(整理)地应力测量,hao

合集下载

7地应力测量

7地应力测量

§7.3.3
水压致裂法
2、测量步骤:
A 钻孔,封隔加压 段; B 多循环注水测压; C 封隔器卸压,回撤 仪器; D 测量压裂裂隙和天 然裂隙位置、方向。 图7-13 水压致裂试验压力-时间、流量-时间曲线图
§7.3.3
水压致裂法
3、特点分析: (1)是一种二维应力测量方法,只能测垂直 于钻孔平面内的最大主应力和最小主应力的大 小和方向; (2)以岩石连续、均匀和各向同性假设为条 件,适用于完整脆性岩石中; (3)能够测量深部应力。
§7.4.1
套孔应力解除法
套孔应力解除法是发展时间最长,技术上比较 成熟的一种地应力测量方法。 在测定原岩应力(绝对应力)的适用性和可靠性 方面,目前还没有哪种方法可以和应力解除法 相比。
§7.4.1
套孔应力解除法
图7-16
应力解除法测量步骤示意图
图 垂直钻孔轴线的平面孔内的孔径 变形和应力状态示意图
4 P0 rR E= 2 2 U (R − r )
2
第七章习题与思考题
1.简述地应力测量的重要性和高地应力区的特征。 2.地应力测量方法分那两类?两类的主要区别在哪里? 3.简述水压致裂法的基本测量原理和步骤,并对对水压致裂法的 主要优缺点做出评价。 4.简述套孔应力解除法的基本测量原理和主要测量步骤。 5. 简述地壳浅部地应力分布的基本规律。
§7.2.1
地应力分布的基本规律
之三:水平地应力普遍大于垂直地应力。
§7.2.1
地应力分布的基本规律
之四:平均水平应力与垂直应力的比值随深度增 加而减小,但在不同地区,变化的速度很不相 同。
§7.2.1
地应力分布的基本规律
之五:最大水平主应力和最小水平主应力也随深 度呈线性增长关系。 Stephansson方程:

4-地应力及其测量解析

4-地应力及其测量解析
5
e) 对地应力的传统认识有误。
1912年A.Heim h v H
1926年A.H.Динник
h
H 1
20世纪50年代N.Hast实测发现存在于地壳 上部的最大主应力方向接近水平的,而且 最大水平主应力一般为垂直应力的1~2倍, 甚至更多。
6
4.1.3 地应力的成因
1)地幔热对流
• 硅镁质组成的地幔因高温,上 下对流、蠕动,深部地幔上升 到顶部时变成2股方向相反的 平流:与反向平流相遇,转为 下降流进入深部,形成封闭的 循环体系。
Pb0 Pb0
Ps
Ps
Ps0
Ps
Ps0
Ps
P0
P0 ④Ps0-关闭压力
⑤Pb0-重张压力
图 压裂过程泵压变化及特征压力
36
• 各特征压力的物理意义 ①P0-岩体内孔隙水压力或地下水压力 ②Pb-注入钻孔内液压将孔壁压裂的初始压裂压力 ③Ps-液体进入岩体内连续的将岩体劈裂的液压,称为稳定开
裂压力 ④Ps0-关泵后压力表上保持的压力,称为关闭压力。如围岩
y 1 sin
z 1 sin
17
(4)当松散介质有一定粘聚力时 (c>0 )
侧压力为:
x
H
1 sin 1 sin
2c cos 1 sin
18
注:当 x 0
说明无侧压力
x 0
无侧压力深度
HO
2C cos
1 sin
19
5)地质构造应力
20
5)地质构造应力
Fujianshanghang,
平均水平应力 K 垂直应力
K 1500 0.5 Z
K 100 0.3 Z
4.4 高地应力地区的主要岩石力学问题

地应力测试方法

地应力测试方法

地应力主要测试方法总结摘要:本文总结了目前使用较为广泛的26种地应力测试,并对这些方法的基本原理做了简要介绍。

这26种方法按照数据源途径可以分为5大类,分别为基于岩芯的方法、基于钻孔的方法、地质学方法、地球物理学方法以及基于地下空间的方法。

最后文章对这些方法进行了的优缺点和适用范围进行了分析对比。

蓄存在岩体内部未受到扰动的应力称之为地应力,地应力可以分为两类,原地应力和诱发应力,而原地应力主要来自五个方面:岩体自重、地质构造活动、万有引力、封闭应力和外部荷载。

