新课标人教版数学 第八章 二元一次方程组
第八章二元一次方程组集体备课

第八章二元一次方程组集体备课一、课标要求:1. 以含有多个未知数的实际问题为背景,经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数的问题的数学模型。
2. 了解二元一次方程组及其相关概念,能设两个未知数,并列方程组表示实际问题中的等量关系。
3. 了解二元一次方程组的基本目标:使方程组逐步转化为x=a, y=b的形式,体会“消元”思想,掌握解二元一次方程组的方法——代入法和加减法,能根据二元一次方程组的具体形式选择适当的解法。
4. 了解三元一次方程组及其解法,进一步体会“消元”思想,能根据三元一次方程组的具体形式选择适当的解法。
5. 通过探究实际问题,进一步认识利用二(三)元一次方程组解决实际问题的基本过程,体会数学应用的价值,提高分析问题、解决问题的能力。
二、中考说明要求2014年中考说明要求考试内容 A B C二元一次方程组了解二元一次方程(组)的有关概念;知道代入消元法、加减消元法的意义掌握代入消元法和加减消元法;能选择适当的方法解二元一次方程组会运用二元一次方程组解决简单的实际问题2015年中考说明要求考试内容 A B C二元一次方程组了解二元一次方程(组)的有关概念;掌握代入消元法和加减消元法;能解二元一次方程组会运用二元一次方程组的有关内容解决有关问题三、本章课时安排及课时分配内容教参建议练习册区进修建议8.1二元一次方程组 1 18.2消元——解二元一次方程组 4 48.3实际问题与二元一次方程组 3 2*8.4三元一次方程组的解法 2 1全章小结 2 2四、教学中的重点、难点、关键点及学生的易错点教材从实际问题入手引入二元一次方程(组)以及他们解的概念,然后学习二元一次方程组的解法——代入消元法和加减消元法,并运用二元一次方程组解决一些实际问题。
在此基础上,学习三元一次方程组及其解法,进一步体会消元的思想方法。
重难点:二元一次方程的概念、二元一次方程组的概念、二元一次方程的解、二元一次方程组的解、代入消元法、加减消元法、会选择适当的方法解二元一次方程组、用二元一次方程组解决实际问题、三元一次方程组、能根据三元一次方程组的具体形式选择适当的解法关键点:掌握一种思想(消元思想),两种方法(代入消元法和加减消元法),三个转化(二元一次方程组向一元一次方程的转化,三元一次方程向二元一次方程组的转化,求字母参数问题转化为列二元一次方程组求解问题)易错点:不能正确识别二元一次方程(组)、忽视“未知数的系数不为零”这一条件、循环代入导致错误、方程变形时漏乘常数项、等量关系中的单位不一致就列式而出错五、每课时具体内容建议要点§8.1二元一次方程组(1课时)【一节】二元一次方程组【学习目标】1.了解二元一次方程、二元一次方程组及其解的概念;2.会判断一组数是不是某个二元一次方程组的解;【易错点】易错点1:不能正确识别二元一次方程判断一个方程是不是二元一次方程,首先要将所给的方程进行整理,然后再分析是否满足二元一次方程的三个条件:含有两个未知数;含未知数的项的次数是1;整式方程。
七年级数学下册 第8章 二元一次方程组 8.1 二元一次方程组课件 (新版)新人教版.pptx

11
二、探究二元一次方程、二元一次方程组的概念
通过探究活动得出结论:
1.二元一次方程的解是成对出现的.
2.二元一次方程的解有无数多个,这与一元一
次方程有显著的区别.
通过对比,我们体验到从算术方法到代数方法
是一种进步.而当我们遇到求多个未知量,而且数
量关系复杂时,列二元一次方程组比列一元一次方
一个二元一次方程组. 3.使二元一次方程两边的值相等的两个未知
数的值,叫做二元一次方程的解.
17
四、小结 4.一般地,二元一次方程组的两个方程的公 共解,叫做二元一次方程组的解. 5.二元一次方程有无穷多个解;二元一次方 程组有且只有一组解.
18
五、布置作业
教材习题8.1第1,2,3,5题.
19
5
二、探究二元一次方程、二元一次方程组的概念 在上面的问题中,鸡、兔的只数必须同时满
足①②两个方程.把①②两个二元一次方程结合 在一起,用大括号来连接.我们也给它起个名字, 叫什么好呢?
x y 35, 2x 4 y 94.
6
二、探究二元一次方程、二元一次方程组的概念
定义2:把两个二元一次方程合在一起,就 组成了一个二元一次方程组.即方程组中有两 个未知数,含有每个未知数的项的次数都是1, 并且一共有两个方程,这样的方程组就叫做二 元一次方程组.
定义3:使二元一次方程两边的值相等的两个
未知数的值,叫二元一次方程的解,记为
x y
a, b.
问:那么什么是二元一次方程组的解呢?
讨论达成共识:二元一次方程组的解必须同
时满足方程组中的两个方程.即:既是方程①的
解,又是方程②的解.
9
二、探究二元一次方程、二元一次方程组的概念
人教版七年级数学下第八章 二元一次方程组归类总结

