域为[-41,+∞),减区间为(-∞,23],增区间为[23,+∞).又因为函数y=(21)u 是减函数,所以函数y=(21)232+-x x 的值域为(0,42],单调减区间为[23,+∞),单调增区间为(-∞,23].点评:对于形如y=a g(x)(a >0,a≠1)的函数,根据例题可以得出以下结论:①函数y=a g(x)的定义域与g(x)的定义域相同;②应先求函数的g(x)值域,再根据指数函数的单调性及其值域来求y=a g(x)(a >0,a≠1)的值域;③对于函数y=a g(x)(a >0,a≠1)的单调性有:当a >1时,函数y=a g(x)(a >0,a≠1)的单调性与函数g(x)的单调性相同;当0<a <1时,函数y=a g(x)(a >0,a≠1)的单调性与函数g(x)的单调性相反. 例2 设a 是实数,f(x)=a-122+x(x ∈R ),(1)试证明:对于任意实数a ,函数f(x)为增函数;(2)试确定a 值,使f(x)为奇函数. 分析:题中函数f(x)=a-122+x (x ∈R )的形式较为复杂,而题目要求证明函数的单调性和奇偶性,因此,只要严格按照函数的单调性、奇偶性的定义进行证明就能证得结论. (1)证明:设x 1,x 2∈R ,且x 1<x 2,则f(x 1)-f(x 2)=(a-1221+x )-(a-1222+x )=1222+x -1221+x =)12)(12()22(22121++-x x x x ,由于指数函数y=2x 在R 上是增函数,且x 1<x 2,所以12x<22x,即12x-22x<0, 又由2x >0得12x+1>0,22x+1>0,所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2). 因为此结论与a 取值无关,所以对于a 取任意实数,f(x)为增函数.(2)解:若f(x)为奇函数,则f(-x)=-f(x)即a-122+-x =-(a-122+x ),变形得:2a=xx x2)12(22+•-+122+x =12)12(2++x x , 解得:a=1.所以当a=1时,f(x)为奇函数.点评:(1)在题(1)的证明过程中,在对作差的结果进行正、负号判断时,利用了指数函数的值域及单调性.这也提醒我们在解这类题目时,注意运用已经掌握的函数的奇偶性及单调性来解题.(2)解题时应要求学生注意不同题型采用不同的解题方法.如题(2),此题并非直接确定a 值,而是由已知条件逐步推导得a 值. 例3 设函数f(x)=1+11-x ,g(x)=f(2|x|).(1)求函数f(x)和g(x)的定义域;(2)判断函数f(x)和g(x)的奇偶性;(3)求函数g(x)的单调递增区间.分析:对于函数g(x),它是一个由f(x)与x=2|x|复合而成的函数,因此,可以通过这种复合关系得到函数g(x)的解析式,从而可以解决相应的问题;函数的单调区间也可以考虑用定义解决.解:(1)由x-1≠0得x≠1,所以函数f(x)的定义域为(-∞,1)∪(1,+∞). 因为f(x)=1+11-x ,所以g(x)=f(2|x|)=1+121||-x , 由于2|x|-1≠0,所以x≠0,所以函数g(x)的定义域为(-∞,0)∪(0,+∞).(2)因为函数f(x)的定义域为(-∞,1)∪(1,+∞),它不关于原点对称,所以f(x)既不是奇函数也不是偶函数,即f(x)是非奇非偶函数.因为函数g(x)的定义域为(-∞,0)∪(0,+∞),它关于原点对称,且 g(-x)=1+121||--x =1+121||-x =g(x),所以g(x)是偶函数. (3)设x 1、x 2∈(0,+∞),且x 1<x 2,则 g(x 1)-g(x 2)=(1+121||1-x )-(1+121||2-x )=121||1-x -121||2-x ==---12112121x x)12)(12(222112---x x x x . 因为0<x 1<x 2,所以22x-12x>0,12x-1>0,22x-1>0,所以g(x 1)-g(x 2)>0,所以g(x)在(0,+∞)上是减函数,又因为g(x)是偶函数,所以g(x)在(-∞,0)上是增函数.所以g(x)的单调增区间是(-∞,0).点评:(1)研究函数的单调性和奇偶性,不能忽视函数的定义域,特别是在研究函数的奇偶性时,如果函数的定义域不关于原点对称,则这个函数必定是非奇非偶函数;(2)本题(3)的解答过程中,在研究函数的单调性时,巧妙运用了函数的奇偶性,起到了事半功倍的效果;(3)本题是一个比较综合的问题,我们在解决这类问题时,要紧紧抓住题目条件,联系相关定义、概念以及公式等,环环相扣,步步为营,最终自然而然地解决问题. 例4 已知函数f(x)=x(131-x+21). (1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)证明:函数f(x)在定义域上恒大于0.分析:本题中求函数的定义域从分母不为0入手;对于函数奇偶性的讨论可以直接由函数奇偶性的定义来判断.解:(1)定义域为{x|x≠0}.(2)因为f(x)=x(131-x +21),所以f(x)=x(131-x +21)=13132-+•x x x .因为f(-x)=131323131213132-+•=-+•-=-+•---x x x x x x x x x =f(x), 所以函数f(x)为偶函数.(3)当x >0时,3x >1,所以3x -1>0.所以131-x >0,从而有131-x+21>21.所以x(131-x +21)>2x >0,即当x >0时,f(x)>0; 当x <0时,1>3x >0,所以0>3x -1>-1.所以131-x <-1,从而有131-x +21<21-. 所以x(131-x +21)>-2x >0,即当x <0时,f(x)>0. 综上所述,函数f(x)在定义域上恒大于0.点评:(1)判断函数的奇偶性可以直接运用定义来判断,也可以运用函数奇偶性定义的等价形式:若函数f(x)满足f(-x)+f(x)=0,则函数f(x)为奇函数;函数f(x)满足f(-x)+f(x)=0,则函数f(x)为偶函数.因此对于本题中的(2)还有以下解法:因为f(x)-f(-x)=x(131-x +131--x +1)=x(1331--x x +1)=0. 所以得f(-x)=f(x),所以f(x)是偶函数.(2)证明函数在定义域上恒大于0的问题,可以运用分类讨论来逐步求解,也可以转化为先证明函数f(x)在(0,+∞)上值域为(0,+∞),再根据函数是偶函数得到函数f(x)在(-∞,0)上值域为(0,+∞),从而证得结论.思路2例1 对于函数f(x)=(31)122--x x ,(1)求函数f(x)的定义域、值域; (2)确定函数f(x)的单调区间.分析:这是一个复合函数的问题,因此,可以将函数分解成为我们熟悉的函数如二次函数、指数函数、对数函数等,利用这些熟悉的函数相应的性质来解决问题.解:函数f(x)=(31)122--x x 可以看成是由函数u =x 2-2x -1与函数y =(31)u 复合而成. (1)由u =x 2-2x -1=(x -1)2-2,当x ∈R 时,u≥-2,此时函数y =(31)u 总有意义,所以函数f(x)定义域为R ;又由u≥-2,所以0<(31)u ≤9,所以原函数的值域为(0,9]. (2)因为函数u =x 2-2x -1在[1,+∞)上递增, 所以对于任意的1≤x 1<x 2都有u 1<u 2,所以有(31)1u >(31)1u ,即y 1>y 2. 所以函数f(x)=(31)122--x x 在[1,+∞)上递减. 同理可得函数f(x)=(31)122--x x 在(-∞,1]上递增. 点评:形如y =a f(x)(a >0,a≠1)的函数有如下性质:(1)定义域与函数f(x)定义域相同;(2)先确定函数u =f(x)的值域,然后以u 的值域作为函数y =a u (a >0,a≠1)的定义域求得函数y =a f(x)(a >0,a≠1)的值域;(3)函数y =a f(x)(a >0,a≠1)的单调性,可以由函数u =f(x)与y =a u (a >0,a≠1)按照“同增异减”即“单调性相同为增函数,单调性相异为减函数”的原则来确定.(4)从本题中的解答过程,可以体会到换元法在解决复合函数问题时的作用.例2 若函数f(x)=1212---•x x a a 为奇函数, (1)确定a 的值;(2)求函数f(x)的定义域;(3)求函数f(x)的值域;(4)讨论函数f(x)的单调性.分析:这是一个研究函数的定义域、值域、单调性、奇偶性的问题,可以由函数的单调性、奇偶性的定义来解决相应的问题.解:先将函数f(x)=1212---•x x a a 化简为f(x)= a-121-x . (1)由奇函数的定义,可得f(-x)+f(x)=0,即a-121--x +a-121-x =0,因为2a +x x 2121--=0,所以a =-21. (2)因为f(x)=-21-121-x ,所以2x -1≠0,即x≠0. 所以函数f(x)=-21-121-x 的定义域为{x|x≠0}. (3)方法一:(逐步求解法)因为x≠0,所以2x -1>-1.因为2x -1≠0,所以0>2x -1>-1或2x -1>0.所以-21-121-x >21,-21-121-x <-21, 即函数的值域为(-∞,21-)∪(21,+∞). 方法二:(利用函数的有界性)由y=f(x)=-21-121-x ≠-21,可得2x =2121+-y y . 因为2x >0,所以2121+-y y >0,可得y >21或y <-21,即f(x)>21或f(x)<-21, 所以函数的值域为(-∞,21-)∪(21,+∞). (4)当x >0时,设0<x 1<x 2,则f(x 1)-f(x 2)=a-1211-x -(a-1212-x )=1212-x -1211-x =)12)(12(221221---x x x x . ∵0<x 1<x 2,∴1<12x <22x.∴12x -22x <0,12x -1<0,22x -1<0.∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),因此f(x)=-21-121-x 在(0,+∞)上递增. 同样可以得出f(x)=-21-121-x 在(-∞,0)上递减. 点评:本题是一道函数综合题,需利用函数的有关性质,如求函数的定义域、值域,判断函数的奇偶性、单调性等知识.在判断函数的单调性时,我们也可以采用复合函数单调性的判断方法.例3 若不等式3x +6x +9x ·a >-1对(-∞,1]上任意的x 恒成立,求实数a 的取值范围.分析:本题可以将不等式变形为a >f(x)或a <f(x)的形式,因为所给不等式恒成立,因此,实数a 的取值范围为a >[f(x)]max 或a <[f(x)]min ,这样就将问题转化为求f(x)的最大值或最小值.解:将不等式3x +6x +9x ·a >-1化为a >-[(31)x +(32)x +(91)x ], 因为函数y=(31)x ,y=(32)x ,y=(91)x 在(-∞,1]上都是减函数,所以函数y=-[(31)x +(32)x +(91)x ]在(-∞,1]上是增函数.所以当x=1时,函数y=-[(31)x +(32)x +(91)x ]有最大值910-,所以,所求实数a 的取值范围为a >910-. 点评:(1)在解决有关恒成立问题时的常用方法之一是“变量分离法”,即将变量x 与参数a 分离后分别放在不等式或等式的两边,然后,再来求相关函数的最值.(2)在求函数的最值时,运用函数的单调性来求解是常用的方法之一.例4 已知函数f(x)=a x +12+-x x (a >1).(1)证明:函数f(x)在(-1,+∞)上为增函数;(2)证明:方程f(x)=0没有负数根.分析:要证明函数在某一个区间上的单调性,常用的方法是应用函数单调性的定义来证明.要证明方程没有负数根,可以先假设方程存在负数根,然后根据题目条件推出矛盾,从而证得结论.证明:(1)设x 1、x 2∈(-1,+∞),且x 1<x 2,f(x 2)-f(x 1)=)1)(1()(31212121211221112++-+-=+---+-+x x x x a a x x a x x a x x x x , 因为x 1<x 2,a >1,所以12x x a a >,又因为x 1、x 2∈(-1,+∞),所以x 2+1>0,x 1+1>0.从而有f(x 2)-f(x 1)>0,所以函数f(x)在(-1,+∞)上为增函数.(2)设x 0(x 0<0)是方程f(x)=0的根,则0x a +1200+-x x =0, 即0x a =1200+-x x .因为x 0<0,所以0x a ∈(0,1). 又因为1200+-x x =130+x -1,若x 0<-1,则130+x <0,所以130+x -1<-1,即1200+-x x <-1; 若-1<x 0<0,则0<x 0+1<1,所以130+x >3,即1200+-x x >2. 所以1200+-x x ∈(-∞,-1)∪(2,+∞). 综上所述,满足0x a =1200+-x x 的x 0不存在,即方程f(x)=0没有负数根. 所以,方程f(x)=0没有负数根.点评:(1)对于函数单调性的证明或判断,利用函数单调性的定义是常用的证明或判断方法,另外,还有其他的方法,例如可以通过复合函数来判断或证明.(2)对于方程是否在某一个区间的根的存在性的判断,除了用本题的方法之外,还可以运用函数的单调性求出区间上的最值的方法来解决.知能训练1.已知函数f(x)是偶函数,且当x >0时,f(x)=10x ,则当x <0时,f(x)等于( )A.10xB.10-xC.-10xD.-10-x解答:B2.已知函数f(x)=a x 在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A.251+B.251+-C.251±D.215+ 解答:D3.函数y=2x 与y=x 2的图象的交点个数为( )A.0B.1C.2D.3解答:D4.函数y=π-|x|是( )A.奇函数,且在(-∞,0]上是增函数B.偶函数,且在(-∞,0]上是减函数C.奇函数,且在[0,+∞)上是增函数D.偶函数,且在[0,+∞)上是减函数解答:D5.函数f(x)=(31)22++-x x 的单调增区间为____________. 解答:[21,2] 6.函数y=(41)2122+-x x 的值域为____________. 解答:(0,2]7.已知函数y=a+141+x 为奇函数,则a=____________.解答:21- 点评:进一步掌握指数函数的图象与性质.课堂小结1.指数函数y=a x (a >0,a≠1)是在定义域上的单调函数,复合函数y=a u [其中u 是关于x 的函数u(x)]的单调性,由函数y=a u 和u=u(x)的单调性综合确定.2.通过观察指数函数y=a x (a >0,a≠1),不难发现:当⎩⎨⎧<<<<⎩⎨⎧>>10,101,1y a y a 或时,均有x >0;当⎩⎨⎧<<>⎩⎨⎧><<10,101,10y y a 或时,均有x <0.这一性质可以归结为“底幂同,大于零;底幂异,小于零”.熟悉这一性质,对于解决有关指数函数的问题非常有用.作业课本第55页习题2.2(2)第6、7、8题.设计感想本节课的内容主要是结合指数函数的性质来研究一些复合函数的性质,譬如研究复合函数的单调性和奇偶性,研究复合函数的单调区间以及函数的最值等等.其中复合函数的性质对于学生来说是难点,因此,在研究复合函数的性质时,注意归纳总结.一般地,函数y=f(u)和u=g(x),设函数y=f[g(x)]的定义域为A ,如果在A 或A 的某个子区间上函数y=f(u)(称为外函数)与u=g(x)(称为内函数)的单调性相同,则复合函数y=f[g(x)]在该区间上为递增函数,如果单调性相反,则复合函数y=f[g(x)]在该区间上为递减函数.这一个结论可以简记为“同增异减”.另外,在研究复合函数的性质时必须在函数y=f[g(x)]的定义域内研究.(设计者:王银娣)第三课时 指数函数(三)导入新课设计思路一(实际问题导入)当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5 730年衰减为原来的一半.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系P=(21)5730t,考古学家根据上面的这个式子依据生物体内的碳14含量P 的值,可以知道生物死亡的年数t.式子P=(21)5730t 是一个生物体内碳14含量P 关于生物死亡年数t 的函数,而且是一个指数函数形式的函数.这一节课我们来研究与指数函数相关的实际问题,也就是指数函数的实际应用问题.设计思路二(情境导入)请看下面的问题:某厂引进一个产品的生产线,第一个月这种产品的产量是100件,由于技术的不断熟练和更新,第二个月这种产品的产量是150件,第三个月这种产品的产量是225件,按照这样的生产速度,问第十个月这种产品的产量是多少件?问题的解决:因为第一个月这种产品的产量是100件,第二个月这种产品的产量是150件,第三个月这种产品的产量是225件,所以,可以得出这样的结论:后一个月的产量是前。