地应力具有多来源性且受到多种因素的影响,因此地壳岩体地应力分布复杂多变。

从海姆假说认为“岩体中赋存的应力近似为静水压力状态,且等于上覆岩体自重”到金尼克假说认为“垂直应力等于上覆岩体自重,水平应力等于岩体泊松效应产生的应力”,人们对岩体应力的认识逐步提高,并利用实测数据否定了以上两种假说。

社会发展的需求直接催生了大量地应力测试和估算方法,而这些方法的发展又进一步促进了人类社会的基础设施建设、资源和能源开发。

随着人类对能源和矿产资源需求量的增加和开采强度的不断加大,浅部矿产资源日益减少,国内外矿山都相继进入深部资源开发状态,而深部开采中遇到的“三高”问题(高地应力、高地温、高水压) 将成为深部开采岩体力学研究中的焦点和难点问题。

准确确定深部开发空间区域的原地应力状态是解决以上难题的必要途径之一,这就需要进行地应力测试方法和技术的研究。

从地应力概念提出至今,各国科学家提出了数十种地应力测试方法,将其按照数据来源进行归类,大概可以分为五大类:基于岩芯的方法、基于钻孔的方法、地质学方法、地球物理方法( 或地震学方法)、基于地下空间的方法。

下面将对各种方法的测试原理和方法发展的脉络作一些简要介绍,表1包括了目前认可程度和使用范围较广的各种方法.表1 原地应力测试和估算方法汇总1 基于岩心的方法1.1 非弹性应变恢复法非弹性应变恢复法(ASR)是通过测量现场从井孔取得的定向岩芯与时间相关的应变松弛变形来反演原地应力场方向和量值的一种方法。

地应力检测(1)

地应力检测(1)

1、地质雷达检测隧道支护情况包括隧道衬砌厚度是否满足设计要求、钢筋保护层厚度是否满足设计要求、隧道衬砌钢筋布臵是否满足设计要求、隧道衬砌钢架布臵是否满足设计要求、隧道衬砌的密实情况(包括二衬背后脱空及初支背后空洞、不密实)。

评判标准:《公路工程质量检验评定标准》(GTG F80/1-2004);参考《铁路隧道衬砌质量无损检测规程》(TB10233-2004)。

2、地应力检测我国地应力测量试验和研究开始于20世纪50年代后期,迄今为止,地应力测量的主要方法虽然很多,但尚未形成统一的分类标准.根据测量数据特点的不同,地应力测量大体分为绝对应力测量和相对应力测量.前者主要是确定地壳应力背景值,即主应力的大小和方向;后者则是观测应力随时间变化的动态变化规律,通常也称为地应力监测.根据测量基本原理的不同,绝对应力测量方法又可分为直接测量法和间接测量法.所谓直接测量法就是利用测量仪器直接测量和记录各种应力量,并由这些应力量和原岩应力的相互关系直接换算得到原岩应力值.间接测量法则是借助某些传感元件或媒介,测量和记录与岩体相关物理量的变化(如密度、泊松比、弹性波速等变化),然后通过相应的公式换算间接得到原岩应力值.目前,较为常用的绝对应力测量方法主要有水压致裂法、声发射法、钻孔崩落法、套芯应力解除法、应变恢复法等.其中,前3种方法属于直接测量方法,后2种方法属于间接测量方法.相对应力测量方法包括压磁法、压容法、体应变法、分量应变法及差应变法等.我们采用水压致裂法地应力测量存在的问题与展望:随着我国工程建设不断向深部发展,地应力测量及监测正面临着严峻的考验.与发达国家相比,尚存在许多问题与不足.首先,在宏观层面上存在的问题与挑战有:第一,测量和监测深度不足。

