正激电路的几种磁芯复位方法

正激电路的几种磁芯复位方法
正激电路的几种磁芯复位方法

摘要:本文分析了正激电路的基本结构,并用不同的方法对正激电路拓补结构进行分类和比较,讨论了软开关技术在正激电路中的应用和发展前景,最后,通过比较,得出正激电路拓补结构的研究方向。

在各种间接直流变流电路中,正激DC/DC变换器具有电路拓补结构简单,输入输出电气隔离,电压升、降范围宽,易于多路输出等优点,因此被广泛应用于中小功率电源变换场合,尤其在供电电源要求低电压大电流的通讯和计算机系统中,正激电路更能显示其优势。但是在开关关断期间,高频变压器必须磁芯复位,以防变压器铁心饱和,因此必须采用专门的磁复位电路。正是由于磁复位技术的多样性,以及软开关技术的发展,导致正激电路拓补结构的多样性。随着电力电子技术的发展,各种新的正激电路拓补结构不断出现,不同的拓补结构已有二十余种。本文详细阐述了正激电路拓补结构的分类,结构比较,和应用场合,并且分析了软开关技术在正激电路中的应用。

典型的单开关正激电路如图1所示。

电路的简单工作过程为:开关管S开通后,变压器原边电压上正下负,根据同名端,负边电压也为上正下负,因此二极管D1导通,D2截止,电感电流逐渐增长;S关断后,二极管D2导通,D1截止,电感电流通过D2续流。变压器的励磁电流通过磁复位电路降为零,防止磁芯饱和。

?

图1 正激电路的原理图

3. 各种拓补结构的分类及比较

正激电路拓补结构多种多样,大致可以这样分类:根据驱动管子个数,可分为单管正激,双管正激;根据磁芯复位技术的不同,可分为辅助磁通绕组复位,LCD缓冲网络复位,RCD箝位复位,有源箝位复位;根据拓补结构的形式不同,可分为单个变换器和串、并组合变换器。

?

图2 双管正激电路原理图

单管正激在S关断后,开关管承受的电压高于电源电压,双管正激由于有两个开关管,每个开关管承受的关断电压只有单管的一半,因此电压应力大大减小。双管正激电路有很多有点:主管的电压应力小,电路简单,控制方便,电路的动态性能好,可靠性高,不存在桥臂直通,拓宽了电路的功率等级。但是与单管正激相比双管正激因为有两个管子,需要两套驱动装置,因此它的这些有点是以电路复杂性为代价的。

3.2 磁芯复位电路

目前,正激电路磁芯复位技术主要有:辅助磁通绕组复位,LCD箝位复位,RCD箝位复位,有源箝位复位。

辅助磁通绕组复位是一种传统的磁芯复位方法,电路原理图如图3所示,它增加了一个附加线圈,在开关管关断的时候,磁化能量通过辅助磁通绕组回馈到电源,磁化能量无损。但是变压器需要增加一附加线圈,绕制难度加大,同时体积也增大,而且,开关关断后,变压器的漏感将导致大的关断尖峰电压,需要附加抑止尖峰电压电路。占空比不能超过0.5,不适合大功率输出场合。

?

图3 辅助磁通绕组复位电路

RCD箝位复位电路原理图如图4所示。开关管关断后,磁化能量一部分转移到开关管并联电容Cs中,一部分消耗在箝位电阻R上。与辅助磁通绕组复位相比,RCD箝位复位电路结构简单,开关管关断电压箝位在Uc+Uin,不会出现尖峰电压,且占空比可以大于0.5,输入电压范围可以很宽。它的缺点是大部分磁化能量消耗在箝位电阻R中,因此适合于廉价、效率要求不太高的功率变换场合。

?

图4 RCD箝位复位电路

LCD缓冲网络复位电路原理图如图5所示。开关管关断后,磁化能量存储在箝位电容Cc中,开关管关断电压箝位在2Uin,Lc中能量无损地回馈到电源。LCD箝位复位电路结构简单,开关管关断电压箝位固定,避免了尖峰电压;而且不存在耗能元件,属于无损复位,提高了电路变换效率;而且电路地可靠性高,通过选取适合地箝位电路元件值,可以保证电路工作在较宽地负载范围内,且箝位电容Cc的电压值、电感Lc的电流峰值不改变。占空比最大为0.5,输入电压范围受限,因此适合于中等功率高效变换场合。

?

图5 LCD缓冲网络复位电路

目前正激变换器也趋向于使用软开关技术,但是开关器件的开通和关断并没有完全实现软开关,主开关和辅助开关没有同时实现软开关,或者其零电压开通和关断很大程度上依赖于电路参数和负载特性。

6. 预期的研究方向

目前,正激电路拓补结构的研究比较成熟,各种电路拓补结构似乎也很完备,因此它的一个发展方向就是顺应集成电路的发展,向少元件、少损耗、少EMI、小型化、轻型化的方向发展;另外,研制满足微电子系统的低电压、大电流要求的变换器,以及运用组合变换方式,研制满足高电压、大电流应用场合的高效、高可靠性变换器也是一个发展方向。

今天终于弄懂了PCB高速电路板设计的方法和技巧

[讨论]今天终于弄懂了PCB高速电路板设计的方法和技巧受益匪浅啊 电容, 最大功率, 技巧 高速电路设计技术阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,并且得到最大功率输出的一种工作状态。高速PCB布线时,为了防止信号的反射,要求线路的阻抗为50Ω。这是个大约的数字,一般规定同轴电缆基带50Ω,频带75Ω,对绞线则为100Ω,只是取整数而已,为了匹配方便。根据具体的电路分析采用并行AC端接,使用电阻和电容网络作为端接阻抗,端接电阻R要小于等于传输线阻抗Z0,电容C必须大于100pF,推荐使用0.1UF的多层陶瓷电容。电容有阻低频、通高频的作用,因此电阻R不是驱动源的直流负载,故这种端接方式无任何直流功耗。 串扰是指当信号在传输线上传播时,因电磁耦合对相邻的传输线产生不期望的电压噪声干扰。耦合分为容性耦合和感性耦合,过大的串扰可能引起电路的误触发,导致系统无法正常工作。根据串扰的一些特性,可以归纳出几种减小串扰的方法: 1、加大线间距,减小平行长度,必要时采用jog 方式布线。 2、高速信号线在满足条件的情况下,加入端接匹配可以减小或消除反射,从而减小串扰。 3、对于微带传输线和带状传输线,将走线高度限制在高于地线平面范围要求以内,可以显著减小串扰。 4、在布线空间允许的条件下,在串扰较严重的两条线之间插入一条地线,可以起到隔离的作用,从而减小串扰。传统的PCB设计由于缺乏高速分析和仿真指导,信号的质量无法得到保证,而且大部分问题必须等到制版测试后才能发现。这大大降低了设计的效率,提高了成本,在激烈的市场竞争下显然是不利的。于是针对高速PCB设计,业界人士提出了一种新的设计思路,成为“自上而下”的设计方法,经过多方面的方针分析和优化,避免了绝大部分可能产生的问题,节省了大量的时间,确保满足工程预算,产生高质量的印制板,避免繁琐而高耗的测试检错等。利用差分线传输数字信号就是高速数字电路中控制破坏信号完整性因素的一项有效措施。在印制电路板(PCB抄板)上的差分线,等效于工作在准TEM模的差分的微波集成传输线对。其中,位于PCB顶层或底层的差分线等效于耦合微带线,位于多层PCB内层的差分线,等效于宽边耦合带状线。数字信号在差分线上传输时是奇模传输方式,即正负两路信号的相位差是180,而噪声以共模的方式在一对差分线上耦合出现,在接受器中正负两路的电压或电流相减,从而可以获得信号消除共模噪声。而差分线对的低压幅或电流驱动输出实现了高速集成低功耗的要求。