第八章二元一次方程组【基础知识疏理】1.二元一次方程含有个未知数,并且所含未知数的项的次数都是的方程叫作二元一次方程。
2.二元一次方程的一个解适合一个二元一次方程的一组未知数的值,叫作这个二元一次方程的一个解。
温馨提示:二元一次方程的的解有无数个,但在限定条件的情况下,它的解会变成有限个或一个.如求方程x+y=2的正整数解只有一个,即 .3.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。
(2)二元一次方程组的解:二元一次方程组中各个方程的,叫作这个二元一次方程组的解。
4.二元一次方程组的解法有: 和 .⑴代入法:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法。
规律点拨一般来说,用代入法解二元一次方程组的步骤如下:①求表示式:从方程组中选一个系数比较简单的方程(最好是系数为1),将此方程中一个未知数,例如 y用含x的代数式表示出来,如写成y=ax+b的形式;②代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程;③解一元一次方程:求出x的值;④回代得解:将求出的x的值代入y=ax+b中,求出y的值。
⑵加减法:通过两式相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫作加减消元法,简称加减法。
规律点拨用加减法解二元一次方程组的步骤如下:①变换系数:即把一个方程或两个方程的两边都乘以适当的数,变换两个方程的某一个未知数的系数,使其绝对值相等;②加减消元:即把变换系数后的两个方程的两边分别相加或相减,消去一个未知数,得一元一次方程;③解这个一元一次方程,求出一个未知数的值;④回代得解:将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解。
人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)

8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.
胜
负
合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】
人教版七年级数学下册第八章《 二元一次方程组的解法及典型》优质课课件

当两个方程中的某个未知数的系数的绝对值相等,或者通过变形后能够相等的时候,
我们就考虑利用加减消元法来解题.
转化是我们解方程(组)常用的指导思想,实际上还可以这样理解,解每一类新方
程(组)的过程,实质就是如何把它转化成已经学过的方程(组)的过程.
典型应用
能力提升
•11、即使是普通孩子,只要教育得法,也会成为不平凡的人。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、儿童是中心,教育的措施便围绕他们而组织起来。 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、生活即教育,社会即学校,教学做合一。 •16、当在学校所学的一切全都忘记之后,还剩下来的才是教育。2021年10月19日星期二2021/10/192021/10/192021/10/19 •17、播种行为,可以收获习惯;播种习惯,可以收获性格;播种性格,可以收获命运。2021年10月2021/10/192021/10/192021/10/1910/19/2021 •18、我们发现了儿童有创造力,认识了儿童有创造力,就须进一步把儿童的创造力解放出来2021/10/192021/10/19October 19, 2021 •19、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2021/10/192021/10/192021/10/192021/10/19
1 3
,与方程组
ax ax
by by
1 2
,的解相同,则
a=______,b=______.
【点拨】根据题的条件建立起新的二元一次方程组.
例
4.已知:关于
x,y
的方程组
人教初中数学七下 第8章 二元一次方程组(第2课时)复习课件 【经典初中数学课件】

8
三、研读课文
一
元
一
知次
不
识等
式
点的
三
解 法
及
练
习
注意:当不等式的两边都乘或除以同一个负数时, 不等号的方向 改变 .归纳:解一元一次方程,要根 据等式的性质,将方程逐步化为 X=a的形式;而解
一元一次不等式,则要根据不等式的性质,将不等
式逐步化为 x<a (或 X>a )的形式.
一
元
一
知
次 不
0 25
一
知
元 一
识
次 不
等
点式 的
三
解 法
及
练
习
三、研读课文
x1
(3) 7
<
2x 5 3
解:去分母,得:3(x-1)<7(2x+5)
去括号,得:3x-3<14x+35
移项,得:3x-14x<35+3
合并同类项,得:-11x < 38 系数化为1,得: x > - 38
11
这个不等式的解集在数轴上的表示:
四、归纳小结
3、解一元一次不等式的一般步骤: ① 去分母 ② 去括号 ③ __移__项___ ④ 合__并__同__类__项__⑤ 系数化为1 .
4、学习反思___________________.
五、强化训练
1、下列式子中,属于一元一次不等式的
是( D )
A. 4>3
B. C.C. 3x-2<y+7
综合探究
综合探究
矫正补偿
完善整合
1.在用一元一次方程组解决实际问题时,你会怎样 设定未知数,可借助哪些方式辅助分析问题中的相等 关系? 2.小组讨论,试用框图概括“用二元一次方程组分析 和解决实际问题”的基本过程.
人教版七年级下册第八章二元一次方程组第八章:二元一次方程组教学设计