目前,国际上最大地应力测量深度已达5100m.在德国的KTB深钻及美国的SAFOD计划中,应力测量深度一般达到2000~3000m;日本也建立了数10座深度为1000~3800m的深井观测台站.我国的绝大部分应力测量深度仅数百米,超过1000m的深井观测极为稀少,这严重制约了测量数据在空间上的代表性.第二,缺乏合理系统的地应力监测网络.我国虽然积累了大量的地应力测量数据,但数据分布不均且质量参差不齐,地应力监测台站少、布局不合理,大部分监测台站数据网络传输、数据分析处理能力也亟待加强,这些问题制约了地学领域的创新性发现.第三,统一的地应力测量规范和标准亟待解决.ISRM 早在1987年即发布了“确定岩石应力的建议方法”.2003年,结合地应力测量方法的最新进展,又发布了新的建议规范.然而,在这些权威的地应力测量方法技术规范起草和编写过程中,没有我国相关领域科学家的参与.其次,在技术与操作层面上存在的问题与挑战有:第一,测量深度引起的仪器设备性能问题.深部岩体的苛刻环境要求钻探设备和监测仪器具备足够的耐高压、耐高温、抗干扰、防水能力,而仪器在这种环境下,长期工作的稳定性以及与孔壁的耦合性不容忽视.第二,测量仪器和方法的精度与可重复性问题.测量的精度是确保数据可靠的关键,对此,除了改进已有仪器,更需要新技术、新材料的研发.测量过程和结果的可重复性既是测量工作科学、严谨的体现,又是测量仪器与方法广泛应用的保障,具有重要意义.第三,测量仪器及测量平台的现代化程度问题.提高测量与数据采集的质量与效率、推进测量成果网络传输与共享、建立测量方法标定平台,既需要增强地应力测量体系的现代化水平,又需要地应力测量系统向自动化、集成化、智能化方向发展.展望近年来,人们逐渐认识到,由于地壳结构的高度复杂性和非均质性,加之地形等因素的影响,基于浅部及孤立测点所获得的地应力测量数据的代表性十分有限.因此,只有提高地应力测量深度,加大监测密度,才可能比较准确地认识和把握某一构造单元地质构造活动的动力学成因和内在机制.有鉴于此,在绝对应力测量方面,深部乃至超深部应力测量已成为必然趋势.同时,考虑到目前尚没有哪一种地应力测量方法能够适应和胜任所有目的和环境的测试,采用多种方法联合观测,实现不同观测方法之间的优势互补已成为提高测量结果可信度的必然举措.此外,在相对应力测量方面,高密度深井综合监测已成为未来的发展方向.这不仅是深部地质研究的客观需要,也是消除气压、温度、地下水以及地面噪音等自然和人为因素干扰的现实需要.有鉴于此,钻孔分量应力和应变监测方法无疑将成为重点发展方向.目前,地应力相对测量正朝着多元化方向迈进,钻孔地应力(应变)监测以及其他物理参数检测技术将一起作为地球物理观测的重要手段在未来深部地壳研究中发挥重要的作用。

5地应力及其测量

5地应力及其测量

间接测量法中,测量和统计岩体中某些与应力有关旳间接物理量旳变化, 经过已知旳公式计算岩体中旳应力值。套孔应力解除法和其他旳应力或应 变解除措施以及地球物理措施等是间接法中较常用旳,其中套孔应力解除 法是目前国内外最普遍采用旳发展较为成熟旳一种地应力测量措施。
地应力测量措施一览表
应力恢复法
应力恢复法是用来直接测定岩体应力大小旳一种测试措施,目前此法仅 用于岩体表层,当已知某岩体中旳主应力方向时,采用本措施较为以便 。
7、原岩应力旳分布规律还受地形、地表剥蚀、风化、 岩体构造特征、岩体力学性质、温度、地下水等原因旳 影响,尤其是地形和断层旳扰动影响最大。
地形:谷底是应力集中部位,最大主应力在谷底或 河床中心近于水平,在岸坡则向谷底或河床倾斜,大致 与坡面平行;
断层和构造面附近是应力降低区,断层端部、拐角 处应力集中区,主应力方向大多平行或垂直于断层走向。
z--深度/m。
温度应力是同深度旳垂直应力旳1/9,并呈静水压力状态。
3、天然应力旳研究历史与研究意义 (1)研究历史
①世界上 :
1878年海姆提出天然应力
1932年,在美国胡佛水坝下旳隧道中,首次成 功地测定了岩体中旳天然应力
到目前天然应力测点遍及全球,有几十万个测 点。大部分是浅部,最深5108米(美国密执安 水压致裂法)。
4)岩体自重应力场
垂直应力: z H
侧压力: x y z
—平均密度,KN/m3
—侧压力系数
H—总深度(m)
图 岩体自重垂直应力
5)地质构造应力
6)地形、地表剥蚀对地应力影响
7)水压力、热应力
a.孔隙水压力、流动水压力(影响小)、静水压力(悬浮作用)
b.一般地温梯度: 3 C /100m 岩体旳体膨胀系 数: 10-,5 岩体弹模E=104MPa;地温梯度引起旳温度应力 约为: T zE 0.03 105 104 zMPa 0.003zMPa