电路连接的基本方式

电路连接的基本方式 【学习目标】 1.了解生活中一些电路的连接方式; 2.理解串、并联电路的特点,能够区分串、并联电路; 3.会连接简单的串并联电路; 4.能够根据实际要求设计串并联电路。 【要点梳理】 要点一、串联电路和并联电路 实物图和电路 图 电流路径只有一条通路 开关控制特点只断开S1三个灯泡都不亮串联电路中开关控制所有用电器,并且和开关 的位置没有关系。 只断开S2三个灯泡都不亮 只断开S3三个灯泡都不亮 电路工作特点摘下L1L2、L3不亮串联电路中,各个用电器互相影响,一个用电 器不能工作,其它用电器也不能工作。 摘下L2L1、L3不亮 摘下L3L1、L2不亮 实物图和电路 图 电流路径分干路和支路,A点是分流点,B点是会流点,有两条或以上路径 开关控制特点只断开S 所有的灯都不亮干路开关控制所有用电器,支路开关只控制某一支路 用电器。 只断开S1L1不亮 只断开S2L2不亮 只断开S3L3不亮 电路工作特点摘下L1L2、L3亮并联电路,各个用电器不互相影响,某一个用电器坏 了,其它支路用电器可以工作。 摘下L2L1、L3亮 摘下L3L1、L2亮 要点诠释:

电流流向法:电源正极→各用电器→电源负极,若途中不分流,则用电器串联;若电流在某一处分流,每条支路只有一个用电器,这些用电器并联;若每条支路不只一个用电器,这时电路有串有并,叫混联电路。 (1)断开法:去掉任意一个用电器,若另一个用电器也不工作,则这两个用电器串联;若另一个用电器不受影响,仍然工作,则这两个用电器为并联。 (2)节点法:在识别电路时,不论导线有多长,只要其间没有用电器或电源,则导线的两端点都可看成同一点,从而找出各用电器的共同点。 (3)观察结构法:将用电器接线柱编号,电流流入端为“首”电流流出端为“尾”,观察各用电器,若“首→尾→首→尾”连接为串联;若“首、首”,“尾、尾”相连,为并联。 (4)经验法:对实际看不到连接的电路,如路灯、家庭电路,可根据他们的某些特征判断连接情况。要点二、连接串联电路和并联电路 1.根据电路图连接实物图:对照电路图,从电源正极出发,逐个顺次地将实物图中的各元件连接起来即可。 (1)在电路图中任选一条单一的回路,并对照这个回路在实物图中将相应的元件连接好。 (2)对照电路图,把所选回路以外的元件分别补连到实物图的相应位置,在连入回路以外的元件时,要找出电路中电流的分流点和会合点,将回路以外的元件连接在两点之间。这里要特别注意实物图中元件的连接顺序必须与电路图中各元件的顺序一致。 2.根据实物图连接电路图:要用规定的电路符号代替实物,按照实物的连接方式画出规范的电路图。(1)电路图中各元件摆放的位置尽量与实物图中各元件位置相对应,这样便于检查; (2)各电路元件摆放的位置要均匀、美观; (3)交叉连接的导线,一定要在连接处画一个“黑点”。 要点诠释: (1)连接电路时应注意:①画好电路图;②按一定顺序;③接线过程开关是断开的;④避免电源短路。(2)并联电路连接的方法通常有先干路后支路;先选定一条支路完整连接,再连接其他支路。 (3)干路开关控制整个电路,支路开关只控制该支路。 要点三、生活中的电路 1.生活中的串联电路:用来装饰店堂、居室、烘托欢乐气氛的彩色小灯泡多数是串联。 2.生活中的并联电路:装点天安门等高大建筑物上的成千上万只灯泡是并联的,家庭中各用电器都是并联的,街道两旁的路灯是并联的,竞赛时的抢答器的电路是并联的,电冰箱中的灯泡和发动机之间是并联的。 3.家庭电路图可简化成下图所示:电路中的灯泡、电视机、台灯以及小彩灯的整体是并联方式接在电路中的,灯泡和开关是串联,单个小彩灯是串联。 【典型例题】 类型一、串联电路与并联电路 1.在如图所示的电路中,闭合开关S,小灯泡L1、L2并联的是() 【思路点拨】两灯泡首尾相连在电源两端是串联,如果并联,即让灯泡的两端分别连在一起,结合电路图选择合适的开关组合,组成题目要求的灯泡连接方式。 【答案】A 【解析】A、图中闭合开关S,小灯泡L1、L2并列连接,为并联电路,符合题意; BCD、图中闭合开关S,电流只有一条路径,为串联电路,只是改变了开关的连接位置,不影响电路的性质,不合题意。

故障电路与动态电路 练习(一)