苏教版高中数学高一必修1课件 第3章 第1课时 指数函数及其图象

苏教版高中数学高一必修1课件 第3章  第1课时 指数函数及其图象

2a2-3a+2=1, 解 由题意得a>0,
a≠1,
∴a 的值为12.
解得 a=12.
解析答案
题型二 指数函数的图象 例2 如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx 的图象,则a, b,c,d与1的大小关系是 .
反思与感悟
解析答案
跟踪训练2 如图,若0<a<1,则函数y=ax与y=(a-1)x2的图象可能是 ④ .
反思与感悟
解析答案
跟踪训练3 (1)函数y=|2x-2|的图象是 .
解析答案
(2)直线y=2a与函数y=|ax-1|(a>0且a≠1)的图象有两个公共点,则a的 取值范围是 .
解析答案
题型四 指数型函数的定义域、值域
例 4 求下列函数的定义域和值域:
1
(1) y= 2 x4 ;
解 由x-4≠0,得x≠4,
解析 ①中,3x的系数是2,故①不是指数函数;
②中,y=3x+1的指数是x+1,不是自变量x,故②不是指数函数;
③中,3x的系数是1,幂的指数是自变量x,且只有3x一项,故③是指数函数;
④中,y=x3的底为自变量,指数为常数,故④不是指数函数.
⑤中,底数-2<0,不是指数函数.
反思与感悟
解析答案
跟踪训练1 函数y=(2a2-3a+2)·ax是指数函数,求a的值.
解析 0<a<1时,a-1<0,因此y=(a-1)x2图象开口向下.
解析答案
题型三 指数函数的图象变换 例3 已知f(x)=2x的图象,指出下列函数的图象是由y=f(x)的图象通 过怎样的变化得到: (1)y=2x+1; 解 y=2x+1的图象是由y=2x的图象向左平移一个单位得到. (2)y=2x-1; 解 y=2x-1的图象是由y=2x的图象向右平移1个单位得到. (3)y=2x+1; 解 y=2x+1的图象是由y=2x的图象向上平移1个单位得到.

【优质文档】【2019届新高一数学衔接课程】2.6指数与指数函数(苏教版)

【优质文档】【2019届新高一数学衔接课程】2.6指数与指数函数(苏教版)

( 5)在 R 上是增函数
在 R 上是减函数
三、释疑拓展 【例 1】化简:
(1)
(a>0, b>0) ;
(2)

- 10( 5- 2)-1 +( 2- 3)0.
解( 1)原式=
=ab -1.
( 2)原式=
10 - 5- 2+ 1

- 10( 5+2) +1
规律方法
4
167
= 9+ 10 5- 10 5- 20+ 1=- 9 .
2
3
1
21
31
1
= (53 52 ) 52 = 5 3 2 52 2 = 5 6 5 = 6 5 5 ;
( 2)原式=
a2
12
21 2
a 23
5
a6
6 a5 .
a2 a3
7.【答案】 200 5
【解析】
a 1 3 ( a 1 )2 9 a 1 7 ,
a
a
a
(a 1 ) 2 49 a
a2
1
2
a
47 ,

2
A . y3 > y1 > y2
B. y2 > y1 > y3
C. y1 > y2 > y 3
D. y1 > y 3 > y2
(1)函数 f(x)= 1- e|x|的图象大致是 ________(填序号 ).
【解】 f(x)=1- e|x|是偶函数,图象关于 y 轴对称,又 e|x|≥ 1,∴ f(x)的值域为 (- ∞ , 0] , 因此排除②,③,④,只有①满足. (3)求函数 y= 3 x2 2 x 3 的定义域、值域和单调区间.

于 1.
从左向右图像逐渐上升 .