3地应力及测量

3地应力及测量
地应力的概念、成因、基本规律、测量的必要性
3.1 概论
一、 地应力测量的必要性
3.1 概论
一、 地应力测量的必要性
1. 地应力定义
原岩: 未受工程影响而又处于自然平衡状态的岩体。
原岩应力(亦称初始应力或地应力):
定义一:原岩中存在的应力。 定义二:岩体在天然状态下所存在的内应力。
地应力: 指岩体在天然状态下所存在的内应力, 通常又称为原岩应 力、初始应力。
2. 研究地应力的重要性 地应力是各种岩石开挖工程变形和破坏的根本作用力;是确定工程岩体 力学属性,进行围岩稳定性分析,实现开挖设计和决策科学化的必要前 提条件。
地应力状态对地震预报、区域地壳稳定性评价、油田油井的稳定性、核
废料储存、岩爆、煤和瓦斯突出的研究以及地球动力学的研究等也具有
重要意义。
(1)工程稳定性分析的原始参数。 (2)确定开挖方案与支护设计的必要参数。
同一类地区,其构造应力仍是不均匀分布,与小的地质构造运动(地 壳变形)有关,有的地段强、有的地段弱。
3.1 概论
四、 地应力测量的基本原理和方法
工程建设中,对工程岩体地应力的掌握,最可靠的方法就是进行原位 地应力测量。
尽管地应力有各种假说和理论对地壳的受力有一定规律性认识,但工 程岩体都会受到各种局部地质特征及其它因素的影响。
3. 地应力认识简史
1926年, 苏联学者金尼克修正了地应力静水压力假设,认为地壳中各点的垂直应力等于上覆岩层的重 量,而侧向应力(水平应力)是泊松效应的结果,应乘以一个修正系数λ。即
v H
h
v
H 1
其中,λ为侧压系数
1
υ-上覆岩层泊松比
早在20世纪20年代,我国地质学家李四光就指出:“在构造应力的作用仅影响地壳上层一定厚度的 情况下,水平应力分量的重要性远远超过垂直应力分量。”