一、基础概念 1、故障电路 初中物理电学故障只有几类:短路(包括电源短路和局部用电器短路);断路;电流、电压表正负接反;电压表串接等等 2、短路、断路的实质 我们可以认为“短路”的用电器实质就是电阻很小,相当于一根导线,“断路”的用电器实质就是电流无法通过相当于断开的电键 3、常用到的重要方法与步骤 a、 b、 c、 4、短路与断路的通常表现 a、电路断路产生的结果是电路不通。直接表现出来的主要现象为: (1)用电器不工作; (2)电流表无示数; (3)电压表与电路中的任一用电器并联,示数为零; (4)电压表与断开的两端联接,示数接近电源电压; b、电路短路产生的结果是电路仍通,直接表现出来的主要现象为: (1)未短路的灯泡仍亮; (2)被路短的灯泡不亮; (3)电流表有示数; (4)电压表可能有示数(与电压表并联的电路无短路); (5)电压表可能示数为零(与电压表并联的电路被短路); 二、例题 例2. 如右图所示,闭合电键K,两个灯泡都不亮,电流表指针几 乎不动,而电压表指针有明显偏转,该电路的故障可能是() A. 电流表坏了或未接好 B. 从a经过L1到b的电路中有断路 C. L2灯丝断或灯座未接通 D. 电流表和L1、L2都坏了 例3. 如右图所示电路L1发光,L2、L3不亮,A1有读数,A2没有读 数,则产生的故障应是(只有一处有故障)() A. 灯泡L1断路 B. 灯泡L2断路 C. 灯泡L2短路 D. 灯泡L3短路 三、习题训练 1、L1和L2灯串联,电压表测L1灯两端的电压,电流表测电路中的电流。当开关S闭合,两表均有示数,过一会儿发现电压表示数突然变小,电流表示数突然变大,下列故障判断可能

(完整版)判断电路的连接方式

一、辨别串、并联电路: “擦来擦去法”:擦掉任意一个用电器,若其它用电器也不工作,则这这些用电器串联; 若其它用电器不受影响仍然工作则这用电器为并联. 1.简单正规的电路图的判断: 2.形变类的电路图的判断: 3.开关变化引起电路图的变化判断: 例1:在图中,当闭合开关时,灯泡为:() A. 串联 B. 并联后与串联 C. 并联 D. 串联后与并联 解析:假设把灯拆除,当闭合开关S1、S2时,电流由电源正极 流出经a点、开关S1到达c点,在c点分为两股,一股流过到达d点,另一股流过经 到达d点,最后在d点汇合成一股流回电源负极,都能正常工作;同理拆除 后,其余两盏灯均能正常工作,因此是并联的。所以答案为C。 二、有电表类的电路辨析: 如果电路中有电流表或电压表,则可以去掉它们。去掉的方法为:电压表所在位置视为断路(因电压表内阻很大,几乎无电流通过---相当于开路);电流表所在位置用导线连接起来(因电流表内阻很小,电阻可视为零---相当于一根导线)。 例2:请分析下图中电路的连接方式。

解析:将电压表“擦除”,用导线代替电流表,则电路的等效图为: · 这样很方便的判断电路的连接方式了。 三、判断电流表的测量对象: 1. 断开电流表,用电器因断路不能工作 例3:如图,试判断电流表分别测量哪些灯泡的电流。 解析:当断开A3时,L3断路,故A3测的是L3的电流。 当断开A2时,L2、L3均断路,故A2测的是L2、L3并联的总电流。 当断开A1时,L1、L2、L3全都断路,故A1测的是L1、L2、L3三灯并联的总电流。 2. 断开电流表,用电器因短路不能工作 例4:如图所示的电路,当开关闭合时,电流表的示数分别为和,则通过灯的电流分别为多少? 解析:首先判断出三个灯泡是并联的,再依次断开各电流表判断其所测电流。当断开A1时,三灯断路,故A1测的是三灯并联的总电流。 当断开A2时,如下图,L1、L2被短路,故A2测的是L1、L2两灯并联的电流。 当断开A3时,如下图,L2、L3被短路,故A3测的是L2、L3两灯并联的电流。 所以 解得

初中物理电路动态分析和电路故障分析专题

电路动态分析和电路故障分析 电路动态分析 知识精要 一、什么是动态电路问题? 动态电路是指当电路中的电阻、电键等发生变化时,会引起电路中的电流、电压等电学物理量发生变化的现象。 在初中物理中,一般会有以下两种原因: 1滑动变阻器的滑片P的位置的变化引起电路中电学物理量的变化。 2电键的断开或闭合引起电路中电学物理量的变化。 二、动态电路问题的解题思路什么? 1、对滑动变阻器的滑片P的位置的变化引起电路中电学物理量的变化问题,方法: ①明确电路(电压表直接去掉,电流表看做导线,简化电路,明确电阻或用电器的串并联关系); ②判断准各电流表、电压表的测量对象(每个电表分别测的是谁的电压和电流); ③滑动变阻器的滑片P向某个方向滑动后,使电路的总电阻发生了怎样的变化; ④再根据欧姆定律判断电流、电压的变化。(注意串、并联电路电流、电压关系的运用)。 2、对电键的断开或闭合引起电路中电学物理量的变化问题,方法: ①明确电键断开和闭合是分别是什么电路; ②画出等效电路(电压表直接去掉,简化电路); ③明确电键断开和闭合时各电流表、电压表的测量对象; ④再根据欧姆定律判断电流、电压的变化。(注意串、并联电路电流、电压关系的运用)。 三、动态电路问题的题型有哪些? 第一种类型:滑动变阻器的滑片P的位置的变化引起电路中电学物理量的变化。 1、串联电路中滑动变阻器的滑片P的位置的变化引起的变化问题。 2、并联电路中滑动变阻器的滑片P的位置的变化引起的变化问题。 第二种类型:电键的断开或闭合引起电路中电学物理量的变化。 1、串联电路中电键的断开或闭合引起的变化问题。 2、并联电路中开关的断开或闭合引起的变化问题。 第三种类型:电学物理量的差值、比值、乘积、变化量等问题。 1、串联电路中电学物理量的差值、比值、乘积、变化量等问题。 2、并联电路中电学物理量的差值、比值、乘积、变化量等问题。 题目精解 一、滑动变阻器的滑片P的位置的变化引起电路中电学物理量的变化 1.串联电路中滑动变阻器的滑片P的位置的变化引起的变化 [例1]如图1,是典型的伏安法测电阻的实验电路图,当滑片P向左移动时,请你判断A表和V表的

初中物理电路设计的解题技巧.学生版

电路设计的解题技巧 知识互联网 思路导航 电路设计的解题技巧 1.先排布用电器连接关系和位置 1)单一用电器 2)两个用电器 要判断串联还是并联的关系, 方法如下: a)串联:要求同时工作、同时不工作; 而且一个不工作, 另一个也不能工作. b)并联:两个用电器可以独立工作, 互不影响. 3)三个或者三个以上的用电器 a)判断串联还是并联的关系, 方法见上. b)判断用电器在支路上还是干路上:若此用电器不工作其他用电器都不能工作的话, 这 个用电器在干路上; 若此用电器不工作的时候, 其他用电器仍可以工作的, 这个用 电器在支路上.

