矩阵的广义逆与伪逆
三矩阵相乘的广义逆

广义逆矩阵是线性代数中的一个重要概念,它可以用来解决线性方程组的求解等问题。
在这里,我将介绍广义逆矩阵的基本概念和性质,并讨论三矩阵相乘的广义逆的计算方法。
广义逆矩阵的定义:设 A 是一个 n 阶方阵,如果存在一个 n 阶方阵 B,使得 AB=BA=I,其中 I 是 n 阶单位矩阵,那么 B 就称为 A 的广义逆矩阵,记作 B=A^{-1}。
广义逆矩阵的性质:1. 如果 A 是可逆的,那么 A 的广义逆矩阵就是 A 的逆矩阵,即 A^{-1}=A^{-1}。
2. 如果 A 是非奇异的,那么 A 的广义逆矩阵就是 A 的伪逆矩阵,即 A^{-1}=A^+。
3. 如果 A 是奇异的,那么 A 的广义逆矩阵就是 A 的指数矩阵,即 A^{-1}=e^A。
4. 如果 A 是对称矩阵,那么 A 的广义逆矩阵也是对称矩阵,即 A^{-1}=A^{T}。
三矩阵相乘的广义逆的计算方法:设 A、B、C 是三个 n 阶方阵,那么它们的广义逆矩阵可以通过以下公式计算:(ABC)^{-1}=C^{-1}B^{-1}A^{-1}其中 C^{-1}、B^{-1}、A^{-1} 分别是 C、B、A 的广义逆矩阵。
这个公式可以通过矩阵运算的性质来证明,也可以通过计算 A、B、C 的指数矩阵来得到。
例如,如果 A、B、C 都是可逆的,那么它们的广义逆矩阵就是它们的逆矩阵,即(ABC)^{-1}=A^{-1}B^{-1}C^{-1}如果 A、B、C 都是非奇异的,那么它们的广义逆矩阵就是它们的伪逆矩阵,即(ABC)^{-1}=A^+B^+C^+如果 A、B、C 都是奇异的,那么它们的广义逆矩阵就是它们的指数矩阵,即(ABC)^{-1}=e^Ae^Be^C如果 A 是对称矩阵,B、C 是对称矩阵,那么它们的广义逆矩阵也是对称矩阵,即(ABC)^{-1}=(B^TA^TC^T)^{-1}=(C^TA^TB^T)^{-1}需要注意的是,三矩阵相乘的广义逆矩阵并不一定存在,例如如果 A、B、C 中有一个是零矩阵,那么它们的广义逆矩阵就不存在。
毕业论文广义逆矩阵与线性方程组的求解

广义逆矩阵与线性方程组的求解The solution of linear equations by the generalized inverse matrix专业: 数学与应用数学作者:指导老师:学校二○一摘要本文首先对矩阵的广义逆进行定义及其分类, 然后主要对一些重要的广义逆的性质和求解进行详细的讨论, 其中包括对减号逆的求解、Moore-Penrose 逆的存在性与唯一性的证明、左逆与右逆的性质与求解等等. 通过对这些重要的广义逆矩阵的性质和求解方法的研究, 最后探讨矩阵的广义逆在解线形方程组中的应用.关键词: 广义逆矩阵;线性方程组;相容方程组;通解AbstractThis article first to define the generalized inverse matrix and its classification, and then mainly on some important properties of generalized inverses and solution of a detailed discussion, including a minus sign for solving inverse, Moore-Penrose inverse of the existence and uniqueness of proof, the left inverse and right inverse of the nature of and solution and so on. On these important properties of generalized inverse matrix of the theory and method, the last of the generalized inverse matrix in the solution of linear equations.Keywords: generalized inverse matrix;linear equations;compatibility equations;general solution目录摘要 (I)ABSTRACT (II)0 引言 (2)1 矩阵的几种广义逆 (1)1.1)1(A的定义与计算 (3)1.5加号逆+A的性质及计算 (4)1.6左逆与右逆的定义 (5)2 用广义逆矩阵求解线性方程组 (7)2.1左右逆的应用 (7)2.2相容方程组的通解与-A的应用 (8)2.3+A的应用 (11)参考文献 (14)0 引言广义逆矩阵是通常逆矩阵的推广, 推广的必要性, 首先是从线性方程组的求解问题出发的, 设有线性方程组b Ax = (0.1)当A 是n 阶方阵, 且0det ≠A 时, 则方程组(0.1)的解存在, 并唯一. 1x A b -= (0.2)但是, 在许多实际问题中所遇到的矩阵A 往往是奇异方阵或是任意的n m ⨯矩阵 (一般n m ≠), 显然不存在通常的逆矩阵1-A , 这就促使人们去想象能否推广逆的概念, 引进某种具有普通逆矩阵类似性质的矩阵G , 使得其解仍可以表示为类似于式(0.2)的紧凑形式? 