直角三角形的边角关系

直角三角形的边角关系
直角三角形的边角关系

第一章直角三角形的边角关系

一、本章知识要点:

1、锐角三角函数的概念;

2、解直角三角形。

二、本章教材分析:

(一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:

1.从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。

2.教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2,接着以等腰直角三角形为例,说明当一个锐角确定为45°时,其对边与斜边之比就确定为,同时也说明了锐角的度数变化了,由30°变为45°后,其对边与斜边

的比值也随之变化了,由到。这样就突出了直角三角形中边与角之间的相互关系。

3.从特殊角的例子得到的结论是否也适用于一般角度的情况呢?教材中应用了相似三角形的性质证明了:当直角三角形的一个锐角取任意一个固定值时,那么这个角的对边与斜边之比的值仍是一个固定的值,从而得出了正弦函数和余弦函数的定义,同理也可得出正切、余切函数的定义。

4.在最开始给出三角函数符号时,应该把正确的读法和写法加强练习,使学生熟练掌

握。同时要强调三角函数的实质是比值。防止学生产生sinX=60°,sinX=等错误,要讲清sinA不是sin*A而是一个整体。如果学生产生类似的错误,应引导学生重新复习三角函数定义。

5.在总结规律的基础上,要求学生对特殊角的函数值要记准、记牢,再通过有关的练习加以巩固。在解三角形的过程中,需要会求一般锐角的三角函数值,并会由已知的三角函数值求对应的角度。为此,教材中安排介绍了查三角函数表的方法,学生在查表过程中容易出错,尤其是在查余弦、余切表时,特别是在查表前,应适当讲一下锐角三角函数值的变化规律。

6.从定义总结同角三角函数关系式:在学生熟练掌握定义的基础上,师生共同来发现如下的同角三角函数关系式,培养学生分析问题、总结规律、发现问题的习惯和能力。

例如:

sinA=sinB=

cosA=cosB=

tanA= tanB=

cotA= cotB=

有哪些函数的值相等呢?如下:

sinA=cosB

∵∠A+∠B=90° cos(90°-B)=sinB

∠A=90°-∠B tan(90°-B)=cotB

∴sin(90°-∠B)=cosB cot(90°-B)=tanB

关于∠A可由学生自己推出。

又有: tanA·cotA= tanA= cotA=

∵ sinA=

cosA=

四个三角函数的基本性质:根据特殊角的三角函数值和查三角函数可以得出:

①正弦、正切的函数值是随着角度的增大而增大,正弦函数(在0°90°)

sin0°=0, sin90°=1,正切函数(在0°90°)tan0°, tan90°不存在。

②余弦、余切的函数值是随角度的增大而减小,余弦函数(0°90°) cos0°=1,

cos90°=0,cos0°不存在,cot90°=1.

为了巩固这一部分知识,应该通过一些基本练习题使学生达到熟练掌握的目的。

练习题如下:

填空:

(1)知:α+β=90°,sinα=则 cosβ=——.

(2)已知:sin27=a,则cos63°=___.

(3)已知:tan42°=c, 则cot48°=__.

(4)计算:tan48°+——.

(5)已知A为锐角,化简:——.

(6)已知O°<α<45°,化简= ——.

(7)化简:= ——.

(8)已知:cosα=0.1756,sinβ=0.1756 则锐角α与β之间的关系是__。

(9)在ΔABC中,∠C=90°,如果45°

(10)已知ΔABC中∠C=90°,0°<∠B<45°,那么(sin A–cos A)与 (sin B-cos B)中是正数的是。

(11)ΔABC中,∠C=90°,a、b、c为∠A、∠B、∠C的对边,当b=10时,sinA=m(m 为常数),当b=100时,a、b、c各扩大10倍, sinA=___.

(12)ΔABC中,∠B=30°,∠C=45°,AB=8cm,则AC=___,

判断下列各题是否正确(α角为锐角)

(1)sinα=cos42°,则α=42° ()

(2)cotα=tan17°,则α=83° ()

(3)cos(90°-α)=sin36°,α=36° ( )

(4)tan(90°-α)=cot53°,α=37° ( )

(5)sin40°+sin30°=sin70° ( )

(6)( )

不查表判断下列各式的正负:

(1)cot75° ( ) (2)cos42°-cos46° ( )

(3)cos46°-cos47° ( ) (4)tan75°-cot14° ( )

(5)sin50°-cos50° ( )(6)tan50°-sin50° ( )

(二)、解直角三角形

1、解直角三角形是本章重点,正确地选择关系式,先将已知和未知联系起来,然后进行正确地计算是解直角三角形的关键。

2、解直角三角形的依据有如下公式:

① 三边之间关系:

② 角之间关系:∠A+∠B=90°

③ 边角之间关系:sinA=cosB=;cosA=sinB=;

tanA=cotB=; cotA=tanB=。

3、直角三角形可解的条件:在两个锐角和三边这五个条件中,必须已知两个独立的条件且两个条件中至少有一个条件是边。根据可解的条件的分类,可有如下类型及其解法:

a已知两边:两条直角边(a , b )解法:c=

tanA=求∠A

∠B=90°-∠A

斜边和一条直角边( a , c ) 解法: b=

用si nA=求A

∠B=90°-∠A

b一边和一锐角一条直角边和锐角A: ∠B=90°-∠A

b=

c=

斜边C和锐角A: ∠B=90°-∠A

a=c sinA

b=

4、解直角三角形的应用

(1)、解决实际中提出的问题:如测量、航海、工程技术和物理学中的有

关距离、高度、角度的计算,应用中要根据题意,准确画出图形,从图中确

定要解的直角三角形,解直角三角形时,充分使用原始数据,正确选择关系

式,使运算尽可能简便、准确。

(2)、在解决实际问题中,仰角俯角;坡度坡角水平距离,垂直距离等概

念,一定要在弄清概念的含意的基础上,辨别出图中这些概念的位置。

(3)、如果图中无直角三角形,可适当地作垂线,转化为直角三角形,间

接地解出。

(4)、在解一些较复杂图形时,注意借助于几何图形的性质,可使得问题

得到解决。

练习题如下:

1、填空:

(1)等腰三角形腰长为10cm,顶角为120°,则三角形底边长为,高为,

面积为。

(2)正三角形边长为2a,则一边上的高线长为。

(3)正三角形一边上中线长为3,则边长为。

(4)正三角形一边长为6,则正三角形外接圆半径R= 。

(5) RtΔABC中,∠C=90°,a、b、c分别为A、B、C的对边,a+c=4+,∠A=60°,则R= ,C= 。

2、梯形的两底边分别为15cm,5cm,两底角分别为60°,30°。求梯形的

周长。

3、如图电视塔建立在20米高的小山顶上,从水面上一点D测得塔顶A的仰

角为60°,测得塔基B的仰角为30°,求塔高AB。

4、在ΔABC中,∠C=90°,a=10,ΔABC的面积SΔ=,求角A及边长

C。

5、如图,ΔABC中CD⊥AB于D,AD=BC=4,cotA=,

求:(1)AC与BD的长;(2)∠B的度数。

6、在ΔABC中,∠C=90°,如果cotA=,求

的值。

7、在ΔABC中,∠C=90°,如果AB=2,tanA=,求的值。

三角形中的边角关系

三角形中的边角关系 一、选择题(每小题3分,共30分) 1、下列长度的各组线段中,能组成三角形的是( ) A .1,1,2 B .3,7,11 C .6,8,9 D .3,3,6 2、下列语句中,不是命题的是( ) A .两点之间线段最短 B .对顶角相等 C .不是对顶角不相等 D .过直线AB 外一点P 作直线AB 的垂线 3、下列命题中,假命题是( ) A .如果|a|=a ,则a ≥0 B .如果 ,那么a=b 或a=-b C .如果ab>0,则a>0,b>0 D .若,则a 是一个负数 4、若△ABC 的三个内角满足关系式∠B +∠C=3∠A ,则这个三角形( ) A .一定有一个内角为45° B .一定有一个内角为60° C .一定是直角三角形 D .一定是钝角三角形 5、三角形的一个外角大于相邻的一个内角,则它是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定 6、下列命题中正确的是( ) A .三角形可分为斜三角形、直角三角形和锐角三角形 B .等腰三角形任一个内角都有可能是钝角或直角 C .三角形外角一定是钝角 D .△ABC 中,如果∠A>∠B>∠C ,那么∠A>60°,∠C<60° 7、若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比为( ) A .3:2:1 B .5:4:3 C .3:4:5 D .1:2:3 8、设三角形三边之长分别为3,8,1-2a ,则a 的取值范围为( ) A .-62 9、如图9,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( ) A.2cm 2 B.1cm 2 C.12cm 2 D.14 cm 2 图9 图10 10、已知:如图10,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边的高,则∠DBC=( ) A .10° B .18° C .20° D .30° F E C A

三角形中的边角关系

三角形中的边角关系 1、 A+B+C=π , 2C = 2 π-( 2A + 2 B ) 2、 sinC=sin(A+B), cosC=-cos(A+B) sin 2 C =cos( 2 A +2 B ), cos 2 C =sin( 2 A + 2 B ), tan 2 C =cot( 2 A + 2 B ) sin2C=-sin2(A+B), cos2C=cos2(A+B) 3、 三角形面积公式 S ?= 12 absinC= 12 bcsinA= 12 casinB p= 12 (a+b+c ) 4、 正弦定理sin sin sin a b c A B C = = =2R sinA ?sinB ? sinC ?a = b ? c sinA= 2a R ,sinB=2b R ,sinC= 2c R a=2RsinA , b=2RsinB , c=2RsinC 适用类型:AAS →S ,SSA →A (2,1,0解) 5、余弦定理2222cos a b c bc A =+- 2 2 2 co s 2b c a A b c +-= 适用类型:SSS →A ,SAS →S ,AAS →S(2,1,0解) 5、 判定三角形是锐角直角钝角三角形 设c 为三角形的最大边 2c <2a +2b ??ABC 是锐角三角形 2 c =2 a +2 b ??ABC 是直角三角形 2 c >2 a +2 b ??ABC 是钝角三角形 6、 tanA+tanB+tanC=tanAtanBtanC cotAcotB+cotBcotC+cotCcotA=1 tan 2 A tan 2 B +tan 2 B tan 2 C +tan 2 C tan 2 A =1 7* 、若三角形三内角成等差数列,则B=3 π 三边成等差数列,则0