地应力及其测量原理

地应力及其测量原理地应力是指地壳内部受到的力的情况,是地壳变形和破裂的重要因素。

地应力的测量原理主要有古应力法、浅层应力法、深部应力法和孔隙压力法等。

古应力法是通过分析岩石中保存的古代应力信息,推断出地下岩层的应力状态。

岩石中保存的古代应力信息主要有构造岩浆岩的变形特征、断层的形态及断层面上的应力痕迹等。

通过对这些古代应力信息的研究,可以了解地下岩层的应力分布特征和变化规律。

浅层应力法是通过测量地表上的地壳应变,进而推导出地下岩层的应力状态。

测量地壳应变的方法主要有测量地表沉降、测量地表水位变化和测量地震波的传播速度变化等。

通过测量这些地表变化的参数,可以计算出地下岩层的应力状态。

深部应力法是通过对地下岩层应力的直接测量,来了解地下岩层的应力状态。

深部应力测量常用的方法主要有测量地区应力差和测量钻井中的岩层应力等。

测量地区应力差的方法是通过分析地震波的传播路径和速度差异来推导地壳内应力的分布,从而计算出地下岩层的应力状态。

测量钻井中的岩层应力则是通过在钻井过程中使用测力器测量地下岩层的应力情况。

孔隙压力法是通过测量地下岩体中的孔隙压力来推导地下岩层的应力状态。

孔隙压力是指地下岩体内孔隙中的水或气体的压力,可以通过测量地下水位、测量浅孔压力和测量深孔压力等方法来获得。

通过计算这些孔隙压力的变化规律,可以推导出地下岩层的应力状态。

总的来说,地应力的测量主要有古应力法、浅层应力法、深部应力法和孔隙压力法等方法。

这些方法各有特点,可以通过综合运用来获得地下岩层应力状态的全面信息。

地应力的测量对于地下工程的设计和地震研究等具有重要的科学意义和工程价值。

地应力测试试验



利用岩石“kaiser效应 效应” 利用岩石“kaiser效应”测地应
利用岩石“kaiser效应” 利用岩石“kaiser效应”测地应力 效应
四、成果整理 1、绘出 每个试件 的AE特征 曲线; 2、确定 AE特征点 (突发点)
利用岩石“kaiser效应” 利用岩石“kaiser效应”测地应力 效应
2、室内测试方法
1)试件制备 (3)试件尺寸 园柱体:高:径比2~3:1; 长方体:高:宽比2~3:1; (4)端部处理 2)试验过程 安装声发射探头; 通过MTS伺服控制刚性试验机加压; Force控制,15KN/min;
荷载传感器 声发射探头 岩石试件
提 力
一、概述 二、仪器、设备 仪器、 三、试验方法 四、成果整理
提 力
一、概述 二、仪器、设备 仪器、 三、试验方法 四、成果整理

利用岩石“kaiser效应 效应” 利用岩石“kaiser效应”测地应
利用岩石“kaiser效应” 利用岩石“kaiser效应”测地应力 效应
二、仪器、设备 仪器、 1、伺服控制刚性试验机 2、声发射探头
声发射探头 岩石试件
荷载传感器
1 2 T = − J1 + J 2 3 1 1 3 ω = arccos − Q / − T 27 2 2 3 1 Q = − J1 + J1 J 2 − J 3 27 3
利用岩石“kaiser效应 效应” 利用岩石“kaiser效应”测地应力
四、成果整理
1)主应力
T ω 1 σ1 = 2 − cos + J1 3 3 3 T ω + 2π 1 σ2 = 2 − cos + J1 3 3 3 T ω + 4π 1 σ3 = 2 − cos + J1 3 3 3 J1 = σ x + σ y + σ z