即Gb x = (0.3)1920年摩尔(E.H.Moor )首先引进了广义逆矩阵这一概念, 其后三十年未能引起人们的重视, 指直到1955年, 彭诺斯(R.Penrose )以更明确的形式给出了Moore 的广义逆矩阵的定义后, 广义逆矩阵的研究才进入了一个新的时期, 由于广义逆矩阵在数理统计、系统理论、最优化理论、现代控制理论等许多领域中的重要应用为人们所认识,因而大大推动了对广义逆矩阵的研究, 使得这一学科得到迅速的发展, 已成为矩阵的一个重要分支. (见参考文献[1][2])1 矩阵的几种广义逆1955年, 彭诺斯(R.Penrose )指出, 对任意复数矩阵n m A ⨯, 如果存在复矩阵m n A ⨯,满足A AXA = (1.1) X XAX = (1.2)AX AX H =)( (1.3)XA XA H =)( (1.4)则称X 为A 的一个 Moore —Penrose 广义逆, 并把上面四个方程叫做 Moore —Penrose 方程, 简称 M —P 方程.由于 M —P 的四个方程都各有一定的解释, 并且应用起来各有方便之处, 所以出于不同的目的, 常常考虑满足部分方程的 X , 叫做弱逆, 为引用的方便, 我们给出如下的广义逆矩阵的定义.定义1.1 设n m C A ⨯∈, 若有某个m n C X ⨯∈, 满足 M —P 方程(1.1)~(1.4)中的全部或其中的一部分, 则称X 为A 的广义逆矩阵.(见参考文献[3])例如有某个X , 只要满足式(1.1) , 则X 为A 的{}1广义逆, 记为{}1A X ∈; 如果另一个Y , 满足式(1.1), (1.2)则Y 为A 的{}2,1广义逆, 记为{}2,1A Y ∈; 如果{}4,3,2,1A X ∈, 则X 同时满足四个方程, 它就是 Moore —Penrose 广义逆, 等等. 总之, 按照定义 1.1可推得, 满足1个, 2个, 3个, 4个Moore —Penrose 方程的广义逆矩阵共有1544342414=+++C C C C 种, 但应用较多的事一下五种{}1A , {}2,1A , {}3,1A , {}4,1A , {}4,3,2,1A .其中每一种广义逆矩阵又都包含着一类矩阵, 分述如下:1.{}1A : 其中任意一个确定的广义逆, 称作减号逆, 或g 逆, 记为-A ; 2.{}2,1A : 其中任意一个确定的广义逆, 称作自反广义逆, 记为r A ; 3.{}3,1A : 其中任意一个确定的广义逆, 称作最小范数广义逆, 记为m A ; 4.{}4,1A : 其中任意一个确定的广义逆, 称作最小二乘广义逆, 记为i A ;5.{}4,3,2,1A : 唯一,称作加号逆, 或伪逆, 或 Moore-Penrose 逆, 记为+A .为叙述简单起见, 下面我们以n R 及实矩阵为例进行讨论, 对于n C 及复的矩阵也有相应结果.本文着重介绍减号逆-A 和加号逆+A 以及左逆与右逆的性质及计算, 并讨论它们在解线性方程组中的应用.1.1 (1)A 的定义与计算定义 1.1.1 设m n A C ⨯∈, 若m n C G ⨯∈满足AGA A =, 则称G 为A 的{1}-逆记为(1)A ,由定义可知{}{}m n C G A AGA G A ⨯∈==,|1.例如设1100A ⎛⎫= ⎪⎝⎭, 则100a G ⎛⎫= ⎪⎝⎭就是A 的{1}-逆, 这里a 可以任取. 不难看出A 的{1}-逆并不唯一.定理 1.1.1 设m n r A C ⨯∈, P , Q 分别为m 阶与n 阶非奇异方阵, 且000rIPAQ ⎛⎫= ⎪⎝⎭则 122122{1}(,1,2)r ijI G A Q P G i j G G ⎧⎫⎛⎫⎪⎪==⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为任意阶数的矩阵. (证明见参考文献[7]) 例1 求矩阵101002221453A -⎛⎫⎪= ⎪ ⎪-⎝⎭的广义逆)1(A .解 构造分块矩阵340AI B I ⎛⎫=⎪⎝⎭, 通过适当变化, 将A 进行行列变换化为000rI ⎛⎫⎪⎝⎭形式, 并求出变换P , Q .31314110111001000100022201002220101453001044400110000001011000010000001000000010000001000000010000001000r r c c c c ++--⎛⎫⎛⎫⎪⎪⎪ ⎪ ⎪ ⎪- ⎪⎪−−−→- ⎪ ⎪ ⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭323242221/21000100010012000001211011000011100000100000001000r r c c c c r ---⎛⎫⎪⎪⎪- ⎪−−−→- ⎪ ⎪-- ⎪⎪ ⎪⎝⎭,因此有10001/20121P ⎛⎫ ⎪= ⎪ ⎪-⎝⎭, 1011011100100001Q -⎛⎫⎪--⎪= ⎪⎪⎝⎭.于是我们取12G , 21G , 22G 均为0得()⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000002100010000000100011P Q A .1.2 加号逆+A 的性质及计算定义1.2.1设n m R A ⨯∈, 若存在m n ⨯ 阶矩阵 X , 它同时满足: 1) A AXA = 2)X XAX = 3)()AX AX T= 4)()XA XA T=则称X 为 A 的加号逆, 或伪逆, 或 M oore-Penrose 逆, 记为+A .