2. 再排布开关的位置和连接关系 1) 判断支路开关还是干路开关 a) 若开关断开, 干路、支路所有用电器都不工作了, 说明是干路开关. b) 若开关可以单独控制其中某一个用电器, 对其他用电器没有影响, 说明是支路开关. 2) 判断多个开关之间是串联还是并联 a) 开关串联:多条件同时满足(一个条件就是一个开关), 也叫“一票否决制”. b) 开关并联:只要满足任何一个条件, 也叫“一票通过制”. 3) 单刀多掷开关、双刀双掷开关 【例1】 下列文具中, 通常情况下属于绝缘体的是( ) A .铅笔芯 B .塑料笔杆 C .金属小刀 D .不锈钢尺 【例2】 下列物体通常情况下都属于绝缘体的一组是( ) A .汽油和盐水 B .塑料和陶瓷 C .人体和大地 D .黄铜和石墨 例题精讲 模块一 电荷与电流的形成

【例3】定向移动形成电流. 物理学中规定定向移动的方向为电流的方向. 【例4】判断: 1. 闭合的电路中有电流, 就一定有正电荷发生定向移动( ) 2. 只有正电荷定向移动才能形成电流( ) 3. 金属导体中的电流是自由电子定向移动形成的( ) 4. 金属导体中的电流方向与自由电子定向移动方向相反( ) 5. 如果正负电荷同时做定向移动, 则不会形成电流( ) 【例5】电源是将能转化成能的装置; 用电器是将能转化成能的装置. 【例6】如图甲为一实物电路连接图, 如图乙是某同学所画出其对应的电路图, 正确的是( ) 【例7】只改动一根导线, 让两盏灯并联发光. 例题精讲 模块二电路识别 L1 S S L1 L2S L1 L2 S S L1 + - L2 A B C D 图甲图乙

RCD钳位电路设计

0 引言 单端反激式开关电源具有结构简单、输入输出电气隔离、电压升/降范围宽、易于多路输出、可靠性高、造价低等优点,广泛应用于小功率场合。然而,由于漏感影响,反激变换器功率开关管关断时将引起电压尖峰,必须用钳位电路加以抑制。由于 RCD钳位电路比有源钳位电路更简洁且易实现,因而在小功率变换场合RCD钳位更有实用价值。 1 漏感抑制 变压器的漏感是不可消除的,但可以通过合理的电路设计和绕制使之减小。设计和绕制是否合理,对漏感的影响是很明显的。采用合理的方法,可将漏感控制在初级电感的2%左右。 设计时应综合变压器磁芯的选择和初级匝数的确定,尽量使初级绕组可紧密绕满磁芯骨架一层或多层。绕制时绕线要尽量分布得紧凑、均匀,这样线圈和磁路空间上更接近垂直关系,耦合效果更好。初级和次级绕线也要尽量靠得紧密。 2 RCD钳位电路参数设计 2.1 变压器等效模型 图1为实际变压器的等效电路,励磁电感同理想变压器并联,漏感同励磁电感串联。励磁电感能量可通过理想变压器耦合到副边,而漏感因为不耦合,能量不能传递到副边,如果不采取措施,漏感将通过寄生电容释放能量,引起电路电压过冲和振荡,影响电路工作性能,还会引起EMI问题,严重时会烧毁器件,为抑制其影响,可在变压器初级并联无源RCD钳位电路,其拓扑如图2所示。

2.2 钳位电路工作原理 引入RCD钳位电路,目的是消耗漏感能量,但不能消耗主励磁电感能量,否则会降低电路效率。要做到这点必须对RC参数进行优化设计,下面分析其工作原理: 当S1关断时,漏感Lk释能,D导通,C上电压瞬间充上去,然后D截止,C通过R放电。

1)若C值较大,C上电压缓慢上升,副边反激过冲小,变压器能量不能迅速传递到副边,见图3(a); 2)若C值特别大,电压峰值小于副边反射电压,则钳位电容上电压将一直保持在副边反射电压附近,即钳位电阻变为死负载,一直在消耗磁芯能量,见图 3(h); 3)若RC值太小,C上电压很快会降到副边反射电压,故在St开通前,钳位电阻只将成为反激变换器的死负载,消耗变压器的能量,降低效率,见图3(c): 4)如果RC值取得比较合适,使到S1开通时,C上电压放到接近副边反射电压,到下次导通时,C上能量恰好可以释放完,见图3(d),这种情况钳位效果较好,但电容峰值电压大,器件应力高。 第 2)和第3)种方式是不允许的,而第1)种方式电压变化缓慢,能量不能被迅速传递,第4)种方式电压峰值大,器件应力大。可折衷处理,在第4)种方式基础上增大电容,降低电压峰值,同时调节R,,使到S1开通时,C上电压放到接近副边反射电压,之后RC继续放电至S1下次开通,如图3(e)所示。 2.3 参数设计 S1 关断时,Lk释能给C充电,R阻值较大,可近似认为Lk与C发生串联谐振,谐振周期为TLC=2π、LkC,经过1/4谐振周期,电感电流反向,D截止, 这段时间很短。由于D存在反向恢复,电路还会有一个衰减振荡过程,而且是低损的,时间极为短暂,因此叮以忽略其影响。总之,C充电时间是很短的,相对于整个开关周期,可以不考虑。 对于理想的钳位电路工作方式,见图3(e)。S1关断时,漏感释能,电容快速充电至峰值Vcmax,之后RC放电。由于充电过程非常短,可假设RC放电过程持续整个开关周期。 RC值的确定需按最小输入电压,最大负载,即最大占空比条件工作选取,否则,随着D的增大,副边导通时间也会增加,钳位电容电压波形会出现平台,钳位电路将消耗主励磁电感能量。 对图3(c)工作方式,峰值电压太大,现考虑降低Vcmax。Vcmax只有最小值限 制,必须大于副边反射电压 可做线性化处理来设定Vcmax,如图4所示,由几何关系得

RCD钳位电路分析及参数设计[001]