高中数学苏教版高一必修1教案 指数函数

高中数学苏教版高一必修1教案 指数函数

习题课(三) (指数函数) 教学过程复习一、分数指数幂及运算性质 1.整数指数幂. 2.分数指数幂. 二、指数函数 1.指数函数的定义.2.指数函数的图象和性质. 导入新课在前面的学习中,我们学习了分数指数幂与指数函数的概念及性质,本节课主要通过集中训练来巩固分数指数幂与指数函数的概念及性质,并进一步熟练掌握相应知识的运用. 推进新课 基础训练1.下列结论中正确的个数是( ) ①当a <0时,(a 2)23=a 3;②n na =|a|;③函数y=(x-2)21-(3x-7)0的定义域为(2,+∞);④若100a =5,10b =2,则2a+b=1.A.0B.1C.2D.3 2.若集合M={y|y=2-x },P={y|y=1-x },则M∩P 等于( )A.{y|y >1}B.{y|y≥1}C.{y|y >0}D.{y|y≥0}3.已知函数f(x)=2x +m 的图象不经过第二象限,则实数m 的取值范围是( ) A.m≤-1 B.m <-1 C.m≤-2 D.m≥-24.函数y=133+x x的值域为( )A.(0,+∞)B.(-∞,1)C.(0,1)D.(1,+∞) 答案:1.B 2. 答案:C 3. 答案:A 4. 答案:C 应用示例思路1例1 已知指数函数f(x)的图象经过点(3,8),求f(1)、f(-1)、f(2x-3)的值.分析:要求f(1)、f(-1)、f(2x-3)的值,必须要先求出指数函数f(x)的解析式,根据定义,指数函数的解析式为y=a x (a >0,a≠1),因此,本题就是求底数a 的值,把底数a 的值求出后,f(1)、f(-1)、f(2x-3)的值也就迎刃而解了.解:设指数函数y=a x (a >0,a≠1),因为函数f(x)的图象经过点(3,8), 所以,f(3)=8,即a 3=8,解得a=2,于是有,f(x)=2x . 所以,f(1)=21=2,f(-1)=2-1=21,f(2x-3)=22x-3. 点评:本题要弄清两点,一是指数函数的形式即函数的解析式为y=a x (a >0,a≠1),二是求解析式字母a 的值,只需要有一个条件即可.另外对于求函数值的问题,必须是以已知函数解析式为前提,才能求函数的值.例2 如图,图中所示是指数函数①y=a x ,②y=b x ,③y=c x ,④y=d x 的图象,则a 、b 、c 、d 与1的大小关系是( )A.a <b <1<c <dB.b <a <1<d <cC.1<a <b <c <dD.a <b <1<d <c 分析:根据指数函数的图象和性质,可将题目所给四个函数的底数进行分类一类是底数大于1,另一类是底数大于0小于1,然后在同一类中比较大小.解:因为当指数函数底数大于1时,图象呈上升趋势,且底数越大,图象向上方向越靠近y 轴;当指数函数底数大于0且小于1时,图象呈下降趋势,且底数越小,图象向右方向越靠近x 轴;所以,根据题目所给图象,应该选择B.点评:运用上述方法有利于弄清指数函数在第一象限的图象的大致变化情形.本题除了可以运用上述方法来解以外,还可以运用下面的方法来解:(1)令x=1,则题目所给四个函数的函数值分别为a 、b 、c 、d ,结合函数图象,就可得到解答.应该选择B.(2)在所给图象中,过点(1,0)作x 轴的垂线,则垂线与图象的交点的纵坐标就是函数当x=1时的函数值,分别为a 、b 、c 、d ,因此,根据函数的图象不难得到本题的答案.例3 已知a 2x =2+1,求xx x x aa aa --++33的值. 分析:观察所求式子xx xx aa a a --++33,不难发现已知和未知代数式中都含有a x ,所以可以考虑用换元法令a x =t ,再化简运算求值. 解:令a x =t ,则t 2=2+1.所以,x x x x a a a a --++33=12121133))((------++•-+++t t t t t t t t t t t t =2+1+121+-1=22-1. 点评:换元后得t 2=2+1,可以求出t 的值再代入进行计算,但是这种解法运算量相对来说比较大.本题的解法是换元后,并不求出t 的值(这种方法叫做“设而不求”)而直接将t代入要求的式子进行运算,对所要求的式子进行变形整理,最后得到关于t 2的式子,将t 2整体代入,求出最后的结果.整体代入的方法是一种非常重要的运算技巧,是整体思想的渗透和运用.例4 已知f(x)=e x -e -x ,g(x)=e x +e -x ,其中e=2.718 28… (1)求[f(x)]2-[g(x)]2;(2)设f(x)f(y)=4,g(x)g(y)=8,求y)-g(x y)g(x +的值.分析:观察题目所给的表达式的结构特征,联系多项式乘法公式和分数指数幂的运算性质,就可以很快找到解题的路子了.解:(1)[f(x)]2-[g(x)]2=[f(x)+g(x)][f(x)-g(x)]=2e x ·(-2e -x )=-4e 0=-4. (2)因为f(x)f(y)=(e x -e -x )(e y -e -y )=e x+y +e -(x+y)-[e x-y +e -(x-y)], 所以g(x+y)-g(x-y)=4.①同理可得g(x+y)+g(x-y)=8,②解由①②组成的方程组,可得g(x+y)=6,g(x-y)=2. 所以y)-g(x y)g(x +=26=3.点评:对于(1),如果将f(x)、g(x)代入,那么这个问题就变成了具体的求值,也就是将问题具体化了.我们应该要充分认识到将问题具体化是探求解题方法的重要策略,因此,要努力掌握这一解决问题的策略,开拓解题思路,提高解题的能力;对于(2),为了求y)-g(x y)g(x +的值,利用已知条件,通过解关于g(x+y)和g(x-y)的方程组,先求出g(x+y)和g(x-y)的值,再来求y)-g(x y)g(x +的值.这里充分体现了方程的思想在解题时的功能.例5 已知函数y=xx xx ---+10101010,(1)求函数的定义域;(2)求函数的值域;(3)判断函数的单调性.分析:将函数y=x x x x ---+10101010解析式化简为y=11011022-+x x ,根据分母不为零可以求函数的定义域;因为102x >0,所以将函数y=11011022-+x x 中102x 看成未知数,把102x 用关于y 的式子g(y)表示,解关于不等式g(y)>0即可得到函数的值域;判断函数的单调性可以运用函数单调性的定义.解:(1)y=xx x x ---+10101010=11011022-+x x .因为102x -1≠0,所以x≠0, 所以函数y=xx xx ---+10101010定义域为{x|x≠0}. (2)由y=11011022-+x x 得y·102x -y=102x +1,所以102x =11-+y y .因为102x >0,即11-+y y >0,所以y <-1或y >1. 所以函数的值域为(-∞,-1)∪(1,+∞). (3)设任意x 1,x 2∈(-∞,0),且x 1<x 2,则f(x 1)-f(x 2)=11011011011021112222----+x x x x =)110)(110()1010(2)110)(110(1101010101101010102112212121212122222222222222---=--++-•--+-•x x x x x x x x x x x x x x . 因为x 1,x 2∈(-∞,0),所以1210x -1<0,2210x -1<0.又因为x 1<x 2,所以2210x >1210x ,因而有f(x 1)-f(x 2)>0.所以函数y=xx xx ---+10101010在(-∞,0)上为单调减函数. 设任意x 1,x 2∈(0,+∞),且x 1<x 2,1210x -1>0,2210x -1>0,2210x >1210x ,所以有f(x 1)-f(x 2)>0.所以函数y=xx xx ---+10101010在(0,+∞)上为单调减函数. 综上所述,函数y=xx xx ---+10101010在(-∞,0)及(0,+∞)上分别为单调减函数. 点评:若将函数式变形为y=11011022-+x x =110211022-+-x x =1+11022-x,据此,根据102x -1随x 的值的递增而递增以及x 的取值范围,也可以求出函数的值域以及函数的单调区间.另外要注意的是:不能由y=f(x)在(-∞,0)及(0,+∞)上分别为单调减函数,得出函数y=f(x)在区间(-∞,0)和(0,+∞)上为单调减函数,事实上,函数y=f(x)在(-∞,0)∪(0,+∞)上不具有单调性. 例6 已知函数f(x)=aa a x+-(a >0,a≠1),(1)证明:f(x)+f(1-x)=-1;(2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值.分析:要证明等式f(x)+f(1-x)=-1成立,可以直接通过指数进行运算即可证得;而要求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值,如果直接将相应的值(如-2)等直接代入计算,比较烦琐.所以考虑另外的途径,例如能否利用(1)的结论解题. 解:(1)f(x)+f(1-x)=aa a x+-+(aaa x+--1)=)11(1aaaa a xx+++--=)())(1(a a a a a a a a a a aa a xx xxx++•-=+++-=-1.(2)由(1)f(x)+f(1-x)=-1.令x=-2,得f(-2)+f[1-(-2)]=-1,即f(-2)+f(3)=-1.同理f(-1)+f(2)=-1,f(0)+f(1)=-1. 所以f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=-3.