从定义中可看出, 加号逆必同时是减号逆、自反广义逆、最小范数广义逆和最小二乘广义逆, 在四个条件中, X 与A 完全处于对称地位. 因此A 也是+A 的加号逆, 即有()A A =++; 另外可见, 加号逆很类似于通常的逆阵, 因为通常的逆1-A 也有下列四个类似的性质:1.A A AA =-12. 111---=A AA A3. I AA=-14. I A A =-1由定义1.2.1 中的条件 3)和 4)还可看出, +AA 与A A +都是对称矩阵.前面已经介绍了什么样的矩阵称为M P -广义逆矩阵, 下面将讨论M P -广义逆矩阵的唯一性.定理1.2.1对任意m n A C ⨯∈, A +存在且唯一.证明 设()rank A r =, 若0r =则A 是m n ⨯阶零矩阵, 显然n m ⨯阶零矩阵满足条件.若0r >则A 的满秩分解为A FG =, 其中m r r F C ⨯∈, r n r G C ⨯∈, 于是11()()H H H H B G GG F F F --=即为所求的A +. 因为(1) ()11()()H H H H ABA FG G GG F F F FG FG A --===; (2) 1111()()()()H H H H H H H H BAB G GG F F F FGG GG F F F ----=11()()H H H H G GG F F F B --==;(3) 111()(()())(())H H H H H H H H H AB FGG GG F F F F F F F ---== 1()H H F F F F AB -==;(4) 111()(()())(())H H H H H H H H H BA G GG F F F FG G GG G ---== 1()H H G GG G BA -==. 由此说明了P M -广义逆的存在性.又设,{1,2,3,4}X Y A ∈则有()()()()H H H H H X XAX X AX XX AYA X AX AY XAY =====()()()()H H H H H H H XA YAY XA YA Y A X A Y Y YAY Y =====. 这便说明了A +的唯一性.定理 1.2.2 设A 为秩为r 的m n ⨯矩阵, 其满秩分解为A FG =, 其中m rr F C ⨯∈,r nr G C ⨯∈, 则11()()H H H H A G GG F F F +--=.A +的唯一性前面已经作出了说明, 此定理的证明见参考文献[7]1.3 左逆与右逆的定义定义 1.3.1 设A 是m n ⨯矩阵, 若有n m ⨯矩阵G 满足m AG I =(或n GA I =), 则称G 为A 的右逆(或左逆), 记为1R A -(或1L A -).定理1.3.1 设A 是m n ⨯的矩阵, A 有右(左)逆1R A -(1L A -)的充要条件是()rank A m =(()rank A n =).若A 有右(左)逆, 则其中一个右(左)逆是11()H H R A A AA --=(11()H H L A A A A --=), 通式为11()H H R A VA AVA --=(11()H H L A A VA A V --=)其中V 是任意满足()()()()()H H rank A rank AVA rank A rank A VA ==的矩阵.证明 充分性: 已知()rank A m =, 则()H rank AA m =, H AA 是可逆矩阵, 若记1()H H G A AA -=, 则1()H H m AG AA AA I -==, 因此G 是A 的右逆.必要性: 设G 是A 的一个右逆, 则AG =m I . 由于()()()m m rank I rank AG rank A m ==≤≤,因此()rank A m =.设V 是任意满足()()H rank A rank AVA =的矩阵, 最后证明右逆的通式可以表示成为11()H H R A VA AVA --=的形式.由于1()H H m AVA AVA I -=, 因此1()H H VA AVA -是A 的右逆. 设G 是A 的任意右逆,记H V GG =, 则H H H m AVA AGG A I ==因此()()H rank A rank AVA m ==. 又因为1()H H VA AVA -=H H m m GG A I GI G ==,由上分析可知A 的任意右逆G 都可找到V 使其表示为1()H H G VA AVA -=的形式.因此矩阵A 的右逆的通式为11()H H R A VA AVA --=.对于左逆同理证明.例2求矩阵111000A ⎛⎫⎪= ⎪ ⎪⎝⎭的左逆1L A -. 解 由于1111021101001100H A A ⎛⎫⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭, 所以我们有11121110010()11100110H HL A A A A ---⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭例3 设 ⎥⎦⎤⎢⎣⎡--=210121A ,试求其右逆. 