4 RCD钳位电路 4.1基本原理分析 由于变压器漏感的存在,反激变换器在开关管关断瞬间会产生很大的尖峰电压,使得开关管承受较高的电压应力,甚至可能导致开关管损坏。因此,为确保反激变换器安全可靠工作,必须引入钳位电路吸收漏感能量。钳位电路可分为有源和无源钳位电路两类,其中无源钳位电路因不需控制和驱动电路而被广泛应用。在无源钳位电路中,RCD 钳位电路因结构简单、体积小、成本低而倍受青睐。 RCD钳位电路在吸收漏感能量的时候,同时也会吸收变压器中的一部分储能,所以RCD钳位电路参数的选择,以及能耗到底为多少,想要确定这些情况会变得比较复杂。对其做详细的分析是非常必要的,因为它关系到开关管上的尖峰电压,从而影响到开关管的选择,进而会影响到EMI,并且,RCD电路设计不当,会对效率造成影响,而过多的能量损耗又会带来温升问题,所以说RCD钳位电路可以说是很重要的部分。 图9

图10 图11

反激变换器RCD 钳位电路的能量转移过程可分成5 阶段,详细分析如下:1)t0-t1阶段。开关管T1导通,二极管D1、D2因反偏而截止,钳位电容C1通过电阻R1释放能量,电容两端电压UC下降;同时,输入电压Ui加在变压器原边电感LP两端,原边电感电流ip线性上升,其储能随着增加,直到t1时刻,开关管T1关断,ip增加到最大值。此阶段变换器一次侧的能量转移等效电路如图2(a)所示。 2)t1-t2阶段。从t1时刻开始,开关管进入关断过程,流过开关管的电流id 开始减小并快速下降到零;同时,此阶段二极管D2仍未导通,而流过变压器原边的电流IP首先给漏源寄生电容Cds恒流充电(因LP很大),UDS快速上升(寄生电容Cds较小),变压器原边电感储存能量的很小一部份转移到Cds;直到t2时刻,UDS 上升到Ui+Uf(Uf为变压器副边向原边的反馈电压)。此阶段变换器一次侧的能量转移等效电路如图2(b)所示,钳位电容C1继续通过电阻R1释放能量。 3)t2-t3阶段。t2时刻,UDS上升到Ui+Uf后,D2开始导通,变压器原边的能量耦合到副边,并开始向负载传输能量。由于变换器为稳压输出,则由变压器副边反馈到原边的电压Uf=n(Uo+UD)(Uo为输出电压,UD为二极管D2导通压降,n为变压器的变比)可等效为一个电压源。但由于变压器不可避免存在漏感,因此,变压器原边可等效为一电压源Uf和漏感Llk串联,继续向Cds充电。直到t3时刻,UDS上升到Ui+UCV(UCV的意义如图1(b)所示),此阶段结束。此阶段变换器一次侧的能量转移等效电路如图2(c)所示,钳位电容C1依然通过电阻R1释放能量。由于t1-t3阶段持续时间很短,可以认为该阶段变压器原边峰值电流IP对电容Cds恒流充电。 4)t3-t4阶段。t3时刻,UDS 上升到Ui+UCV,D1开始导通,等效的反馈电压源Uf与变压器漏感串联开始向钳位电容C1充电,因此漏源电压继续缓慢上升(由于C1的容量通常比Cds大很多),流过回路的电流开始下降,一直到t4时刻,变压器原边漏感电流ip下降到0,二极管D1关断,开关管漏源电压上升到最大值Ui+UCP(UCP的意义如图1(b)所示)。此阶段变换器一次侧的能量转移等效电路如图2(d)所示。 5)t4-t5阶段。t4时刻,二极管D1已关断,但由于开关管漏源寄生电容Cds 的电压UDS=Ui+UCP>Ui,将有一反向电压加在变压器原边两端,因此,Cds与变压器原边励磁电感Ls及其漏感Llk开始谐振,其能量转移等效电路如图2(e)所示。谐振期间,开关管的漏源电压UDS逐渐下降,储存于Cds中的能量的一部份将转移到副边,另一部分能量返回输入电源,直到t5时刻谐振结束时,漏源电压UDS稳定在Ui+Uf。由于此阶段二极管D1关断,钳位电容C1通过电阻R1放电,其电压UC 将下降。结合图1和图2进行分析可知:如果反馈电压大于钳位电容电压,则在整个开关关断期间,回馈电压一直在向RCD钳位电路提供能量,而该能量最终将被

电路故障和动态电路分析题目

C.电阻R 可能发生断路 D .电压表V 2损坏 5、如图所示的电路,闭合开关,观察发现灯泡 L i 亮、L 2不亮。调节变阻器滑 片P,灯泡L i 的亮度发生变化,但灯泡 L 2始终不亮。出现这一现象的原因可 能是() A. 灯泡L 2灯丝断了 B .滑动变阻器短路了 可编辑修改 电路故障分析: 在探究串并联电路电压的规律的实验中,会遇见多种实验故障,最典型的有如下两种,一是电路元件短路 [用电压 表测],二是电路断路[用电流表测] 1、如图所示,闭合开关 S,电路正常工作。过了一段时间,灯泡 L 熄灭,两只 电表的示数都变大。则下列判断正确的是( ) A ?电阻R 断路 B ?电阻R 短路 C.灯泡L 短路 D .灯泡L 断路 2、某同学在探究串联电路电流规律的实验中,按图接好电路,闭合开关后,发现灯 L i 、L 2 都不发光,电流表示数为零。他用电压表分别接到电流表、灯 L i 、灯L 2两端测量电压,发 现电流表、灯L i 两端电压均为零,灯 L 2两端电压不为零。电路的故障可能是( ) A.电流表断路 B.灯L 1 断路 C. 灯L 2断路 D.灯L 2短路 3、如图所示,电源电压不变,两只电表均完好。开关 有一个灯泡出现了故障,则可能是( ) A. 电压表指针发生偏转,灯泡 L i 短路 B. 电压表指针发 生偏转,灯泡 L i 断路 C. 电流表指针发 生偏转,灯泡 L 2短路 D.电流表指针发生偏转,灯泡 L 2断路 4、如图所示,电源电压不变,闭合开关,电路正常工作,一段时间后发现,其中一个电压表 的示数变大,故障原因可能是( ) A.电阻R 可能发生短路 B .电灯L 可能发生断路