点评:如果能够注意到直角坐标平面上的点P(x,y)与点P′(1-x,-1-y)关于点(21,21-)对称,那么第(1)小题的实质就是证明函数f(x)=aa a x +-(a >0,a≠1)的图象关于点(21,21-)对称.据此,我们可以得到证明某一函数f(x)的图象关于某一个定点O 对称的一般方法:设点P(x,y)在函数f(x)的图象上,求出P(x,y)关于点O 的对称点P′的坐标,然后将P′的坐标代入函数f(x),如果P′的坐标满足函数f(x),则函数f(x)的图象关于某一个定点O 对称,如果P′的坐标不满足函数f(x),则函数f(x)的图象不关于某一个定点O 对称.对于第(2)小题的求解,运用了第(1)小题证得的结论.这种解题的方法是在解具有递进关系或具有关联关系的一系列题时的一种常用的技巧,我们必须好好地加以体会.思路2例1 函数y=(a 2-3a+3)·a x 是指数函数,则有( )A.a=1或a=2B.a=1C.a=2D.a >0且a≠1 分析:指数函数y=a x 中有两个特点:①a >0且a≠1,②a x 的系数必须为1.解:因为函数y=(a 2-3a+3)·a x 是指数函数,所以有⎪⎩⎪⎨⎧≠>=+-,1,0,1332a a a a 解得a=2.故本题应选择C.例2 比较下列各组数的大小:(1)1.253,1.275;(2)(-1.2)53,(-1.2)75;(3)2,33;(4)0.50.6,0.60.5; (5)0.30.2,30.3,(-0.3)53,0.20.3,20.5,(-0.3)75.分析:要比较两个数或几个数的大小,可以利用函数的性质,也可以作差或作商,还可以先找中间数进行分类,然后在同一类中进行比较.解:(1)指数函数y=1.2x 在(-∞,+∞)上是增函数,因为53<75,所以1.253<1.275.(2)因为(-1.2)53=-1.253,(-1.2)75=-1.275,由(1)知1.253<1.275,所以-1.253>-1.275,即(-1.2)53>(-1.2)75. (3)方法一:因为2=68,33=69,所以2<33.方法二:因为6663989832==<1,所以2<33. (4)因为函数y=0.5x 在(-∞,+∞)上是减函数,所以0.50.6<0.50.5,又因为y=a x 的图象在y 轴右边是底数越大图象越高,所以0.50.5<0.60.5,由上述可知:0.50.6<0.60.5.(5)由于0.30.2,30.3,(-0.3)53,0.20.3,20.5,(-0.3)75中的数(-0.3)53,(-0.3)75小于0,其余的数都大于0,所以先比较(-0.3)53,(-0.3)75的大小,再比较其余的数的大小. 因为0.353>0.375,所以-0.353<-0.375,即(-0.3)53<(-0.3)75.因为30.3、20.5都大于1,而30.3÷20.5=3103÷2105=27101÷32101=(3227)101<1,所以30.3<20.5.因为0.30.2、0.20.3都大于0且小于1,将0.30.2、0.20.3与0.30.3比较. 由于函数y=0.3x 在(-∞,+∞)上是减函数,所以0.30.2>0.30.3,又因为y=a x 的图象在y 轴右边是底数越大图象越高,所以0.30.3>0.20.3,由上述可知:0.30.2>0.20.3. 综上所述,(-0.3)53<(-0.3)75<0.20.3<0.30.2<30.3<20.5.点评:在比较两个数的大小时,特别是比较指数幂的大小时,可以按照以下的方法进行比较:首先将题给的数与0进行比较,区分出正负数;第二,将正数与1进行比较,区分出大于1的数和小于1的正数;第三,利用函数的性质分别比较上述各类数的大小;第四,寻找中间数,结合函数的单调性比较大小;第五,运用作差或作商的方法进行比较数的大小. 例3 求函数y=(32)232+-x x 的单调区间. 分析:这是有关复合函数求单调区间的问题.可设y=(32)u ,u=x 2-3x+2,其中函数y=(32)u 为减函数,所以u=x 2-3x+2的减区间就是原函数的增区间;u=x 2-3x+2的增区间就是原函数的减区间.解:设y=(32)u,u=x 2-3x+2,y 关于u 递减, 因为当x ∈(-∞,23]时,u 为减函数,所以此时y 关于x 为增函数;当x ∈[23,+∞)时,u 为增函数,所以此时y 关于x 为减函数.由以上可知函数y=(32)232+-x x 的单调增区间为(-∞, 23],单调减区间为[23,+∞).点评:一般地,对形如f[g(x)]的复合函数的单调性的判断或求单调区间的问题,除根据定义来解答外,还可以依据下述结论来判断:当y=f(u)与u=g(x)的单调性相同时,则y=f[g(x)]为增函数;当y=f(u)与u=g(x)的单调性相异时,则y=f[g(x)]为减函数.而对形如f(x)=a g(x)(a >0,a≠1)的复合函数来说,若a >1,则f(x)与g(x)的单调性相同,若0<a <1,则f(x)与g(x)的单调性相异.例4 已知函数y=a 2x +2a x -1(a >0且a≠1)在区间[-1,1]上有最大值14,求实数a 的值. 分析:将已知函数y=a 2x +2a x -1的解析式化为y=(a x )2+2a x -1,则令u=a x ,再利用二次函数的相关知识,结合指数函数的性质,即可得到解答. 解:由y=a 2x +2a x -1得y=(a x )2+2a x -1=(a x +1)2-2, 令a x =t ,则y=(t+1)2-2.①当a >1时,因为x ∈[-1,1],所以a 1≤a x ≤a ,即a1≤t≤a. 因为函数y=(t+1)2-2的对称轴为t=-1,所以,当t=a 时,函数y=(t+1)2-2有最大值,即(a+1)2-2=14,解得a=3.②当0<a <1时,因为x ∈[-1,1],所以a≤a x ≤a 1,即a≤t≤a1. 所以,当t=a 1时,函数y=(t+1)2-2有最大值,即(a 1+1)2-2=14,解得a=31.综上所述,实数a 的值为3或31.点评:这是一个函数综合问题,考查了指数函数与二次函数的性质,因此,在解综合问题时,一定要对涉及的知识点熟悉并能熟练运用.此外,注意一些数学思想的应用,本题中运用了分类讨论的数学思想,对底数a 在(0,1)及(1,+∞)上两种情况进行分类讨论,因为指数函数在这两个范围上的单调性完全不同. 知能训练 1.已知x32-=4,那么x 等于( )A.8B.±81C.443D.±322.化简2)21(x -(x >21)的结果是( ) A.1-2x B.0 C.2x-1 D.(1-2x)2 3.已知c <0,则下列不等式中成立的是( ) A.c >2c B.c >(21)c C.2c <(21)c D.2c >(21)c 4.若函数y=a x +b-1(a >0,且a≠1)的图象经过第一、三、四象限,则一定有…( )A.a >1,且b <1B.0<a <1,且b <0C.0<a <1,且b >0D.a >1,且b <0 5.函数y=5x 与y=-5-x 的图象( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线y=x 对称 6.函数f(x)=(1+a x )2a -x (a >0且a≠1)( )A.是奇函数但不是偶函数B.是偶函数但不是奇函数C.既不是奇函数也不是偶函数D.既是奇函数又是偶函数 7.若a 31>a 21,则实数a 的取值范围是_____________.8.当x ∈[-1,1]时,函数f(x)=3x -2的值域为_____________.9.已知a=0.80.7,b=0.80.9,c=1.20.8,则a 、b 、c 由小到大的排列顺序是_____________.10.已知a >0,x=21(n n a a 11--),求(x+21x +)n 的值.解答:1.答案:B2. 答案:C3. 答案:C4. 答案:D5. 答案:C6. 答案:B7. 答案:0<a <1 8. 答案:[35-,1] 9. 答案:b <a <c 10.解:将x=21(nn a a 11--)代入21x +=21(n n a a 11--),因此(x+21x +)n =[21(n n a a 11--)+21(n n a a 11--)]n =(n a 1)n =a.课堂小结本节课主要是集中训练分数指数幂与指数函数的相关内容. 对于分数指数幂,要求掌握分数指数幂的概念与运算性质,以及分数指数幂与根式的相互转化,能够熟练并且正确地进行有关根式与分数指数幂的化简、求值等问题,能熟练进行有关分数指数幂的恒等变形,提高有关分数指数幂知识的综合运用能力.对于指数函数,要求掌握指数函数的定义、图象、性质及其应用,体会利用函数图象来研究函数性质的思想方法,以及从具体到抽象、从特殊到一般的思维过程,充分认识指数函数是一类重要的函数模型,在现实生活、生产实践、现代科技等领域指数函数有着广泛的应用.作业课本第93页复习题10、12.设计感想在本节内容的学习中应注意以下几点:(1)要注意正数的偶次方根有两个,它们互为相反数;负数的偶次方根没有意义. (2)n n a 一定等于a ,而要分n 是奇数和偶数两种情形来求解.(3)分数指数幂并不是一种新的运算,而是根式的另一种表达形式,将根式用分数指数幂表示后,可以将根式的运算转化为指数运算.(4)指数函数y=a x 中的底数a 之所以规定为a >0且a≠1,是因为:在y=a x 中,若a=1,则y=1,它是一个常数函数.为了保证当x 取分数时a x 有意义,必须要求a≥0;但是当a=0时,a x 只有x >0时有意义且y=a x =0也是常数函数.(5)在学习指数函数时,注意分清底数是“a >1”和“0<a <1”的函数所具有的性质的相同和不同之处.(6)在学习本节内容时注意结合对比的方法,揭示分数指数幂与根式,指数函数的底数在“a >1”和“0<a <1”两种情形的内在联系.在运用性质解题时注意解题的技巧,例如在运用幂的运算性质解题时,凑完全平方及寻求同底数幂的方法的恰当运用;在运用函数图象解题时注意图象变换等.。