解 易知rank 2=A ,即A 是最大秩矩阵,有11210121210121210121--⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=R A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡824365141.2 用广义逆矩阵求解线性方程组考虑非齐次线性方程b Ax = (2.1) 其中n m C A ⨯∈, m C b ∈给定, 而m C x ∈为待定向量. 若()rankA b A rank =, 则方程(2.1)有解, 或称方程组相容, 否则, ()rankA b A rank ≠, 则方程(2.1)无解, 或称方程组不相容或矛盾方程组.2.1 左右逆的应用定理2.1.1 设Ax b =是相容性线形方程组, A 是行满秩矩阵, 1R A -是它的一个右逆.显然11()R R A A b AA b b --==, 因此1R A b -是线形方程组的解. 又若A 为列满秩矩阵, 1L A -是它的一个左逆, 则1L A b -是线形方程组的解.例4 求方程组Ax b =的解其中111000A ⎛⎫⎪= ⎪⎪⎝⎭, 210b ⎛⎫ ⎪= ⎪ ⎪⎝⎭. 解 显然方程组是相容的. 由于从前面已经知道1010110L A -⎛⎫= ⎪-⎝⎭,因此方程组的解为120101111010L x A b -⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎪⎝⎭.2.2 相容方程组的通解与-A 的应用线性方程组相容时, 若系数矩阵n m C A ⨯∈, 且非奇异(即0det ≠A ), 则有唯一的解b A X 1-= (2.2) 但当A 为奇异方阵或长方矩阵时, 它的解不是唯一的, 此时1-A 不存在或无意义,那么我们自然会想到, 这时是否能用某个矩阵G 把一般解(无穷多)表示成 Gb X = (2.3) 的形式呢? 这个问题是肯定的. 我们将会发现A 的减号逆A 充当了这一小角色.对于一个m n ⨯阶相容的线性方程组, 不论系数矩阵A 是方阵还是长方矩阵, 是满秩的还是降秩的, 我们都有一个标准的求解方法, 并且能把它的解表达成非常简洁的形式. 下面定理形式给出.定理2.2.1 如果线性方程组(2.1)是相容的, -A 是A 的任一个减号逆, 则线性方程组(2.1)的一个特解可表示成b A X -= 而通解可以表示成()z A A I b A X ---+= (2.4)其中z 是与X 同维的任意向量.(见参考文献[6])证 因为b AX =相容, 所以必有一个n 维向量, 使 b AW = 成立, 又由于是-A 是A 的一个减号逆, 所以A A AA =-,则有AW AW AA =-.亦即b b AA =-.由此得出b A X -= (2.5) 是方程组(2.1)的一个特解.其次, 在式子(2.4)两端左乘A . 则有b AA Z A A I A b AA AX ---=-+=)(由于b b A A =-)(, 所以式(2.4)确定的X 是方程组(2.1)的解, 且当x ~为任意一个解时, 令b A X Z --=~, 有)~)(()(b A X A A I Z A A I -----=- =Ab A X A A b A X ---+--~~ =b A b A b A X ---+--~=b A X --~从而得()Z A A I b A X ---+=~证毕.这表明由式(2.4)确定的解时方程组(2.1)的通解. 例5 求解⎩⎨⎧=+-=-+221232321x x x x x解 将方程组写成矩阵形式 b AX = 其中⎥⎦⎤⎢⎣⎡--=210121A ,⎥⎦⎤⎢⎣⎡=21b 由于()rankA b A rank ==2, 所以方程组是相容的, 现在只要要求得A 的一个减号就可以了, 由例1.3.2知矩阵A 的一个减号逆为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-8326451411RA 利用公式(2.4), 我们就可立即求得方程组的通解:()Z A A I b A X R R 11---+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-++---+=321321321213192461036913141z z z z z z z z z 也即()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧++-=++-=--+=32133212321123191412461014136913141z z z x z z z x z z z x其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321z z z Z 为任一向量. 例6 求方程组Ax b =其中101102221453A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭, 101b ⎛⎫⎪= ⎪ ⎪-⎝⎭的解.