人教版七年级下册第八章二元一次方程组教学设计教学目标1.理解二元一次方程组的概念及其解法;2.掌握利用代数方法解二元一次方程组;3.能够在生活实际问题中应用二元一次方程组进行求解。
教学重点1.理解二元一次方程组的概念;2.掌握利用代数方法解二元一次方程组。
教学难点培养学生应用二元一次方程组解决实际问题的能力。
教学内容及教学步骤教学内容1.二元一次方程组的概念;2.代数方法解二元一次方程组。
教学步骤第一步:导入1.老师介绍二元一次方程组的概念及其应用场景:解决两个未知数的问题;2.激发学生的兴趣。
第二步:复习1.回顾一元一次方程的解法;2.引导学生思考:如何求解两个未知数的方程?第三步:讲解1.教师讲解二元一次方程的概念和解法,并介绍利用代数方法解二元一次方程组;2.通过例题引导学生理解二元一次方程组的概念和代数解法。
第四步:练习1.分组练习二元一次方程组的代数解法;2.对练习中出现的问题进行及时纠正。
第五步:扩展1.小组讨论生活实际问题,引导学生应用二元一次方程组进行求解;2.分组汇报讨论结果。
第六步:总结1.教师对本节课的教学进行总结;2.检查学生的掌握情况。
课后作业1.完成课后作业;2.思考如何应用二元一次方程组解决其他实际问题。
教学反思通过以上教学步骤,学生能够通过代数方法解二元一次方程组,提高了学生的二元一次方程组解题的能力。
在课程设计中,通过引导学生进行小组讨论及汇报,增强了学生的交流与合作能力。
不足之处是,需要针对不同层次的学生进行个性化教育,此外,引导学生从家庭生活、社会实践中寻找问题,借助二元一次方程组进行求解,可增加学生对数学知识的应用性和实际意义的认识。
人教版数学七年级下册第八章《二元一次方程组》知识点

人教版数学七年级下册第八章《二元一次方程组》知识点一、二元一次方程1、二元一次方程定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程,叫做二元一次方程.满足条件:(1)整式方程;(2)只含含有两个未知数.注意:(1)方程化简后两个未知数的系数都不能为0;(2)含有未知数的项的次数都是1.关于x,y的二元一次方程的一般形式:ax+by=c(a≠0,b≠0)2、二元一次方程组定义:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.满足条件:(1)两个方程都是整式方程;(2)共含有两个未知数;(3)一共有两个方程,每个方程都是一次方程.注意:(1)二元一次方程组不一定都是由两个二元一次方程组成的,其中有的方程可以是一元一次方程;(2)二元一次方程组必须一共含有两个未知数.3、二元一次方程的解二元一次方程的解:一般地,使二元一次方程两边值相等的两个未知数的值,叫做二元一次方程的解。
判断一对数值是不是二元一次方程的解的方法:只需要将数值分别代入到方程的左右两边。
(1)若左边=右边,则这对数值是这个方程的解;(2)若左边≠右边,则这对数值不是这个方程的解.4、二元一次方程组的解二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解;判断一对数值是不是二元一次方程组的解的方法:将这对数值代入到每个方程中进行检验,若满足每个方程,这对数值就是这个方程组的解,只要其中一个不满足,就不是这个方程组的解.二、解二元一次方程1、消元思想二元一次方程组中有两个未知数,如果消去其中的一个未知数,那么就把二元一次方程组转化为一元一次方程。
先求出一个未知数,然后再求出另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.2、代入消元法定义:把二元一次方程组中一个方程的一个未知数用另一个未知数的式子表示出来,再代入到另一个方程,实现消元,进而求出这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.步骤:(1)变形:选取一个系数比较简单的二元一次方程变形,用含一个未知数的式子表示另一个未知数;(2)代入:把y=ax+b(或x=ay+b)代入到另一个没有变形的方程中;(3)求解:解消元后的一元一次方程;(4)回代:把求得的未知数的值代入步骤一中变形后的方程中去;(5)写解:把两个未知数的值用大括号联立起来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标人教版数学
第八章 二元一次方程组
1、二元一次方程:
⑴定义:含两个未知数且未知项的最高次数是 的方程。即同时满足以下几个条
件的方程就是二元一次方程:①含 未知数;②未知项的最高次数是 ;③分母不
含 。
⑵使二元一次方程左右两边相等的两个未知数的值叫二元一次方程的 ;
2、二元一次方程组:
⑴同时满足以下条件的方程组就是二元一次方程组:①共含两个未知数;②未知项的最
高次数是 ;③分母不含 。考点:若︱m-2︱x0.5︱m︱+(n+1)y|n|=5是二元一次方
程,则m= ,n= .
⑵同时使 方程都成立的未知数的值叫二元一次方程组的解。无论是二元一次
方程还是二元一次方程组的解都应该写成 的形式。
⑶二元一次方程组的解法:基本思路是 。① 消元法;将一个方程变
形为用含一个未知数的式子表示另一个未知数的形式再代入另一个方程,将二元化为一元;
② 消元法;适用于相同未知数的系数有相等或互为相反数的特点的方程组,首先
观察出两个未知数的系数分别的特点,如何运用加减消去一个未知数;含分母、小数、括号
等的方程组都应先化为最简形式后再用这两种方法去解。
⑷列方程解应用题的一般步骤是: ;关键是
找出题目中的两个相等关系,列出方程组。