新教材苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数 知识点考点重点难点归纳总结

第六章幂函数、指数函数和对数函数6.1幂函数 (1)6.2指数函数 (6)第1课时指数函数的概念、图象与性质 (6)第2课时指数函数的图象与性质的应用 (11)6.3对数函数 (16)第1课时对数函数的概念、图象与性质 (16)第2课时对数函数的图象与性质的应用 (20)6.1幂函数知识点1幂函数的概念一般地,我们把形如y=xα的函数称为幂函数,其中x是自变量,α是常数.知识点2幂函数的图象和性质1.幂函数的图象在同一平面直角坐标系中,幂函数y=x,y=x2,y=x3,y=x,y=x-1的图象如图所示:2.幂函数的性质y=x y=x2y=x3y=x y=x-1定义域R R R[0,+∞)(-∞,0)∪(0,+∞)值域R[0,+∞)R[0,+∞)(-∞,0)∪(0,+∞)奇偶性奇函数偶函数奇函数非奇非奇函数偶函数单调性在(-∞,+∞)上单调递增 在(-∞,0]上单调递减,在[0,+∞)上单调递增在(-∞,+∞)上单调递增在[0,+∞) 上单调递增在(-∞,0)上单调递减,在(0,+∞)上单调递减定点(1,1),(0,0)(1,1),(0,0) (1,1),(0,0) (1,1),(0,0)(1,1)考点类型1 幂函数的概念 【例1】 (1)下列函数:①y =x 3;②y =⎝ ⎛⎭⎪⎫12x;③y =4x 2;④y =x 5+1;⑤y =(x -1)2;⑥y =x ;⑦y =a x (a >1).其中幂函数的个数为( )A .1B .2C .3D .4(2)已知y =(m 2+2m -2)x m2-2+2n -3是幂函数,求m ,n 的值.(1)B [幂函数有①⑥两个.] (2)[解] 由题意得⎩⎨⎧m 2+2m -2=1,2n -3=0,解得⎩⎪⎨⎪⎧m =-3,n =32或⎩⎪⎨⎪⎧m =1,n =32.所以m =-3或1,n =32.1.幂函数y =x α满足的三个特征 (1)幂x α前系数为1;(2)底数只能是自变量x ,指数是常数; (3)项数只有一项.2.求幂函数解析式时常用待定系数法,即设解析式为f (x )=x α,根据条件求出α.类型2 比较大小【例2】 比较下列各组数中两个数的大小: (1)⎝ ⎛⎭⎪⎫13与⎝ ⎛⎭⎪⎫14;(2)⎝ ⎛⎭⎪⎫-23-1与⎝ ⎛⎭⎪⎫-35-1; (3)0.25与6.25;(4)1.20.6与0.30.4;(5)(-3)与(-2).[思路点拨] 可以借助幂函数y =x 2的单调性或化为同指数或借助于中间量进行比较.[解] (1)∵y =x 是[0,+∞)上的增函数,且13>14, ∴⎝ ⎛⎭⎪⎫13>⎝ ⎛⎭⎪⎫14. (2)∵y =x -1是(-∞,0)上的减函数, 且-23<-35,∴⎝ ⎛⎭⎪⎫-23-1>⎝ ⎛⎭⎪⎫-35-1. (3)0.25=⎝ ⎛⎭⎪⎫14=2,6.25=2.5.∵y =x 是[0,+∞)上的增函数,且2<2.5, ∴2<2.5,即0.25<6.25.(4)由幂函数的单调性,知1.20.6>10.6=1,0.30.4<10.4=1,从而0.30.4<1.20.6. (5)由幂函数的奇偶性,(-3)=3>0,(-2)=-2<0, 所以(-3)>(-2).比较幂值的大小,关键在于构造适当的函数(1)若指数相同而底数不同,则构造幂函数;若指数相同、底数不在同一单调区间,则用奇偶性;(2)若指数与底数都不同,需考虑是否能把指数化为相同,是否可以引入中间量.类型3 幂函数的图象及应用【例3】 点(2,2)与点⎝ ⎛⎭⎪⎫-2,-12分别在幂函数f (x ),g (x )的图象上,问当x 为何值时,有:(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x ). [解] 设f (x )=x α,g (x )=x β. ∵(2)α=2,(-2)β=-12, ∴α=2,β=-1,∴f (x )=x 2,g (x )=x -1.分别作出它们的图象,如图所示.由图象知,(1)当x ∈(-∞,0)∪(1,+∞)时,f (x )>g (x ); (2)当x =1时,f (x )=g (x ); (3)当x ∈(0,1)时,f (x )<g (x ).1.解决幂函数图象问题应把握研究一般的方法 (1)求幂函数的定义域,再判定奇偶性;(2)先研究第一象限的图象与性质,再根据奇偶性(对称性)研究其它象限的图象.2.幂函数在第一象限的图象与性质(1)α>0,幂函数的图象恒经过(0,0),(1,1),在[0,+∞)是增函数. (2)α<0,幂函数的图象恒经过(1,1),在(0,+∞)上是减函数. 3.幂函数图象在第一象限内随指数变化而变化的规律(1)在第一象限内直线x =1的右侧,图象从上到下,相应的指数由大变小;(2)在第一象限内直线x =1的左侧,图象从下到上,相应的指数由大变小.类型4 幂函数性质的综合应用【例4】 已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上单调递减,求满足(a +1)<(3-2a )的a 的取值范围.1.函数图象关于y 轴对称,函数有怎样的奇偶性? [提示] 偶函数. 2.x>y时,x 、y 与0的大小关系有多少种?[提示] 0<x <y ,x <y <0,x >0>y .[解] ∵函数在(0,+∞)上递减,∴3m -9<0,解得m <3. 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称,∴3m -9为偶数,故m =1. ∴有(a +1)<(3-2a ).∵y =x在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a ,或a +1<0<3-2a ,解得23<a <32或a <-1. 所以a 的取值范围为(-∞,-1)∪⎝ ⎛⎭⎪⎫23,32.1.本题在解答过程中易出现忽略对底数的分类讨论而产生漏解. 2.求解此类题目的关键是弄清幂函数的概念及幂函数的性质. 解决此类问题可分为两大步:第一步,研究幂函数的奇偶性(图象对称性)、第一象限的图象的单调性求出m 的值或范围;第二步,利用分类讨论的思想,结合函数的图象求出参数a 的取值范围.6.2指数函数第1课时指数函数的概念、图象与性质知识点1指数函数的概念一般地,函数y=a x(a>0,a≠1)叫作指数函数,它的定义域是R.知识点2指数函数的图象和性质a>10<a<1图象性质定义域R值域(0,+∞)定点图象过点(0,1),图象在x轴的上方函数值的变化x>0时,y>1;x<0时,0<y<1x>0时,0<y<1;x<0时,y>1单调性在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数奇偶性非奇非偶函数1.指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于什么?[提示]指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于字母a.当a>1时,图象具有上升趋势;当0<a<1时,图象具有下降趋势.2.为什么底数应满足a>0且a≠1?[提示]①当a≤0时,a x可能无意义;②当a>0时,x可以取任何实数;③当a=1时,a x=1(x∈R),无研究价值.因此规定y=a x中a>0,且a≠1.考点类型1指数函数的概念【例1】(1)下列函数中,是指数函数的个数是()①y=(-8)x;②y=2x2-1;③y=a x;④y=2·3x.A .1B .2C .3D .0(2)已知函数f (x )为指数函数,且f ⎝ ⎛⎭⎪⎫-32=39,则f (-2)=________.(1)D (2)19 [(1)①中底数-8<0,所以不是指数函数; ②中指数不是自变量x ,而是x 的函数, 所以不是指数函数;③中底数a ,只有规定a >0且a ≠1时,才是指数函数; ④中3x 前的系数是2,而不是1,所以不是指数函数,故选D.(2)设f (x )=a x (a >0且a ≠1),由f ⎝ ⎛⎭⎪⎫-32=39得a -32=39,所以a =3,又f (-2)=a -2,所以f (-2)=3-2=19.]1.判断一个函数是否为指数函数,要牢牢抓住3点 (1)底数是大于0且不等于1的常数;(2)指数函数的自变量必须位于指数的位置上; (3)a x 的系数必须为1.2.求指数函数的解析式常用待定系数法.类型2 利用单调性比较大小 【例2】 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫34-1.8与⎝ ⎛⎭⎪⎫34-2.6;(2)⎝ ⎛⎭⎪⎫58与1; (3)0.6-2与⎝ ⎛⎭⎪⎫43;(4)⎝ ⎛⎭⎪⎫130.3与3-0.2;(5)0.20.6与0.30.4;(6) ⎝ ⎛⎭⎪⎫23,⎝ ⎛⎭⎪⎫23,⎝ ⎛⎭⎪⎫25.[思路点拨] 观察底数是否相同(或能化成底数相同),若相同用单调性,否则结合图象或中间值来比较大小.[解] (1)∵0<34<1,y =⎝ ⎛⎭⎪⎫34x在定义域R 内是减函数,-1.8>-2.6, ∴⎝ ⎛⎭⎪⎫34-1.8<⎝ ⎛⎭⎪⎫34-2.6.(2)∵0<58<1,∴y =⎝ ⎛⎭⎪⎫58x在定义域R 内是减函数.又∵-23<0, ∴⎝ ⎛⎭⎪⎫58>⎝ ⎛⎭⎪⎫580=1, ∴⎝ ⎛⎭⎪⎫58>1.(3)∵0.6-2>0.60=1,⎝ ⎛⎭⎪⎫43<⎝ ⎛⎭⎪⎫430=1, ∴0.6-2>⎝ ⎛⎭⎪⎫43.(4)∵⎝ ⎛⎭⎪⎫130.3=3-0.3,y =3x 在定义域R 内是增函数,又∵-0.3<-0.2, ∴3-0.3<3-0.2,∴⎝ ⎛⎭⎪⎫130.3<3-0.2.(5)由幂函数的单调性,知0.20.6<0.30.6,又y =0.3x 是减函数,∴0.30.4>0.30.6,从而0.20.6<0.30.4.(6)∵f (x )=⎝ ⎛⎭⎪⎫23x 在R 上为减函数,∴⎝ ⎛⎭⎪⎫23<⎝ ⎛⎭⎪⎫23, ∵f (x )=x 在(0,+∞)上为增函数,∴⎝ ⎛⎭⎪⎫23>⎝ ⎛⎭⎪⎫25,所以⎝ ⎛⎭⎪⎫23>⎝ ⎛⎭⎪⎫23>⎝ ⎛⎭⎪⎫25.在进行指数式的大小比较时,可以归纳为以下3类 (1)底数同、指数不同:利用指数函数的单调性解决. (2)底数不同、指数同:利用幂函数的单调性解决.(3)底数不同、指数也不同:采用介值法.以其中一个的底为底,以另一个的指数为指数.比如a c 与b d ,可取a d ,前者利用单调性,后者利用图象.