解 不难看出, 该方程组是相容的, 由于前面已经求得(1)1000120000000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 所以方程组的通解为1342343344110010001011011012001000120002220000010000114530000001000y y y y y y x y y y y +-⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪⎪⎪-- ⎪ ⎪⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪=+-= ⎪ ⎪⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎢⎥ ⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦其中3y , 4y 为任意实数.2.3 +A 的应用(一)判别线性方程组有解.普通线性代数中判别方程组b AX =有解的方法是用矩阵的秩,即()rankA b A rank =时有解;而有了广义逆矩阵理论之后, 便可用广义逆矩阵的方法判别, 并可同时求出解.结论1: 线性方程组b AX =有解b AA b +=⇔. 证 若线性方程组b AX =有解.不妨设其解为a ,则()()b AA Aa AA a A AA Aa b +++====反之, 若有b AA b +=, 则()()b A X A b A X b A X A b AA b AX ++++=⇒≠=-⇒=-⇒==000即b A X +=为线性方程组的一个解. (二)求齐次线性方程组的解空间利用广义逆矩阵可以求出齐次方程组的一切解结论2: 齐次线性方程组0=AX 的解空间=W {()Y Y A A E +-为任意列向量} 证 任取()W A A E a ∈-=+β, 有()()0=-=-=++ββA AA A A A E A Aa , 则a 为齐次线性方程组的解. 反之.若a 为方程组的解, 即0=Aa (2.3.1)两边左乘以A A +, 得0=+AAa A (2.3.2 )联立以上两式有()0=-+a A A E A (2.3.3)由(2.3.3)知: ()a A A E +-为方程组的解, 且()W a A A E ∈-+.(三) 判别齐次线性方程组有唯一解一般由个方程以及个未知数组成的齐次线性方程组0=AX 有唯一解的充分必要条件是0≠A . 但是当方程组的个数与未知数的个数不相等时, 不是方阵, 不能有用行列式判别. 可以用广义逆矩阵的方法判别如下:结论3: 齐次线性方程组0=AX 有唯一解E A A =⇔+证 ⇒ 若齐次线性方程组有唯一解, 则唯一解即为零解. 若E A A ≠+, 则0≠-+A A E由结论2知, 0≠∃Y , 使得()0≠-=+Y A A E a , 为方程组的解, 这与方程组有唯一零 解矛盾. 所以E A A =+.⇐ 若E A A =+, 则0=-+A A E , 由结论2知此时解空间有唯一零解. (四)求非齐次线性方程组的解空间结论4: 非齐次线性方程组b AX =的解空间=H {()Y Y A A E b A ++-+为任意 列向量}.事实上, 由线性方程组的一般理论知, 非齐次方程组的通解应该为对应齐次 的通解和自身的一个特解之和. 结论1、2告诉我们: b A +为其自身的一个特解; 而()Y Y A A E +-为对应齐次的通解(Y 取任意列向量). 显然即为其解空间.例7 求b AX =的通解. ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=201,420021b A解 因为 ()2,1201⎪⎪⎪⎭⎫ ⎝⎛==FG A , 5=H GG , 5=F F H ,所以()b b AA A =⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=+--+2012012001000010052512014022012514200214022012512,0,1552111 通解为()Y Y A A E X ⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=-+⎪⎪⎭⎫ ⎝⎛=+12245121512151. 其中Y 为任意列向量.致谢 本文是在 的指导和帮助下完成的, 在此对汪教授表示衷心的感谢!参考文献[1] 姜同松编. 高等代数解题方法[M]. 石油大学出版社. 2001.[2] 北京大学数学系几何与代数教研室代数小组编. 高等代数[M]. 北京:高等教育出版社,1988.[3] 蔡剑芳. 高等代数综合题解[M]. 湖北科学技术出版社. 1986.[4] 王品超. 高等代数新方法[M]. 济南:山东教育出版社. 1989.[5] 黄有度, 狄成恩, 朱士信. 矩阵理论及其应用[M]. 合肥: 中国科学技术大学出版社, 1995.[6] 林升旭. 矩阵论学习辅导与典型题解析[M]. 武汉: 华中科技大学出版社, 2003.[7] 苏育才, 姜翠波, 张跃辉. 矩阵理论[M]. 北京: 科学出版社, 2006.[8] 李新, 何传江. 矩阵理论及其应用[M]. 重庆: 重庆大学出版社, 2005.[9]Verler.W.J.Vectors Structures and Solutions of linear Matrix Equation, linear Algebra Appl;1975.180-187.[10] Dai Hua.On the symmetric Solutions of linear Matrix Equation, linear Algebra Appl.1990(131)1-7.。