“电路的两种基本连接方式”教学设计2培训讲学

此文档收集于网络,如有侵权请联系网站删除 物理教学设计 电路的两种基本连接方式:串联和并联一、设计思路: (一)教材分析: 这一节课探究的是串联电路和并联电路的初步知 识,是在上节课所学“电流和电路”的基础上,进一步了解 实际电路连接的两种基本方式;这两种方式有何特点和应用; 又如何画出这两种电路连接方式的电路图等方面的内容,为 后面学生亲自到实验室去动手组装这两种电路,并探讨两种 电路更多的特点提供初步认识,所以这节课的教学目标就是 使学生弄懂以下几个方面的内容: 1.知道串联电路和并联电路的概念。 2.初步了解串联电路和并联电路的一些特点。 3 .学会由电路的实物连接图画电路图。 其中,由电路的实物连接图画电路图是本节课的重点和难点,也是新的课程标准中要求学生必须掌握的一门技能。 (二)学生分析:

学生根据前面所学的内容及生活经验,已对电路的知识有所认识和了解,但不同的学生,对电路认识和了 解的程度不同,要掌握电路的有关知识,从抽象到具体还得有个过程。如果采用传统的课堂教学法,学生听起 本人制作了一个PPT教学课件,到多媒体电教室或电脑室来进行 本节课教学,既实现了教学目标,突破了重点 难点,又提高了学生的学习兴趣。 (三)课件简介: 这个课件包含了这堂课的四个主要内容:串联电路的有关知识、并联电路的有关知识、如何画电路图以及两种电路在实 际中的应用;还有学习这些内容必须了解的有关知识,即上节 课所学的“电流、电路及电路图的概念、各种元件的符号” 等,所以先设置了“复习旧知” 这项内容;最后为了巩固本节 所学知识,还设置了“本课小结”和“作业”这两项内容。 由于教师在电脑室或多媒体电教室所做的演示实验可见度不大,所以在讲串联电路和并联电路的有关知识时安排 了几段录相和动画来展示相关内容,以使从未接触过电路的学 生也能感受到这两种电路的特点和实际应 用。冋时达到使学生通过观看录相和动画后,对今后的学习产 生浓厚的兴趣和强烈的学习欲望的情感目标。 又因为画电路图是这堂课的重点和难点,所以在课 此文档仅供学习和交流

印制电路板手工制作方法与技巧

印制电路板手工制作方法与技巧 印制电路板(PCB板)是电子制作的必备材料,既起到元器件的固定安装作用,又起到元器件相互之间的电路连接作用,也就是说只要有元器件就一定需要PCB板,而PCB板不可能从市场上直接选购,一定要根据电子制作(电子产品)的不同需要单独生产制作。产品生产中的PCB板通常要委托专业生产厂家制作,但我们在科研、产品试制、业余制作、学生的毕设、课设大赛、创新制作等环节中只需一两块PCB板时,委托专业厂家制作,不仅时间长(一周左右或更长),费用高(百元以上),而且不便随时修改。电子制作中如何用最短时间(几十分钟)、最少费用(每平方厘米几分钱)、最简单的办法(一学就会)加工制作出精美的PCB板呢?下面向读者介绍几种简便易行的方法。 PCB板分单面板、双面板、多层板几种,在业余条件下只能实现单面和双面板印制板的制作。制作通常要经过如下几个环节: 设计准备覆铜板转移图形腐蚀钻孔表面处理 一、设计 把电路原理图设计成印制电路布线图,可在计算机上通过多种PCB设计软件实现。简单电路如可直接用手工布线完成,具体操作方法、要求、技巧等内容将在今后文章中详细介绍。 二、准备覆铜板 覆铜板是制作PCB板的材料,分单面覆铜板和双面覆铜板,铜箔板(厚度有18um、35um、55um和70um几种)通过专用胶热压到PCB基板上(基板厚度有0.2、0.5….1、1.6等几种规格),如图1所示。 制作中PCB板厚度根据制作需求选择,常用规格为1.6nm,铜箔厚度尽量选择薄的覆铜板,这样腐蚀速度快、侧蚀少,适合高精度PCB板的制作。覆铜板外形尺寸的大小与形状完全根据制作需求而定,可用剪板机、剪刀、锯等工具实现。 三、转印图形(或描绘) 将设计好的PCB布线图(包括焊盘与导线)转印(或描绘)到覆铜板上。本环节要求线条清晰、无断线、无砂眼、无短接,且耐水洗、抗腐蚀。 方法一:手工描绘法 (1)将设计好的PCB图按1:1画好,然后通过复写纸印到覆铜板上。

反激式变换器中RCD箝位电路的设计分析

反激式变换器中RCD箝位电路的设计 在反激式变换器中,箝位 电路采用RCD 形式具有 结构简单,成本低廉等优 点,本文详细论述了该种 电路的设计方法。 Abstract: The application of RCD circuit in converter can realize low cost and low parts cout .How to design that circuit is introduced. Keyword: RCD clamp, Flyback converter 一、引言 反激式变换器具有低成本,体积小,易于实现 多路输出等优点,因此被广泛应用于中小功率 (≤100w)的电源中。 但是,由于变压器漏感的存在及其它分布参数的影响,反激式变换器在开关管关断瞬间会产生很大的尖峰电压,这个尖峰电压严重危胁着开关管的正常工作,必须采取措施对其进行抑制,目前,有很多种方法可以实现这个目的,其中的RCD箝位法以其结构简单,成本低廉的特点而得以广泛应用,但是,由于RCD箝位电路的箝位电压会随着负载的变化而变化,如果参数设计不合理,该电路或者会降低系统的效率,或者会达不到箝位要求而使开关管损坏,本文介绍了反激式变换器中的RCD箝位电路的基本原理,给出了一套较为实用的设计方法。 二、反激式变换器中RCD箝位电路的工作原理 图为RCD 箝位电路在反激式变换器中的应用。 图中:V clamp:箝位电容两端间的电压 V in:输入电压 V D:开关管漏极电压 L p:初级绕组的电感量 L lk:初级绕组的漏感量 该图中RCD箝位电路的工作原理是:当开关管导通时,能量存储在Lp和Llk中,当开关管关闭时,Lp中的能量将转移到副边输出,但漏感Llk中的能量将不会传递到副边。如果没