类型3 利用指数函数的单调性解不等式 【例3】 (1)解不等式⎝ ⎛⎭⎪⎫123x -1≤2;(2)已知ax 2-3x +1<a x +6(a >0,且a ≠1). [解] (1)∵2=⎝ ⎛⎭⎪⎫12-1,∴原不等式可以转化为⎝ ⎛⎭⎪⎫123x -1≤⎝ ⎛⎭⎪⎫12-1. ∵y =⎝ ⎛⎭⎪⎫12x在R 上是减函数,∴3x -1≥-1,∴x ≥0, 故原不等式的解集为{x |x ≥0}. (2)分情况讨论①当0<a <1时,函数f (x )=a x (a >0,a ≠1)在R 上为减函数, ∴x 2-3x +1>x +6, ∴x 2-4x -5>0,根据相应二次函数的图象可得x <-1或x >5.②当a >1时,函数f (x )=a x (a >0,a ≠1)在R 上是增函数. ∴x 2-3x +1<x +6,∴x 2-4x -5<0. 根据相应二次函数的图象可得-1<x <5, 综上所述当0<a <1时,x <-1或x >5, 当a >1时,-1<x <5.1.形如a x >a y 的不等式,借助y =a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.2.形如a x >b 的不等式,注意将b 化为以a 为底的指数幂的形式,再借助y =a x 的单调性求解.类型4 图象变换及其应用【例4】 (1)函数y =3-x 的图象是________.(填序号)(2)已知0<a <1,b <-1,则函数y =a x +b 的图象必定不经过第________象限.(3)函数f (x )=2a x +1-3(a >0且a ≠1)的图象恒过定点________. [思路点拨] 题(1)中可将y =3-x转化为y =⎝ ⎛⎭⎪⎫13x.题(2)中,函数y =a x +b 的图象过点(0,1+b ), 因为b <-1,所以点(0,1+b )在y 轴负半轴上. 题(3)应该根据指数函数经过定点求解.(1)② (2)一 (3)(-1,-1) [(1)y =3-x =⎝ ⎛⎭⎪⎫13x 为单调递减的指数函数,其图象为②.(2)函数y =a x (0<a <1)在R 上单调递减,图象过定点(0,1),所以函数y =a x +b 的图象在R 上单调递减,且过点(0,1+b ).因为b <-1,所以点(0,1+b )在y 轴负半轴上,故图象不经过第一象限.(3)令x +1=0,得x =-1,此时y =2a 0-3=-1,故图象恒过定点(-1,-1).]1.处理函数图象问题的策略(1)抓住特殊点:指数函数的图象过定点(0,1).(2)巧用图象变换:函数图象的平移变换(左右平移、上下平移). (3)利用函数的性质:奇偶性与单调性. 2.指数型函数图象过定点问题的处理方法求指数型函数图象所过的定点时,只要令指数为0,求出对应的y 的值,即可得函数图象所过的定点.第2课时 指数函数的图象与性质的应用知识点 指数型函数形如y =ka x (k ∈R ,且k ≠0,a >0且a ≠1)的函数是一种指数型函数,这是一种非常有用的函数模型.设原有量为N ,每次的增长率为p ,经过x 次增长,该量增长到y ,则y =N (1+p )x (x ∈N ).考点类型1 求函数的定义域、值域 【例1】 求下列函数的定义域和值域: (1)y =2;(2)y =1-2x;(3)y =⎝ ⎛⎭⎪⎫12x 2-2x -3;(4)y =4x +2x +2-3.[解] (1)由x -4≠0,得x ≠4, 故y =2的定义域为{x |x ≠4}.又1x -4≠0,即2≠1,故y =2的值域为{y |y >0,且y ≠1}.(2)由1-2x ≥0,得2x ≤1,∴x ≤0, ∴y =1-2x 的定义域为(-∞,0]. 由0<2x ≤1,得-1≤-2x <0, ∴0≤1-2x <1,∴y =1-2x 的值域为[0,1). (3)y =⎝ ⎛⎭⎪⎫12x 2-2x -3的定义域为R .∵x 2-2x -3=(x -1)2-4≥-4, ∴⎝ ⎛⎭⎪⎫12 x 2-2x -3≤⎝ ⎛⎭⎪⎫12-4=16. 又∵⎝ ⎛⎭⎪⎫12x 2-2x -3>0,故函数y =⎝ ⎛⎭⎪⎫12x 2-2x -3的值域为(0,16].(4)函数 y =4x +2x +2-3的定义域为R .设t =2x ,则t >0.所以y =t 2+4t -3=(t +2)2-7,t >0. 因为函数y =t 2+4t -3=(t +2)2-7在(0,+∞)为增函数, 所以y >-3,即函数的值域为(-3,+∞).1.若将本例(2)中函数换为y =⎝ ⎛⎭⎪⎫13x-1,求其定义域. [解] 由⎝ ⎛⎭⎪⎫13x -1≥0得⎝ ⎛⎭⎪⎫13x ≥⎝ ⎛⎭⎪⎫130,∴x ≤0即函数的定义域为(-∞,0].2.若将本例(4)增加条件“0≤x ≤2”再求函数的值域.[解] 由于x ∈[0,2]则2x =t ∈[1,4],所以y =t 2+4t -3=(t +2)2-7.t ∈[1,4],∵函数y =t 2+4t -3=(t +2)2-7在[1,4]为增函数.故y ∈[2,29].1.对于y =a f (x )这类函数(1)定义域是指使f (x )有意义的x 的取值范围. (2)值域问题,应分以下两步求解: ①由定义域求出u =f (x )的值域;②利用指数函数y =a u 的单调性或利用图象求得函数的值域.2.对于y =m (a x )2+n (a x )+p (m ≠0)这类函数值域问题,利用换元法,借助二次函数求解.类型2 指数型函数的应用题【例2】 某市现有人口总数为100万人,如果年平均增长率为1.2%,试解答下列问题:(1)试写出x 年后该城市人口总数y (万人)与年份x (年)之间的函数关系式; (2)计算10年后该城市人口总数(精确到1万人).(参考数据:1.01210≈1.127) [思路点拨] 本题考查有关增长率的问题,若设原来人口总数为N ,年平均增长率为p ,则对于x 年后的人口总数y ,可以用y =N (1+p )x 表示.[解] (1)1年后城市人口总数为: y =100+100×1.2%=100(1+1.2%).2年后城市人口总数为:y =100×(1+1.2%)+100×(1+1.2%)×1.2% =100(1+1.2%)2,同理3年后城市人口总数为y =100(1+1.2%)3, …故x 年后的城市人口总数为y =100(1+1.2%)x . (2)10年后该城市人口总数为:y =100(1+1.2%)10=100×1.01210≈100×1.127 ≈113(万人).故10年后该城市人口总数约为113万人.解决实际应用题的步骤(1)领会题意,并把题中的普通语言转化为数学语言;(2)根据题目要求,分析量与量之间的关系,建立恰当的函数模型,并注意对变量的限制条件,加以概括;(3)对已经“数学化”的问题用所学的数学知识处理,求出解;(4)检验:将数学问题的解代入实际问题检查,舍去不符合题意的解,并作答.类型3 指数函数性质的综合应用【例3】 已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围; (3)求f (x )在[-1,2]上的值域.[思路点拨] (1)根据奇函数的定义,求出a ,b .(2)利用单调性和奇偶性去掉“f ”解不等式求k 的范围.(3)利用(2)中单调性求f (x )的值域.[解] (1)∵函数y =f (x )是定义域R 上的奇函数, ∴⎩⎨⎧f (0)=0,f (-1)=-f (1),∴⎩⎪⎨⎪⎧-1+b 2+a =0,-2-1+b 20+a =--21+b 22+a ,∴b =1,a =2.(2)由(1)知f (x )=1-2x 2(2x +1)=-12+12x +1,设x 1,x 2∈R 且x 1<x 2, 则f (x 2)-f (x 1)=12x 2+1-12x 1+1=2x 1-2x 2(2x 2+1)(2x 1+1)<0, ∴f (x )在定义域R 上为减函数, 由f (t 2-2t )+f (2t 2-k )<0恒成立, 可得f (t 2-2t )<-f (2t 2-k )=f (k -2t 2), ∴t 2-2t >k -2t 2, ∴3t 2-2t -k >0恒成立,∴Δ=(-2)2+12k <0,解得k <-13, ∴k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-13.(3)由(2)知f (x )在R 上单调递减, ∴f (x )在[-1,2]上单调递减,∴f (x )max =f (-1)=-12+11+12=16,f (x )min =f (2)=-12+14+1=-310,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-310,16.与指数函数有关的综合应用问题往往涉及到指数函数的定义域、值域、单调性、奇偶性、最值(值域)等问题,求解时可充分借助已学的知识逐项求解.类型4 复合函数的单调性 【例4】 判断f (x )=⎝ ⎛⎭⎪⎫13x 2-2x的单调性,并求其值域.y =⎝ ⎛⎭⎪⎫13x与y =x 2-2x 的单调性分别如何? [提示] y =⎝ ⎛⎭⎪⎫13x单调递减.y =x 2-2x 在(-∞,1]上单调递减,在[1,+∞)上单调递增.[解] 令u =x 2-2x ,则原函数变为y =⎝ ⎛⎭⎪⎫13u.∵u =x 2-2x =(x -1)2-1在(-∞,1]上递减,在[1,+∞)上递增, 又∵y =⎝ ⎛⎭⎪⎫13u在(-∞,+∞)上递减,∴y =⎝ ⎛⎭⎪⎫13x 2-2x 在(-∞,1]上递增,在[1,+∞)上递减.∵u =x 2-2x =(x -1)2-1≥-1, ∴y =⎝ ⎛⎭⎪⎫13u,u ∈[-1,+∞),∴0<⎝ ⎛⎭⎪⎫13u ≤⎝ ⎛⎭⎪⎫13-1=3,∴原函数的值域为(0,3].1.关于指数型函数y =a f (x )(a >0,且a ≠1),它由两个函数y =a u ,u =f (x )复合而成.其单调性由两点决定,一是底数a >1还是0<a <1;二是f (x )的单调性.2.求这种指数型函数的单调区间,首先求出函数的定义域,然后把函数分解成y =f (u ),u =φ(x ),通过考查f (u )和φ(x )的单调性,求出y =f (φ(x ))的单调性,其规则是“同增异减”.6.3对数函数第1课时对数函数的概念、图象与性质知识点1对数函数的概念一般地,函数y=log a x(a>0,a≠1)叫作对数函数,它的定义域是(0,+∞).1.函数y=2log3x,y=log3(2x)是对数函数吗?[提示]不是,其不符合对数函数的形式.