06地应力测量及计算

06地应力测量及计算地应力是指地壳内部的应力状态。

测量和计算地应力是地下工程设计、开采矿山和岩石力学研究的重要内容之一、本文将介绍地应力的测量方法和计算方法。

地应力测量方法主要有三种:地应力测量仪、孔隙压力测量仪和地关锚力计。

地应力测量仪是一种常用的测量地应力的方法。

它通过在地下埋设一根压力计,测量地应力的大小和方向。

常用的地应力测量仪有压力孔测量仪、普鲁茨钻杆测量仪和磁性差压计。

压力孔测量仪是一种通过安装于孔底的支撑杆和压力计来测量地应力的方法。

普鲁茨钻杆测量仪是一种通过在孔内装置一个强弹簧的测量仪器,通过测量弹簧的变形来推断地应力的大小和方向。

磁性差压计是一种通过测量磁场的变化来推断地应力的方法。

另一种常用的地应力测量方法是孔隙压力测量仪。

它是一种通过在井孔内测量孔隙压力变化来推断地应力的大小和方向的方法。

这种测量方法一般适用于石油地质勘探和地震地质研究。

它通过在井孔内安装一根测井电缆和压力传感器来测量孔隙压力变化,然后通过杨氏模量和泊松比等参数来计算地应力的大小和方向。

地关锚力计是一种通过测量地下锚杆的受力情况来推断地应力的大小和方向的方法。

它通过在地下锚杆上安装应变测量装置和载荷传感器来测量地区承受的力的大小和方向。

地关锚力计主要用于矿山、隧道和岩土工程领域。

地应力的计算方法有两种:经验计算法和数值计算法。

经验计算法是根据经验公式和经验数据来计算地应力的大小和方向。

常用的经验公式有Kirsch公式、帕斯卡公式和修正Bjerrum公式。

这些公式基于土岩力学理论和实际工程经验推导出来,可以快速计算地应力的大小和方向。

数值计算法是通过建立地应力的数值模型来计算地应力的大小和方向。

常用的数值计算方法有有限元法、有限差分法和边界元法。

这些方法可以利用计算机进行计算,通过建立地下的有限元网格或差分网格来模拟地下结构和地应力,从而计算地应力的大小和方向。

综上所述,地应力的测量和计算是地下工程设计、开采矿山和岩石力学研究的重要内容之一、地应力的测量方法主要包括地应力测量仪、孔隙压力测量仪和地关锚力计。

地应力

可利用其他工程的勘探孔进行压裂。

水压致裂法原理
测量地应力的水压致裂法是借助封隔器在垂直钻孔中测点处封 隔一段,作为压裂段,通过加压段的水压力,使孔壁岩石破裂,然后用印 模器或通过安装电视照相机,得出压裂裂缝,借助罗盘测定压裂裂缝方 向,并根据压裂时的水压力计算岩体初始应力。 记录仪可测出距孔口不同位置地应力测量压裂曲线图, 经由水 压致裂数据处理软件将所测曲线图进行分析计算各测点的压力大小。, 而后关泵停止施压, 在
压力稳定后, 将之与大气接通。 4) 重张试验。等压裂管道内的压力回零, 再实行第二回次的重张试验, 即让上一次产生的破裂缝重新张开, 并实时记录压力随时间变化的曲线, 关泵后再记录压力随时间变化的衰减曲线, 然后接通压裂管道与大气的连 接, 将压力回零。 5) 印模。用印模胶筒对原生裂缝和产生压裂缝的孔段进行印模, 并对 印模胶筒上的裂缝痕迹进行记录分析, 计算出印模结果和压裂曲线以测出 地应力状态。 。
水压致裂原地应力测量是以弹性力学为基础,并以下面3 个假设
为前提:
(1)岩石是线弹性和各向同性的; (2)岩石是完整的,压裂液体对岩石来说是非渗透的;
(3)岩层中有一个主应力的方向和孔轴平行。
在上述理论和假设前提下,水压致裂的力学模型可简化为一个 平面应力问题,如下:
上图为水压致裂法简化为平面问题的原理图, 由弹性力学计算可得 出,
孔壁夹角为直角的A、B 两个点的应力集中σA、σB 分别为: σA=3σ2-σ1
σB=3σ1-σ2
(1)
临界破裂压力P1 即促使孔壁发生破裂的外加液压与岩石抗张强度 T 加上孔壁破裂处的应力集中的总和相等, 也就是:
P1= T+( 3σ2-σ1) (2)
但如果岩石中存在着孔隙压力, 则有效应力为区域主应力所替换, 设孔隙压力为Po, σh 为原地应力场中最小水平主应力, 而σH 为最大
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地应力测量的国内外研究现状地应力(in-situ stress),又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。

在一定时间和一定地区内,地壳中的应力状态是各种起源应力的总和。

主要由重力应力、构造应力、孔隙压力、热应力和残余应力等耦合而成,重力应力和构造应力是地应力的主要来源。

地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。

另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场(雷化南,等译.1976)。

而重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。

因此,岩石中的原地应力是由主动施加的力和积蓄的残余应变两者引起的。

地应力测量(In situ stress measurement),就是确定拟开挖岩体及其周围区域的未受扰动的三维应力状态,这种测量通常是通过多个点的量测来完成的。

地应力测量是一项综合性的测试,可以说任何一种单一的方法都不能很好地完成,往往需要几种方法结合起来对比使用,才可以保证结果的可靠性。

即使如此,地应力测量中也往往会出现同一测点测量值分散的情况。

地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提。

1 地应力测量在国外发展概况及研究现状人们最初对地应力概念的认识以及地应力测量技术的发展都源于早期的矿山工程建设,最早的原位地应力测量起始于20世纪30年代。

1932年,美国人劳伦斯(Lieurace)在胡佛坝(HooverDam)下面的一个隧道中采用岩体表面应力解除法首次成功地进行了原岩应力的测量。

此后,地应力测试技术一直停留在岩体表面应力测量上,发展十分缓慢,在20世纪50年代,哈斯特(Hast)采用应力解除法和压磁变形计在现场进行了大规模的地应力测量,并于1958年首次公布了他于1952-1953年在瑞典拉伊斯瓦尔(Laiswall)铅矿和斯堪的纳维亚半岛(seandinavianPeninsula)四个矿区的地应力测量结果,首次测得近地表地层中的水平应力高于垂直应力,且最大水平应力一般为垂直应力的1~2倍,从事实上否定了传统地应力理论的假设,引起了人们的关注。

此后,地应力测量工作在加拿大、美国、南非、澳大利亚等国得到较为广泛的开展。

如50年代初瑞典科学家哈斯特博士通过测量地应力发现:地下介质处于压应力状态,其应力值随深度线性增加。

地应力测量技术和仪器是随着工程的需要不断被革新和发展的。

20世纪60年代中期之前,地应力测量基本上处于平面应力测量水平,即通过一个单孔或一点的测量,只能确定该点某一剖面上的应力状态。

进入20世纪60年代中期之后,随着岩石力学、数值分析、工程测试技术等学科的诞生和发展,地应力测量理论和测试技术也得到了创新和发展,这时出现了三维地应力测量技术,即通过一个单孔的测量就可以求得岩体中某一点的三维地应力状态,使钻孔应力测量技术进入了快速发展阶段,其中以澳大利亚联邦科学和工业研究组织(CSIRO)研制的CSIRO型空心包体应变计应用最为广泛。