PCB设计电路中的布线方法和技巧

PCB设计电路中的布线方法和技巧 PCB又被称为印刷电路板(Printed Circuit Board),它可以实现电子元器件间的线路连接和功能实现,也是电源电路设计中重要的组成部分。 多层板布线: 高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须,也是降低干扰的有效手段。在PCB Layout阶段,合理的选择一定层数的印制板尺寸,能充分利用中间层来设置屏蔽,更好地实现就近接地,并有效地降低寄生电感和缩短信号的传输长度,同时还能大幅度地降低信号的交叉干扰等,所有这些方法都对高频电路的可靠性有利。同种材料时,四层板要比双面板的噪声低20dB。但是,同时也存在一个问题,PCB半层数越高,制造工艺越复杂,单位成本也就越高,这就要求在进行PCB Layout时,除了选择合适的层数的PCB板,还需要进行合理的元器件布局规划,并采用正确的布线规则来完成设计。 1、高速电子器件管脚间的引线弯折越少越好 高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。 2、高频电路器件管脚间的引线层间交替越少越好 所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。一个过孔可带来约0.5pF的分布电容,减少过孔数能显着提高速度和减少数据出错的可能性。 3、高频电路器件管脚间的引线越短越好 信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易耦合到靠近它的元器件上去,所以对于诸如信号的时钟、晶振、DDR的数据、LVDS线、USB 线、HDMI线等高频信号线都是要求尽可能的走线越短越好。 4、注意信号线近距离平行走线引入的“串扰” 高频电路布线要注意信号线近距离平行走线所引入的“串扰”,串扰是指没有直接连接的

反激式电源中MOSFET的钳位电路

反激式电源中MOSFET 的钳位电路 首页 | 登录 | 现在注册 [2010年10月08 日] 技术文库|业界新闻|产品新知|应用实例|论坛 |在线研讨会|深度报道|基础知识库 整流/滤波|线性转换与控制|开关转换与控制|驱动/输出|数字电源设计|电源系统测试 分类: 关键字: 高级搜索|帮助 技术白皮书 尝试E源搜索,享受专业体验数字电源设计 电源系统首页 / 数字电源设计 上网日期: 2010年09月17日 有[ 2 ]名读者发表评论 申请免费杂志 订阅 收藏 打印版 关键字: 反激式电源 钳位电路 AC/DC 输出功率100W 以下的AC/DC 电源通常都采用反激式拓扑结构。这种电源成本较低,使用一个控制器就能提供多路输出跟踪,因此受到设计师们的青睐,且已成为元件数少的AC/DC 转换器的标准设计结构。不过,反激式电源的一个缺点是会对初级开关元件产生高应力。 反激式拓扑结构的工作原理,是在电源导通期间将能量储存在变压器中,在关断期间再将这些能量传递到输出。反激式变压器由一个磁芯上的两个或多个耦合绕组构成,激磁能量在被传递到次级之前,一直储存在磁芯 的串联气隙间。实际上,绕组之间的耦合从不会达到完美匹配,并且不是所有的能量都通过该气隙进行传 精品文章 工程师,别让自己成了导体 飞思卡尔于欧洲计量大会演示家庭能源网关参考平台 电子产品热设计要注意的N 个问题 更多精品文章

递。少量的能源储存在绕组内和绕组之间,这部分能量被称为变压器漏感。开关断开后,漏感能量不会传递到次级,而是在变压器初级绕组和开关之间产生高压尖峰。此外,还会在断开的开关和初级绕组的等效电容与变压器的漏感之间,产生高频振铃(图1)。 图1:漏感产生的漏极节点开关瞬态 如果该尖峰的峰值电压超过开关元件(通常为功率MOSFET)的击穿电压,就会导致破坏性故障。此外,漏极节点的高幅振铃还会产生大量EMI 。对于输出功率在约2W 以上的电源来说,可以使用钳位电路来安全耗散漏感能量,达到控制MOSFET 电压尖峰的目的。 电源技术基础知识专区 移动设备中的功率管理 - 节能理论 - 第一部分 移动设备中的功率管理 - 节能理论 - 第二部分 区分数字电位器的性能 简化电源测试的SPST 双极性功率开关 保护测试测量设备的隔离技巧

初中物理电路故障与动态电路分析附答案

一、初中物理电路故障分析 1、电压表示数为零的情况 A 电压表并联的用电器发生短路 (一灯亮一灯不亮,电流表有示数) B 电压表串联的用电器发生断路 (两灯都不亮,电流表无示数) C 电压表故障或与电压表连线发生断路 (两灯都亮,电流表有示数) 2、电压表示数等于电源电压的情况 A 电压表测量的用电器发生断路 (两灯都不亮,电流表无示数) 注:此时不能把电压表看成断路,而把它看成是一个阻值很大的电阻同时会显示电压示数的用电器,由于电压表阻值太大,根据串联电路分压作用,电压表两端几乎分到电源的全部电压,电路中虽有电流但是很微弱,不足以使电流表指针发生偏转,也不足以使灯泡发光。如果题目中出现“约”、“几乎”的字眼时,我们就锁定这种情况。 B 电路中旁边用电器发生短路 (一灯亮一灯不亮,电流表有示数) 总结:如图,两灯泡串联的电路中,一般出现的故障问题都是发生在用电器上,所以通常都有这样一个前提条件已知电路中只有一处故障,且只发生在灯泡L1或L2上。 若两灯泡都不亮,则一定是某个灯泡发生了断路,如果电压表此时有示数,则一定是和电压表并联的灯泡发生了断路,如果电压表无示数,则一定是和电压表串联的灯泡发生了断路。此两种情况电流表均无示数。

是和电压表串联的灯泡发生了短路,如果电压表此时无示数,则一定是和电压表并联的灯泡发生了短路。此两种情况电流表均有示数 3、用电压表电流表排查电路故障 A、用电压表判断电路故障,重要结论:电压表有示数说明和电压表串联的线路正常,和电压表并联的线路有故障。若电路中只有一处故障则电压表无示数时,和电压表并联的线路一定正常。 电源电压为6V,用电压表测得:Uab=0;Ued=6v;Ucd=0;Uac=6v,灯泡不亮,哪里出现故障? 解题思路:先找有示数的,Ued=6v说明从e点到电源正极线路完好,从d点到电源负极线路完好;Uac=6v说明从a点到电源正极线路完好,从c点到电源负极线路完好,这样将故障锁定在ac之间了,由Uab=0,说明bc之间出现故障,故电阻出现断路。 B、用电流表测电路的通断,有示数说明和电流表串联的电路是通路;电流表没有示数则有两种情况:1断路 2 电路中电流太小,不足以使电流表指针发生偏转(例如:电压表与电流表串联,见上面2A) 互动训练 1、如图1是测定小灯泡两端的电压和通过小灯泡的电流的电路图。如果某同学在 操作的过程中对两只电表的量程选择是正确的,但不慎将两电表的位置对调了,则 闭合开关S后( D ) A、电流表、电压表均损坏; B、电流表损坏,电压表示数为零; C、电流表有示数,电压表示数为零; D、电流表示数为零,电压表有示数。 2、如图2所示,下列说法正确的是( A ) A、电流表的连接是正确的; B、电压表的连接是正确的; C、两表的连接都是错误的; D、电流表将会被烧坏。 3、如图3所示,两只电灯L1和L2并联在电路中,当S1和S2都闭合时,电路中可 能出现( A ) A、电流表被烧坏; B、电压表被烧坏; C、两只灯会被烧坏; D、两只灯都能发光。 4、如图4所示,当开关闭合后两灯均不亮,电流表无示数,电压表示数等于电源 电压,则电路发生的故障是( C ) A、电源接线接触不良; B、电流表损坏,断路,其他元件完好; C、灯L1发生灯丝烧断; D、灯L2发生短路,其他元件完好。