知识点2对数函数的图象与性质a>10<a<1图象性质定义域:(0,+∞)值域:R图象过定点(1,0)在(0,+∞)上是增函数当0<x<1时,y<0;当x>1时,y>0在(0,+∞)上是减函数当0<x<1时,y>0;当x>1时,y<02.对数函数的“上升”或“下降”与谁有关?[提示]底数a与1的关系决定了对数函数的升降.当a>1时,对数函数的图象“上升”,当0<a<1时,对数函数的图象“下降”.知识点3反函数(1)对数函数y=log a x(a>0,a≠1)和指数函数y=a x(a>0,a≠1)互为反函数,它们的图象关于y=x对称.(2)一般地,如果函数y=f(x)存在反函数,那么它的反函数记作y=f-1(x).(3)互为反函数的两个函数的图象关于直线y=x对称.(4)原函数y=f(x)的定义域是它的反函数y=f-1(x)的值域;原函数y=f(x)的值域是它的反函数y=f-1(x)的定义域.考点类型1对数函数的概念【例1】判断下列函数是否是对数函数?并说明理由.(1)y=log a x2(a>0,且a≠1);(2)y=log2x-1;(3)y=2log8x;(4)y=log x a(x>0,且x≠1).[思路点拨]依据对数函数的定义来判断.[解](1)中真数不是自变量x,∴不是对数函数;(2)中对数式后减1,∴不是对数函数;(3)中log8x前的系数是2,而不是1,∴不是对数函数;(4)中底数是自变量x,而不是常数a,∴不是对数函数.一个函数是对数函数,必须是形如y=log a x(a>0且a≠1)的形式,即必须满足以下条件:(1)系数为1;(2)底数为大于0且不等于1的常数;(3)对数的真数仅有自变量x.类型2对数函数的定义域【例2】求下列函数的定义域.(1)f(x)=1log12x+1;(2)f(x)=12-x+ln(x+1);(3)f(x)=log(2x-1)(-4x+8);(4)f (x )=x ln(1-2x ).[解] (1)要使函数f (x )有意义,则log 12 x +1>0,即log 12 x >-1,解得0<x <2,即函数f (x )的定义域为(0,2).(2)要使函数式有意义需满足⎩⎨⎧ x +1>0,2-x >0,即⎩⎨⎧x >-1,x <2,解得-1<x <2,故函数的定义域为(-1,2).(3)由题意得⎩⎨⎧-4x +8>0,2x -1>0,2x -1≠1,解得⎩⎪⎨⎪⎧x <2,x >12,x ≠1,故函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <2,且x ≠1. (4)由题意知⎩⎨⎧x ≥0,1-2x >0,解得0≤x <12,∴定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0≤x <12.求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性地解不等式.类型3 比较对数式的大小 【例3】 比较下列各组值的大小: (1)log 534与log 543; (2)log 13 2与log 15 2;(3)log 23与log 54.[解] (1)法一(单调性法):对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.法二(中间值法):因为log 534<0,log 543>0,所以log534<log543.(2)法一(单调性法):由于log132=1log213,log152=1log215,又因对数函数y=log2x在(0,+∞)上是增函数,且13>15,所以0>log213>log215,所以1log213<1log215,所以log132<log152.法二(图象法):如图,在同一坐标系中分别画出y=log13x及y=log15x的图象,由图易知:log132<log152.(3)取中间值1,因为log23>log22=1=log55>log54,所以log23>log54.比较对数值大小的常用方法(1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化.(3)底数和真数都不同,找中间量.提醒:比较数的大小时先利用性质比较出与零或1的大小.第2课时对数函数的图象与性质的应用知识点图象变换(1)平移变换当b>0时,将y=log a x的图象向左平移b个单位,得到y=log a(x+b)的图象;向右平移b个单位,得到y=log a(x-b)的图象.当b>0时,将y=log a x的图象向上平移b个单位,得到y=log a x+b的图象,将y=log a x的图象向下平移b个单位,得到y=log a x-b的图象.(2)对称变换要得到y=log a 1x的图象,应将y=log a x的图象关于x轴对称.考点类型1与对数函数相关的图象【例1】作出函数y=|log2 (x+2)|+4的图象,并指出其单调增区间.[解]步骤如下:(1)作出y=log2x的图象,如图(1).(2)将y=log2x的图象沿x轴向左平移2个单位得到y=log2 (x+2)的图象,如图(2).(3)将y=log2(x+2)的图象在x轴下方的图象以x轴为对称轴翻折到x轴的上方,得到y=|log2 (x+2)|的图象,如图(3).(4)将y=|log2(x+2)|的图象沿y轴方向向上平移4个单位,得到y=|log2(x +2)|+4的图象,如图(4).由图可知,函数的单调增区间为[-1,+∞).1.已知y=f(x)的图象,求y=|f(x+a)|+b的图象步骤如下:y=f(x)→y=f(x+a)→y=|f(x+a)|→y=|f(x+a)|+b.2.已知y=f(x)的图象,求y=|f(x+a)+b|的图象,步骤如下:y=f(x)→y=f(x+a)→y=f(x+a)+b→y=|f(x+a)+b|.以上可以看出,作含有绝对值号的函数图象时,先将绝对值号内部的图象作出来,再进行翻折,内部变换的顺序是先变换x,再变换y.类型2值域问题x的定义域为[2,4],则函数f(x)的值域是【例2】(1)已知函数f(x)=2log12________.(2)求函数f(x)=log2(-x2-4x+12)的值域.x在定义域[2,4]上为减函数求解.[思路点拨](1)中利用f(x)=2log12(2)中注意考虑真数-x2-4x+12的范围.x在[2,4]上为减函数,(1)[-4,-2][∵f(x)=2log122=-2;∴x=2时,f(x)max=2log124=-4.x=4时,f(x)min=2log12∴f(x)的值域为[-4,-2].](2)[解]∵-x2-4x+12>0,又∵-x2-4x+12=-(x+2)2+16≤16,∴0<-x2-4x+12≤16,故log2(-x2-4x+12)≤log216=4,∴函数的值域为(-∞,4].求函数值域或最大(小)值的常用方法(1)直接法根据函数解析式的特征,从函数自变量的变化范围出发,通过对函数定义域、性质的观察,结合解析式,直接得出函数值域.(2)配方法当所给的函数是二次函数或可化为二次函数形式的(形如y =a [f (x )]2+bf (x )+c ),求函数值域问题时,可以用配方法.(3)单调性法根据在定义域(或定义域的某个子集)上的单调性,求出函数的值域.(4)换元法求形如y =log a f (x )型函数值域的步骤:①换元,令u =f (x ),利用函数图象和性质求出u 的范围;②利用y =log a u 的单调性、图象,求出y 的取值范围.类型3 对数函数的综合问题【例3】 已知函数f (x )=lg (2-x )-lg (2+x ).(1)求值:f ⎝ ⎛⎭⎪⎫12 021+f ⎝ ⎛⎭⎪⎫-12 021; (2)判断f (x )的奇偶性;(3)判断函数的单调性并用定义证明.[思路点拨] (1)利用代入法求解,(2)(3)用定义法判断奇偶性和单调性.[解] (1)f ⎝ ⎛⎭⎪⎫12 021+f ⎝ ⎛⎭⎪⎫-12 021=lg ⎝ ⎛⎭⎪⎫2-12 021-lg ⎝ ⎛⎭⎪⎫2+12 021+lg ⎝ ⎛⎭⎪⎫2+12 021-lg ⎝ ⎛⎭⎪⎫2-12 021=0. (2)由题知⎩⎨⎧2-x >0,2+x >0⇒-2<x <2, 又f (-x )=lg (2+x )-lg (2-x )=-f (x ),∴f (x )为奇函数.(3)设-2<x 1<x 2<2,f (x 1)-f (x 2)=lg 2-x 12+x 1-lg 2-x 22+x 2=lg (2-x 1)(2+x 2)(2+x 1)(2-x 2), ∵(2-x 1)(2+x 2)-(2+x 1)(2-x 2)=4(x 2-x 1)>0.又(2-x 1)(2+x 2)>0,(2+x 1)(2-x 2)>0,∴(2-x 1)(2+x 2)(2+x 1)(2-x 2)>1,∴lg (2-x 1)(2+x 2)(2+x 1)(2-x 2)>0.从而f (x 1)>f (x 2),故f (x )在(-2,2)上为减函数.对数函数性质的综合应用(1)常见的命题方式对数函数常与函数的奇偶性、单调性、最大(小)值以及不等式等问题综合命题,求解中通常会涉及对数运算.(2)解此类问题的基本思路首先要将所给的条件进行转化,然后结合涉及的知识点,明确各知识点的应用思路、化简方向,与所求目标建立联系,从而找到解决问题的思路.类型4 解对数不等式【例4】 解下列关于x 的不等式: (1)log 17 x >log 17(4-x ); (2)log a (2x -5)>log a (x -1).[解] (1)由题意可得⎩⎨⎧ x >0,4-x >0,x <4-x ,解得0<x <2.所以原不等式的解集为{x |0<x <2}.(2)当a >1时,原不等式等价于⎩⎨⎧ 2x -5>0,x -1>0,2x -5>x -1.解得x >4. 当0<a <1时,原不等式等价于⎩⎨⎧ 2x -5>0,x -1>0,2x -5<x -1,解得52<x <4. 综上所述,当a >1时,原不等式的解集为{x |x >4};当0<a <1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 52<x <4.对数不等式的三种考查类型及解法(1)形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况进行讨论.(2)形如log a x>b的不等式,应将b化为以a为底数的对数式的形式(b=log a a b),再借助y=log a x的单调性求解.(3)形如log f(x)a>log g(x)a(f(x),g(x)>0且不等于1,a>0)的不等式,可利用换底公式化为同底的对数进行求解,或利用函数图象求解.。