60年代末,美国人费尔赫斯特和海姆森提出了水压致裂法,成为和应力解除法并驾齐驱的两大地应力测量方法;水压致裂法的突出优点是能够测量地壳深部的地应力。

1977年美国人Haimson在深5.1km处进行了水力压裂地应力测量,并对此作了大量理论和实验研究。

20世纪80年代初,瑞典国家电力局(SSPB)研制成功了水下钻孔三向应变计,同时还开发了带有数据自动采集系统的井下三向应变计探头,使深钻孔应力测量技术达到了一个新的发展水平,其最大测量深度己达到510m。

到目前为止,地应力现场测量方法二十多种,主要分为直接法和间接法两大类:其中直接法主要包括扁千斤顶法、刚性包体应力计、之前提到的水压致裂法和声发射法等;间接法包括套孔应力解除法、局部应力解除法、松弛应变测量法和地球物理探测法等。

经过几十年的努力,人们对地壳浅层的地应力分布规律有了一些基本的认识,同时,各个国家的专家学者也对本国或本地区的地应力分布规律进行了总结。

根据实测资料,1980年Zoback等人绘制了美国大陆的地壳应力图;1986年StePhansson等人建立了斯堪的纳维亚大陆的地应力数据库,并描绘了该地区地应力随深度的变化规律;Klein和Ban分析了西欧的地应力分布规律;Herget分析了加拿大的地应力分布规律;李方全、刘光勋总结了我国现今的地应力状态;根据地应力测量资料和地震震源分析,格佐夫斯基编制了全苏联构造应力场图;1988年Hudson等人对英国的地应力分布规律进行了分析;高建理、丁健民等则总结了中国海区及其邻域的原地应力状态;Kugawara等则总结了日本的地应力测量资料,分析了日本的地应力分布规律。

通常在一个工程前期可以使用水压致裂法大致测出一个工程区域的地应力状态,而在施工过程中或者之后可以利用套孔应力解除比较准确的测量各点的地应力的大小和方向,而且经济上合理。

近年来澳大利亚利用水压致裂法在矿山等地下工程进行了大量的地应力测量,印度也将其应用到水电工程建设中去。

加拿大原子能机构利用套孔法进行了大量的测量,并对仪器和技术做了重大的改进;Sugawara,K.和Obara,Y.115提出了压实锥形孔底套孔解除法;Martin,C.D.和Lanyon,G.W.[l6]分别利用水压致裂法、CSIRO空心包体应变计和钻孔变形法在软岩中进行了地应力测量,并对结果进行了比较。

2 地应力测量在国内的发展概况及研究现状我国的地应力研究是在李四光教授的倡导下开展起来的。

20世纪40年代,他就把地应力作为地质力学的一部分进行了研究。

我国的地应力测量技术和设备的研制工作起步较晚,起始于20世纪50年代末期,而地应力实测工作从上个世纪60年代初开始,到目前为止已经取得了大量的测量数据。

1962~1964年在三峡平善坝坝址获得了岩体表面应力测量成果。

1964年,在陈宗基院士的带领下,中国科学院武汉岩土力学研究所在湖北大冶铁矿进行了国内首次应力解除测量,测量深度为80m。

20世纪60年代以来,开始了地应力对地震预报的研究,1966年在河北省隆尧县建立了我国第一个地应力观测台站,1980年国家地震局首次进行了水力压裂地应力测量,从而迈出了我国深部应力测量的第一步。

20世纪80年代中期成功研制出了YG-81型压磁应力计,不仅缩短了在测量时所取完整岩心的长度,而且提高了测量的成功率和测量精度。

20世纪70年代以后,地应力测量技术获得了普遍发展和广泛应用,中国科学院武汉岩土力学研究所、中国科学院地质研究所、国家地震局地壳应力研究所、长江科学院等单位都进行了专门组织的地应力测量和研究工作。