矩阵伪逆计算

矩阵伪逆计算矩阵伪逆是线性代数中,一个非常重要的概念,它可以用来计算矩阵的逆矩阵,即能够将一个矩阵变换成其相反的形式所需要的矩阵。
另外,它还可以用于解决线性系统的解。
矩阵伪逆计算的基本原理是,矩阵A的伪逆是A的转置矩阵A^T,这意味着A的伪逆是A的逆矩阵的转置,而不是A的逆。
对于一个n×n矩阵A,A的伪逆计算可以分为以下四步:构建转置矩阵A^T,它是A的转置矩阵,其中i行j列元素是Ai,j;求出A^T * A,它是A的乘积,其中i行j列元素是A'^Tij ;求出(A^T *A)的逆,其中i行j列元素是(A^T*A)^-1ij ;求出A的伪逆,其中i行j列元素是(A^T*A)^-1*A^Tij 。
矩阵伪逆在很多研究领域有着广泛的应用,例如机器学习和模式识别、信息融合和推理、统计学和数值计算、支持向量机等等。
矩阵伪逆也可以用来解决一些计算量很大的问题,例如计算A的逆矩阵A^-1,矩阵乘法A*B,A^T*A等等。
矩阵伪逆可以使这些问题的计算量减小,使计算更加有效。
矩阵伪逆的特殊形式也可以被用于求解线性方程组的解。
例如,当矩阵A是一个m×n的矩阵,并且向量b是一个m×1的向量,那么矩阵A的伪逆可以用于求解Ax = b的解x,其中Ax = b是一个未知的线性系统。
矩阵伪逆的计算方法也可以被用于不确定系统的解。
例如,如果有一个未知的不确定系统Ax = b,其中,A是一个m×n线性系统,b是一个m×1向量,并且A的行数比列数多,则可以用矩阵伪逆法来求解这种不确定系统的解。
总而言之,矩阵伪逆是一个非常重要的概念,它在很多领域都有着广泛的应用,包括机器学习、模式识别、信息融合和推理、统计学和数值计算、线性系统的解法以及不确定系统的解等等。
矩阵伪逆的计算可以使得某些问题的大计算量减小,使得计算更加有效。
广义逆矩阵作用

广义逆矩阵作用广义逆矩阵是矩阵理论中的一个重要概念,它在多个领域中都有广泛的应用。
本文将介绍广义逆矩阵的定义、性质以及应用,并探讨其在实际问题中的作用。
一、广义逆矩阵的定义在矩阵理论中,矩阵A的广义逆矩阵,记作A⁺,是满足以下条件的矩阵:1. AA⁺A = A,即A乘以广义逆矩阵再乘以A等于A本身。
2. A⁺AA⁺= A⁺,即广义逆矩阵乘以A再乘以广义逆矩阵等于广义逆矩阵本身。
二、广义逆矩阵的性质1. 广义逆矩阵的广义逆矩阵是它本身,即(A⁺)⁺ = A⁺。
2. (AB)⁺= B⁺A⁺,即两个矩阵的乘积的广义逆矩阵等于右边矩阵的广义逆矩阵乘以左边矩阵的广义逆矩阵。
3. (A⁺)ᵀ= (Aᵀ)⁺,即广义逆矩阵的转置等于原矩阵的转置的广义逆矩阵。
4. (AᵀA)⁺Aᵀ= A⁺,即矩阵A的转置与A的乘积的广义逆矩阵等于A的广义逆矩阵乘以A的转置的广义逆矩阵。
三、广义逆矩阵的应用1. 线性方程组的求解:对于一个线性方程组Ax = b,如果A是列满秩矩阵(即A的列向量线性无关),则方程组有唯一解x = A⁺b。
如果A不是列满秩矩阵,方程组可能有无穷多解,此时可以通过最小二乘法求解,即x = A⁺b是方程组的最小二乘解。
2. 伪逆最小二乘法:当矩阵A不是一个方阵时,无法求出其逆矩阵。
此时可以使用广义逆矩阵来进行最小二乘拟合,例如曲线拟合和数据降维等问题。
3. 线性回归分析:广义逆矩阵可以用于线性回归模型的参数估计,通过最小化残差平方和来求解回归方程的参数。
4. 信号处理:广义逆矩阵可以用于信号处理中的滤波、降噪和频谱估计等问题,提高信号处理的精度和效果。
5. 图像处理:广义逆矩阵可以应用于图像处理中的去噪、图像复原和图像压缩等问题,提高图像处理的质量和效率。
6. 线性规划:广义逆矩阵可以用于线性规划问题的求解,例如最优化问题和约束优化问题等。
7. 控制系统:广义逆矩阵在控制系统中有广泛的应用,如系统辨识、状态估计、控制器设计和自适应控制等方面。
matlab矩阵基本知识

matlab矩阵基本知识第一部分:矩阵基本知识(只作基本介绍,详细说明请参考Matlab帮助文档)矩阵是进行数据处理和运算的基本元素。
在MATLAB中a、通常意义上的数量(标量)可看成是”1*1″的矩阵;b、n维矢量可看成是”n*1″的矩阵;c、多项式可由它的系数矩阵完全确定。
一、矩阵的创建在MATLAB中创建矩阵有以下规则:a、矩阵元素必须在”[ ]”内;b、矩阵的同行元素之间用空格(或”,”)隔开;c、矩阵的行与行之间用”;”(或回车符)隔开;d、矩阵的元素可以是数值、变量、表达式或函数;e、矩阵的尺寸不必预先定义。
下面介绍四种矩阵的创建方法:1、直接输入法最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则。
建立向量的时候可以利用冒号表达式,冒号表达式可以产生一个行向量,一般格式是:e1:e2:e3,其中e1为初始值,e2为步长,e3为终止值。