电路设计方法与技巧 (2)

电路设计方法与技巧 根据题目条件或要求设计出合理的电路,是初中物理中的一个重点与难点问题。解决这类问题的时一定要抓住外部连接情况及对应现象,逐步画出可能的电路结构,最后综合考虑找到满足题中所有现象的电路,得出符合题意的答案。解决此类问题的关键是:(1)先根据条件判断用电器的连接关系,确定开关的作用;(2)然后根据开关是否控制某个用电器,判断开关的位置,既要注意到开关对某个电路的影响,又要注意到对整体的影响。 题1.有一商品仓库,后门进货、前门取货,现有红绿两只灯泡和一个电铃、一个电池组、两个开关,还有若干条导线。请你为仓库值班人员设计一个电路:电铃响同时红灯亮,表示取货人在前门按开关;电铃响同时绿灯亮,表示送货人在后门按开关。要求在方框内画出设计的电路图。图中要标明红灯、绿灯及对应的前门、后门的开关。 解析:根据题意可知:1.绿灯与红灯的工作情况互不影响,各自均可独立工作,可知这两盏灯应该是并联的;2.前门开关与红灯在一支路上,后门开关与绿灯在另一支路上;3.无论红灯亮或是绿灯亮时,电铃均响,可知电铃应该在干路上。综合以上信息,设计电路图如图1如示。 题2.某控制电路的一个封闭部件上有A、B、C三个接线柱和灯泡、电铃各一只,如图2所示。(1)用导线连接A、C时,灯亮铃不响:(2)连接A、B时,铃响灯不亮;(3)连接B、C时,灯不亮铃也不响,请你根据上述情况画出这个部件的电路图。 解析:解答本题时要循序渐进,逐步分析,最后归纳总结得出答案。根据现象(1)可知此盒内必有电源,且与灯泡通过A、C构成闭合电路,与之相符的电路如图3甲、乙。

根据现象(2)可知电源与电铃通过A.B构成闭合电路,与之相符的电路如图3丙、丁所示。 综合现象(1)(2)的可能电路图可知,电源必与A柱相连,则符合(1)(2)两个要求的电路如图4所示。 现象(3)灯不亮铃不响,表明连接B、C所构成的回路中没有电源。综合上述分析,整理得图5便是符合题意的正确答案。 题3.如图6所示是一个盒子,a、b是面板上的两个窗口,a内有红灯泡,b内有绿灯泡,有3节干电池串联供电。只闭合S1,红灯、绿灯都亮,只闭合S2,两灯都不亮,两个开关都闭合,只是绿灯亮,请画出盒内电路的电路图。 解析:根据题意可以首先获取以下的信息: (1)只闭合S1,红灯、绿灯均亮,这说明S1能同时控制红、绿两灯,可能的电路如图7甲、乙所示; (2)只闭合S2两灯都不亮,说明灯与S2不能单独构成通路;

高效反激吸收电路具体设计方法

一种有效的反激钳位电路设计方法 [日期:2006-6-27] 来源:电源技术应用作者:姜德来,张晓峰,吕征宇[字体:大中小] 0 引言 单端反激式开关电源具有结构简单、输入输出电气隔离、电压升/降范围宽、易于多路输出、可靠性高、造价低等优点,广泛应用于小功率场合。然而,由于漏感影响,反激变换器功率开关管关断时将引起电压尖峰,必须用钳位电路加以抑制。由于RCD钳位电路比有源钳位电路更简洁且易实现,因而在小功率变换场合RCD钳位更有实用价值。 1 漏感抑制 变压器的漏感是不可消除的,但可以通过合理的电路设计和绕制使之减小。设计和绕制是否合理,对漏感的影响是很明显的。采用合理的方法,可将漏感控制在初级电感的2%左右。 设计时应综合变压器磁芯的选择和初级匝数的确定,尽量使初级绕组可紧密绕满磁芯骨架一层或多层。绕制时绕线要尽量分布得紧凑、均匀,这样线圈和磁路空间上更接近垂直关系,耦合效果更好。初级和次级绕线也要尽量靠得紧密。 2 RCD钳位电路参数设计 2.1 变压器等效模型 图1为实际变压器的等效电路,励磁电感同理想变压器并联,漏感同励磁电感串联。励磁电感能量可通过理想变压器耦合到副边,而漏感因为不耦合,能量不能传递到副边,如果不采取措施,漏感将通过寄生电容释放能量,引起电路电压过冲和振荡,影响电路工作性能,还会引起EMI问题,严重时会烧毁器件,为抑制其影响,可在变压器初级并联无源RCD钳位电路,其拓扑如图2所示。

2.2 钳位电路工作原理 引入RCD钳位电路,目的是消耗漏感能量,但不能消耗主励磁电感能量,否则会降低电路效率。要做到这点必须对RC参数进行优化设计,下面分析其工作原理:当S1关断时,漏感Lk释能,D导通,C上电压瞬间充上去,然后D截止,C通过R放 电。

电路设计方法与技巧

电路设计方法与技巧 DIV.MyFav_1294121772733 P.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1294121772733 LI.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1294121772733 DIV.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1294121772733 P.MsoHeader{BORDER-RIGHT: medium none; PADDING-RIGHT: 0cm; BORDER-TOP: medium none; PADDING-LEFT: 0cm; FONT-SIZE: 9pt; PADDING-BOTTOM: 0cm; MARGIN: 0cm 0cm 0pt; BORDER-LEFT: medium none; LAYOUT-GRID-MODE: char; PADDING-TOP: 0cm; BORDER-BOTTOM: medium none; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: center}DIV.MyFav_1294121772733 LI.MsoHeader{BORDER-RIGHT: medium none; PADDING-RIGHT: 0cm; BORDER-TOP: medium none; PADDING-LEFT: 0cm;

相关文档
最新文档