指数函数(课件)高一数学课件(苏教版2019必修第一册)


2012
711
903
2013
2014
721
732
1005
1118
2015
743
1244
情景引入
时间/
情景一 A,B两地景区自2001
年份
年起实行不同的门票改革措施,
A地提高了景区门票价格,而B 2001
地则取消了景区门票.左表给 2002
2003
出了A,B两地景区2001年至
2004
2015年的游客人次以及逐年增 2005
数学应用
例2. 比较下列各题中两个值的大小:
(1) 1.72.5, 1.73; (2) 0.8-0.1, 0.8-0.2; (3) 1.70.3, 0.93.1.
解: (1) ∵

y1.7x 是(-∞,
+∞)上的增函数,
1
O 2.5 3
yax
-0.1Байду номын сангаас> -0.2,
∴ 1.70.3 > 0.93.1.
1
x -4
(1) y 2 ;
2 -|x|
(2) y ( ) .
3
解: (1) ① 定义域:
(2) ① 定义域:
分母 x-40,
得 x4,
∴函数的定义域为 (-∞, 4)∪(4, +∞).
因为 x 可以取一切实数,
∴函数的定义域是 (-∞, +∞).
② 值域:
令 -|x|t, (t≤0)
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11

苏教版数学高一《指数函数》 精品学案

3、了解简单的函数图像的平移变换,对称变换以及这两种变换的特点。
【课时安排】1课时
【学法点拨】
通过观察,探索指数函数的图像,理解指数函数的单调性和特殊点,并关注指数增长趋势与底数大小的关系
【课前预习】
书P49-50 利用计算机作不同的指数函数图像,自主观察指数函数图像的特点,归纳总结。
【课堂探究】
一.问题情景设置
例3、说明下列函数的图象与指数函数 的图象的关系,并画出它们的示意图。
(1)y=2x-2(2)y=2x+2
【当堂练习】P52 1、2、3、4、5
【课堂小结】
【课后巩固】课后作业《课本》P54习题2.2.(2)1,2,7,9
【课后反思】
1情境:1951年从我国辽东半岛普兰店附近的泥炭中发掘出的古莲子至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?
2 问题:能用数学语言刻画解决吗?
二.师生互动
(1)阅读课本49页内容;
(2)动手画函数的图象.
三.数学建构
1.指数函数的概念:一般地,函数y=ax(a>0且a≠1)叫做指数函数,它的定义域是R,值域为(0,+).
练习:
(1)观察并指出函数y=x2与函数y=2x有什么区别?
(2)指出函数y=2·3x,y=2x+3,y=32x,y=4-x,
y=a-x(a>0,且a≠1)中哪些是指数函数,哪些不是,为什么?
图象
定义域
值域
性质
四.数学应用
例1:比较大小
⑴ ⑵ ⑶例2:(1)已源自 ,求实数x 的取值范围;(2)已知 ,求实数x 的取值范围。
执笔人:祁正权审核人:姚东盐2011年10月*日
2.2.1指数函数第1课时

苏版高一数学指数函数教学计划参考

苏版高一数学指数函数教学计划参考数学是科学的大门钥匙,忽视数学必将损害所有的知识,小编预备了人教版高一数学指数函数教学打算,具体请看以下内容。

一. 教学目标:1.知识与技能(1)明白得指数函数的概念和意义;(2) 与的图象和性质;(3)明白得和把握指数函数的图象和性质;(4)指数函数底数a 对图象的阻碍;(5)底数a对指数函数单调性的阻碍,并利用它熟练比较几个指数幂的大小(6)体会具体到一样数学讨论方式及数形结合的思想;2.情感、态度、价值观(1)让学生了解数学来自生活,数学又服务于生活的哲理.(2)培养学生观看问题,分析问题的能力.二.重、难点重点:(1)指数函数的概念和性质及其应用.(2)指数函数底数a 对图象的阻碍;(3)利用指数函数单调性熟练比较几个指数幂的大小难点:(1)利用函数单调性比较指数幂的大小(2)指数函数性质的归纳,概括及其应用.三、教法与教具:①学法:观看法、讲授法及讨论法.②教具:多媒体.四、教学过程第一课时讲授新课指数函数的定义一样地,函数( >0且≠1)叫做指数函数,其中是自变量,函数的定义域为R.提问:在下列的关系式中,哪些不是指数函数,什么缘故?(1) (2) (3)(4) (5) (6)(7) (8) ( >1,且)小结:依照指数函数的定义来判定说明:因为>0,是任意一个实数时,是一个确定的实数,因此函数的定义域为实数集R.若1的情形下面我们通过用运算机完成以下表格,同时用运算机画出函数的图象1/8 1 2 4再研究,01)与(00且≠1),当底数越大时,函数图象间有什么样的关系.图象特点函数性质>1 01 0向轴正负方向无限延伸函数的定义域为R图象关于原点和轴不对称非奇非偶函数函数图象都在轴上方函数的值域为R+函数图象都过定点(0,1) =1自左向右,图象逐步上升自左向右,图象逐步下降增函数减函数在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1 >0,>1 >0,15.利用函数的单调性,结合图象还能够看出:(1)在( >0且≠1)值域是(2)若(3)关于指数函数( >0且≠1),总有(4)当>1时,若1 0性质定义域:R值域:(0,+∞)过点(0,1)当x>0时y>1当x1是R上的增函数是R上的减函数例题分析例1 比较下列各题中两个数的大小:(1) 3 0.8 , 30.7(2) 0.75-0.1, 0.750.1例2 (1)求使4x>32成立的x的集合;(2)已知a4/5>a ,求实数a的取值范畴.练习p73 1,2作业p77习题3-3 A组4,5课后反思:第三课时(1) 提出问题指数函数y=ax (a>0,a≠1) 底数a对函数图象的阻碍,我们通过两个实例来讨论a>1和0(2)动手实践动手实践一:在同一直角坐标系下画出y=2x 和y=3x的图象,比较两个函数的增长快慢一样地,a>b>1时,(1)当x0时,总ax>bx>1有;(4)指数函数的底数a越大,当x>0时,其函数值增长越快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§18指数函数
江苏省启东中学 黄群力
[教学目标]结合对指数函数性质的研究,深化对函数定义域、值域、单调
性和奇偶性的认识及图象变换,并体会分类讨论的数学思想。
[例题分析]
例1.对于函数1762)21(xxy,①求函数的定义域、值域;②确定函数单调区
间。
分析:函数1762)21(xxy看作:uy)21(,1762xxu复合而成,因而求它
定义域、值域、单调区间,要统筹考虑二次函数1762xxu和指数
函数uy)21(的性质,然后作答。
解答:①定义域R
∵1762xxu88)3(2x ∴821)21()(u
又∵0)21(u ∴值域]2561,0(
②函数1762xxu,在),3[是增函数,即对任意),3[,21xx,且

21xx,有21uu,从而21)21()21(uu,即21
yy

∴1762)21(xxy在),3[上是减函数;
同理知:1762)21(xxy在]3,(上是增函数。
评注:一般地,在复合函数)]([xgfy中,若函数)(xgt在区间(a,b)上
是单调函数,且)(tfy在区间()(),(bgag)或在区间))(),((agbg上是单
调函数,则)]([xgfy在区间(a,b)上单调性遵循,增增得增,减减
得增,增减(或减增)得减的原则。
例2.函数)10(122aaaayxx且在区间[-1,1]上的最大值是14,
求a值。
分析:通过换元,转化为二次函数在闭区间上最值问题。
解答:解令tat,则2)1(1222ttty
当a>1时 , ∵1,1[x] ∴],1[aat
∵aa11 ∴at时,2)1(2ty取最大值14,
即142)1(2a, ∴53aa或(舍去)
当10a时, ∵1,1[x] ∴]1,[aat
∵aa11 ∴at1时,2)1(2ty取最大值14,
即142)11(2a,∴5131aa或(舍去)
综上:313aa或
评注:注意讨论,同时注意二次函数对称轴与区间的位置关系。
例3.作出函数xy2和函数22xy的简图,并结合图象分别指出函数单
调区间。
分析:作图前分别探究每一个函数的定义域、值域、对称性、单调性,从
而掌握图象的大致变化趋势,分析出与已知函数图象关系,利用相
应函数图象的变换作出各自图象。
解答:函数xy2的图象如虚线所示,
函数的单调增区间]0,(,
单调减区间),0[2
函数22xy的图象如实线所示,
单调增区间),1[,单调减区间]1,(.
评注:利用熟悉的函数图象作图,主要利用图象的平移、对称翻析等变换。

0
1

2
1

x

y
例4.已知cbxxxf2)(满足)1()1(xfxf且3)0(f,试比较)(xbf和
)(xcf
大小。
分析:由已知条件求出b、c值,确定f(x)解析式,再利用二次函数的单调
性和指数函数图象特征比较)(xbf和)(xcf大小。
解答:由3)0(f∴c=3,
由)1()1(xfxf∴cxbxcxbx)1()1()1()1(22
即xbxb)2()2(对一切实数x均成立,
∴b=2,从而32)(2xxxf
]1,()(在xf
单调减,),1[单调增,又由指数函数xxyy3,2图象
可知:
当)3()2(,321,0xxxxffx时;
当)3()2(,123,0xxxxffx时;
当)3()2(,132,0xxxxffx时.
综上:当0x时,)()(xxcfbf
当0x时,)()(xxcfbf
[本课练习]
1、函数mxxf131)(是奇函数,则实数m的值21 。

2、函数91312xy定义域),21[,22)21(xxy值域),21[。
3、把函数y=f(x)的图象向左、向下分别平移2个单位,得到函数xy2图
象,则f(x)=222x。
4、函数xxaaxf2)(在)0,(上是减函数,则a取值范围10a.
5、设)0)(()1221()(xxfxFx是偶函数,且f(x)不恒等于零,试判断f(x)
是奇函数还是偶函数。
解:设12121211)(xxxxg,

则)(xg)(121221211212xgxxxxxx ∴)(xg是奇函数。
∵)(xF是偶函数, ∴)()(xFxF 即)()()()(xfxgxfxg
∴)()(xfxf ∴)(xf是奇函数。
6、设)(xfy是定义域R上的函数,且对于任意Ryx,恒有
)()()(yfxfyxf
,若1)(0,0xfx时时,求证:①
1)(,0,1)0(xfxf时且有
;②)(xf在R上单调递减。
解:①在)()()(yfxfyxf中, 令0,0yx, 则)0()()(fxfxf
∵0)(,0xfx时 ∴1)0(f
当x<0时,在)()()(yfxfyxf中,
令)()()(,xfxfxxfxy 01)0()()(fxfxf
又0x时,1)(0xf 1)(xf
②由①知,0)(xf对任意Rx成立,
而)()()(yfxfyxf转化为:)()()()(xyxfyfxfyxf,

∴任取0,1221xxxx则 ∴ 1)()()(1212xxfxfxf
∴)()(12xfxf ∴)(xf在R上单调递减.

相关文档
最新文档