还可以用linspace函数产生行向量,其调用格式为:linspace(a,b,n) ,其中a和b是生成向量的第一个和最后一个元素,n是元素总数。
可以看出来linspace(a,b,n)与a:(b-a)/(n-1):b等价。
2、利用MATLAB函数创建矩阵基本矩阵函数如下:(1) ones()函数:产生全为1的矩阵,ones(n):产生n*n维的全1矩阵,ones(m,n):产生m*n维的全1矩阵;(2) zeros()函数:产生全为0的矩阵;(3) rand()函数:产生在(0,1)区间均匀分布的随机阵;(4) eye()函数:产生单位阵;(5) randn()函数:产生均值为0,方差为1的标准正态分布随机矩阵。
3、利用文件建立矩阵当矩阵尺寸较大或为经常使用的数据矩阵,则可以将此矩阵保存为文件,在需要时直接将文件利用load命令调入工作环境中使用即可。
同时可以利用命令reshape对调入的矩阵进行重排。
reshape(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成m*n的二维矩阵。
广义逆矩阵(Pseudoinverse)神经网络

广义逆矩阵(Pseudoinverse)在神经网络学习算法中的应用早在20世纪20年代初期,E.H.Moor 就提出了广义逆矩阵的概念,但长期以来广义逆矩阵的研究却没有受到人们的注意。
直到1955年,随着科学技术的迅猛发展,特别是电子计算机的出现,推动了计算科学的进步。
R.Penrose又独立提出广义逆矩阵的概念后,情况才开始发生了变化。
由于广义逆矩阵在测量学,统计学等多领域中得到了广泛应用,产生了巨大的推动力量,使其在之后的近四十年的时间得到了迅猛发展,形成了完整的理论体系。
一.广义逆矩阵若A为非奇异矩阵,则线性方程组Ax=b的解为x=A1-b,其中A的逆矩阵A1-满足A1-A=A A1-=I(I为单位矩阵)。
若A是奇异阵或长方阵,Ax=b可能无解或有很多解。
若有解,则解为x=Xb+(I-XA)у,其中у是维数与A 的列数相同的任意向量,X是满足AXA=A的任何一个矩阵,通常称X为A的广义逆矩阵,用A g-、A-或A1-等符号表示,有时简称广义逆或伪逆。
当A 非奇异时,A1-也满足A A1-A=A,且x= A1-b+(I- A1-A)у= A1-b。
故非异阵的伪逆矩阵就是它的逆矩阵,说明伪逆矩阵确是通常逆矩阵概念的推广。
1955年R.彭罗斯证明了对每个m×n阶矩阵A,都存在唯一的n×m阶矩阵X,满足:①AXA=A;②XAX=X;③(AX)H=AX;④(XA)H=XA。
通常称X为A的穆尔-彭罗斯广义逆矩阵,简称M-P逆,记作A1-。
当A非奇异时,A1-也满足①~④,因此M-P逆也是通常逆矩阵的推广。
在矛盾线性方程组Ax=b的最小二乘解中,x=A1-b是范数最小的一个解。
若A是n阶方阵,k为满足(图1)的最小正整数(rank为矩阵秩的符号),记作k=Ind(A),则存在唯一的n阶方阵X,满足:(1) AkXA=Ak;(2) XAX=X;(3) AX=XA。
通常称X为A的德雷津广义逆矩阵,简称D逆,记作Ad,A(d)或AD等。
广义逆矩阵的计算方法及意义

广义逆矩阵的计算方法及意义广义逆矩阵是矩阵理论中的一个非常重要的概念,它不仅在数值计算中具有重要意义,而且在优化理论、信号处理以及系统控制等领域也广泛应用。
本文将从广义逆矩阵的定义、计算方法及其意义等方面阐述这一重要概念。
一、广义逆矩阵的定义广义逆矩阵的定义是指,对于任意的一个矩阵A ∈ Rm×n,若存在一个矩阵A+ ∈ Rn×m,使得下列两个条件成立,即:A × A+ × A = AA+ × A × A+ = A+则称A+为A的广义逆矩阵。
其中,A+也满足下列两个条件:(A × A+)T = A × A+(A+ × A)T = A+ × A需要注意的是,如果A的列线性无关,则A+实际上就是A的逆矩阵。
二、广义逆矩阵的计算方法广义逆矩阵的计算方法有以下几种:(1)矩阵求导法矩阵求导法是一种比较简单的计算广义逆矩阵的方法。
它的基本思想是,将A与A的转置相乘,得到一个对称矩阵B,然后对B进行求导,最终就可以得到广义逆矩阵A+。
但是,这种方法的计算复杂度较高,适用范围也比较狭窄。
(2)奇异值分解法奇异值分解法是一种较广泛使用的计算广义逆矩阵的方法。
该方法的基本思想是,将A进行奇异值分解,得到A = UΣVT,然后对Σ进行逆运算,得到Σ+,最后通过A+ = VΣ+UT,就可以得到广义逆矩阵A+。
(3)正交交替投影法正交交替投影法是一种可以解决较大规模矩阵计算问题的方法。
该方法的基本思想是,通过Von Neumann展开,将广义逆矩阵的计算转化为一个正交投影问题,然后利用正交的性质以及平衡收敛的原理,不断迭代求解,最终得到广义逆矩阵A+。
三、广义逆矩阵的意义广义逆矩阵作为一种重要的矩阵理论工具,具有许多重要的应用意义,下面我们对其进行简单的介绍:(1)最小二乘法在数据处理的过程中,经常会出现数据不完备或者存在噪声的情况。
r语言求矩阵的广义逆程序

r语言求矩阵的广义逆程序
# R语言求矩阵的广义逆程序。
广义逆矩阵(也称为伪逆矩阵)是矩阵论中的一个重要概念,它在统计学、机器学习和工程学等领域都有广泛的应用。
在R语言中,我们可以使用`MASS`包中的`ginv`函数来求解矩阵的广义逆。
首先,我们需要安装`MASS`包(如果尚未安装),然后加载该包:
R.