这一时期,在我国普遍采用的地应力测量设备是压磁式钻孔应力计等。

进入20世纪80年代以后,空心包体应变计进入我国,随后地质力学研究所、长沙矿冶研究所和长江科学院等都研制了自己的空心包体应变计,例如KX-81,KX-2003,CKX-97,CKX-01型空心包体等在现场得到了广泛的应用。

中国矿业大学研制了YH3B-4型空心包体应变计,同时还比较了空心包体应变计和ANZI 应变计的功能特点,得出ANZI应变计更适合煤岩体的三维地应力测量。

同时,在这一期间水压致裂法由地壳应力所从美国引入我国,在我国石油工程领域做出了巨大的贡献,并在实际工程中不断的被发展和改进,煤科总院同时在这一时期发明了小孔径水压致裂测量技术;目前出现了深孔和超深孔水压致裂法,获得了深度超过6000m的地壳应力数据(M.D.Zoback,1993)以及预存裂隙水压致裂法(et,1984,1989,1997),该方法可以在含有原生节理的测段进行水压致裂法测量。

利用水压致裂法进行三维地应力测量,我国也作了许多工作(刘允芳,1991;高建理,1994),取得了很好的测量结果。

随着水压致裂法和应力解除法在我国的发展和普及,地应力测量工作己经在地震、水利水电、采矿、油田、交通和土木工程领域广泛开展。

丰富的地应力现场测量资料不仅为工程设计提供了可靠的依据,而且加深了对我国地应力分布规律的认识。

80年代以后,地壳应力研究所率先在国内开展了水力压裂地应力测量的研究工作,并于1980年10月在河北易县首次成功进行了水力压裂法地应力测量,从而迈出了我国深钻孔地应力测量的第一步。

1990年以来,北京科技大学不仅在地应力测试理论方面进行了系统的研究,而且还在实验室试验研究和现场实测的基础上,提出了一系列考虑岩体非线性、不连续性、非均质性和各向异性、正确进行温度补偿等大幅度提高应力解除法测量精度的技术和措施。

近年来提出了一种钻孔局部壁面应力全解除法。

胡斌,章光等在套孔应力解除的基础上提出了一次套钻确定三维地应力的新型钻孔变形计,提高了测量元件的分辨率(0.000lrnrn,精度达到0.2%)。

原位测量是目前取得工程需要的不同深度原岩应力可靠资料的唯一方法。

深部地应力状态和分布规律是进行深部开采设计与巷道支护设计的重要科学依据。

目前,我国煤炭系统的充州、淮南、大屯、潞安、开滦、邢台等矿区都进行了地应力测量,为后期深部资源开采作好了充分准备。

如为了掌握徐州矿区深部地应力分布规律,为深部巷道支护和煤层开采提供科学依据,在徐州矿区进行了现场地应力测量,并通过地质力学分析方法,通过对徐州矿区大范围构造背景、构造体系格局及其演化规律分析,得出了徐州矿区现今构造应力场的分布特征。

但是对于深部岩体地应力测量,目前只有水力压裂法。

水力压裂法地应力测量是对油井实施水力压裂增产技术发展而来的岩体应力测量方法,目前其最大测量深度己达5105米。

从本质上讲,水压致裂法是一种平面应力测量方法,虽然该方法具有许多优点,但该法在确定地应力大小和方向时作了一些假定,从而使得测量结果的可靠性存在疑问。

尽管水力压裂法有其自身的弊病,但在深部地应力测量中有着不可替代的作用,目前深部地壳应力实测数据资料目前主要是通过水力压裂法获得的。

在石油工业中,20世纪80年代以来,辽河油田、北京勘探开发研究院、吉林油田、胜利油田、大庆油田、华北油田等都相继开展了地应力测量及应用研究工作。

1983年,中国石油大学(华东)黄荣樽教授进行地层破裂压力预测新方法研究时,提出了考虑构造应力影响的地应力预测模式,即黄荣樽模式。

1993年以来,中国石油天然气总公司主持了“地应力测量及其在油气勘探开发中的应用”研究项目的全国性攻关。

研究内容包括:多种地应力测量、计算、模拟、解释技术方法,储层裂缝的评价与预测,地应力演化与油气运移与富集,地应力状态与开发方案的选择,地应力场状态与油田改造方案选择和地应力在其它方面的应用等,其中,中国石油大学(华东)岩石力学实验室承担了分层地应力的研究工作。

相关文档
最新文档