install.packages("MASS")。
library(MASS)。
接下来,我们可以使用`ginv`函数来计算矩阵的广义逆。
假设我们有一个矩阵A:
R.
A <matrix(c(1, 2, 3, 4), nrow = 2, byrow = TRUE)。
我们可以使用`ginv`函数来计算A的广义逆:
R.
A_ginv <ginv(A)。
现在,`A_ginv`就是矩阵A的广义逆。
我们可以打印出
`A_ginv`的值:
R.
print(A_ginv)。
这样就可以得到矩阵A的广义逆的数值表示。
除了`MASS`包中的`ginv`函数,R语言中还有其他一些包和函数可以用来求解矩阵的广义逆,比如`pracma`包中的`pinv`函数。
根据具体的需求和背景,选择合适的方法来求解矩阵的广义逆。
总之,R语言提供了丰富的工具和函数来进行矩阵计算,包括求解矩阵的广义逆。
通过这些工具,我们可以方便地进行矩阵运算和线性代数计算,为统计分析和机器学习提供了强大的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵是线性代数中的重要概念,广泛应用于各个领域。
而矩阵的广义逆和伪逆则是矩阵理论中的两个重要概念。
广义逆和伪逆提供了解决线性方程组无解、矩阵非满秩等问题的方法,对于矩阵求逆计算和最小二乘法等问题都具有重要的意义。
首先,我们来讨论矩阵的广义逆。
对于一个矩阵A,如果存在一个矩阵A+,使得AA+A=A+AA=A,那么A+就是A的广义逆。
广义逆的存在性是有条件的,对于满秩矩阵而言,它的广义逆就是它的逆矩阵;而对于非满秩矩阵,它不存在逆矩阵,但仍然可能存在广义逆。
广义逆的计算方法有很多种,例如Moore-Penrose广义逆、Drazin广义逆等。
广义逆的应用非常广泛,例如在最小二乘法中,求解具有多个解的线性方程组,求解线性回归等问题都可以通过广义逆得到解析解。
接下来,我们来讨论矩阵的伪逆。
对于一个矩阵A,如果存在一个矩阵A+,使得AA+A=A+AA=A,并且A+A+A+=A+,那么A+就是A的伪逆。
伪逆与广义逆的定义是有所区别的,伪逆要求除了满足广义逆的条件外,还要求伪逆自身也是广义逆。
伪逆的计算方法与广义逆类似,但是计算过程中要额外考虑伪逆自身的广义逆性质。
伪逆的应用非常多样化,它可以用于在矩阵不可逆的情况下解决线性方程组的问题,还可以用于用最小二乘法拟合非线性关系等。
对于机器学习和人工智能等领域来说,矩阵的伪逆是一个重要的工具,能够帮助我们处理各种复杂问题。
矩阵的广义逆和伪逆在实际问题中发挥了重要作用,它们能够帮助我们解决线性方程组无解、矩阵非满秩等问题。
广义逆的存在性是有条件的,对于满秩矩阵而言,它的广义逆就是它的逆矩阵;而对于非满秩矩阵,它不存在逆矩阵,但仍然可能存在广义逆。
广义逆的计算方法有很多种,例如Moore-Penrose广义逆、Drazin广义逆等。
通过广义逆,我们可以得到线性方程组的解析解,也可以用于最小二乘法的计算等。
而伪逆则是广义逆的更严格的要求,除了满足广义逆的条件外,它还要求伪逆自身也是广义逆。
伪逆的计算方法与广义逆类似,但是计算过程中要额外考虑伪逆自身的广义逆性质。
伪逆广泛应用于各种问题的求解中,特别是在病态问题和最小二乘问题中,由于广义逆对求解稳定性具有良好的性质而备受关注。
总结来说,矩阵的广义逆和伪逆是矩阵理论中的两个重要概念,它们的存在与否和计算方法直接影响到我们对矩阵的理解和应用。
广义逆和伪逆提供了解决线性方程组无解、矩阵非满秩等问题的方法,对于矩阵求逆计算和最小二乘问题等都具有重要的意义。
在实践中,我们需要根据具体问题选择合适的广义逆和伪逆计算方法,并结合实际应用场景灵活运用。