直角三角形的边角关系(习题及答案)

直角三角形的边角关系(习题) ?要点回顾 1.默写特殊角的三角函数值: 2.三角函数值的大小只与角度的有关,跟所在的三角形 放缩(大小)没有关系. 3.计算一个角的三角函数值,通常把这个角放在 中研究,常利用或两种方式进行处理.?例题示范 例:如图,在△ABC 中,∠B=37°,∠C=67.5°,AB=10,求BC 的长.(结果精确到0.1,参考数据:sin37°≈0.6,cos37°≈0.8,tan67.5°≈2.41) 如图,过点A 作AD⊥BC 于点D, 由题意AB=10,∠B=37°,∠C=67.5° 在Rt△ABD 中,AB=10,∠B=37°, sin B =AD ,cos B = BD AB AB ∴AD=6,BD=8 在Rt△ADC 中,AD=6,∠C=67.5°,tan C = AD CD ∴CD=2.49 ∴BC=BD+CD=8+2.49=10.49≈10.5 即BC 的长约为10.5. ①得出结论; ②解直角三角形; ③准备条件. 1

2 ?巩固练习 1.在Rt△ABC 中,如果各边长度都扩大为原来的2 倍,那么锐 角A 的正弦值() A.扩大2 倍B.缩小2 倍C.没有变化D.不确定2.在Rt△ABC 中,若∠C=90°,AC=3,BC=5,则sin A 的值为 () A. 3 5 B. 4 5 C. 5 34 34 D. 3 34 34 3.在△ABC 中,∠A,∠B 均为锐角,且 ?1 ?2 sin A - + - cos B ? ?? = 0 ,则这个三角形是()A.等腰三角形B.直角三角形 C.钝角三角形D.等边三角形 4.若∠A 为锐角,且cos A 的值大于 1 ,则∠A() 2 A.大于30°B.小于30° C.大于60°D.小于60° 5.已知β为锐角,且 3 A.30?≤β≤60? C.30?≤β< 60? ≤tan β< ,则β的取值范围是() B.30?<β≤60? D.β< 30? 6.如图,在矩形ABCD 中,DE⊥AC,垂足为E,设∠ADE=α, 若cosα= 3 ,AB=4,则AD 的长为() 5 A.3 B. 16 3 C. 20 3 D. 16 5 第6 题图第7 题图 7.如图,在菱形ABCD 中,DE⊥AB,若cos A = 3 ,BE=2,则 5 tan∠DBE= . 2 3 2 3 3

中考数学直角三角形的边角关系提高练习题压轴题训练含答案

中考数学直角三角形的边角关系提高练习题压轴题训练含答案 一、直角三角形的边角关系 1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数 值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36) 【答案】6.4米 【解析】 解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°. ∴DC=BC?cos30°=3 =?=米, 639 ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF中, BG=GF?tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米 首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高 2.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N, ∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题: (1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM; (2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明; (3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.

三角形边角中的边角关系一对一辅导讲义

教学目标 1、了解三角形的概念,掌握分类思想。 2、经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵。 3、让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三 边关系在现实生活中的实际价值。 重点、难点 了解三角形的分类,弄清三角形三边关系;对两边之差小于第三边的领悟 考点及考试要求 考点1:三角形边与边的关系 考点2:三角形角与角的关系 考点3:三角形边与角的关系 教 学 内 容 第一课时 三角形边角中的边角关系知识梳理 1.以下列各组线段长为边,能组成三角形的是( ) A .1cm ,2cm ,4 cm B .8 crn ,6cm ,4cm C .12 cm ,5 cm ,6 cm D .2 cm ,3 cm ,6 cm 2.等腰三角形的两边长分别为5 cm 和10 cm ,则此三角形的周长是( ) A .15cm B .20cm C .25 cm D .20 cm 或25 cm 3.如图,四边形ABCD 中,AB=3,BC=6,AC=35,AD=2,∠D=90○, 求CD 的长和四边形 ABCD 的面积. 4.三角形中,最多有一个锐角,至少有_____个锐角,最多有______个钝角(或直角),三角形外角 中,最多有______个钝角,最多有______个锐角. 5.两根木棒的长分别为7cm 和10cm ,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长xcm 的范围是__________ 三角形边角性质主要的有: 1. 边与边的关系是:任意两边和大于第三边,任意两边差小于第三边,反过来要使三条线段能组成 一个三角形,必须任意两条线段的和都大于第三条线段,即最长边必须小于其他两边和。用式子表示如下: 知识梳理 课前检测

(完整word版)沪科版八年级数学三角形中的边角关系

三角形中的边角关系 知识点 一、 边 1、基本概念(三角形的定义、 边、 顶点、 △、 Rt △) 2、按边对三角形的分类:≠?? ?????? 不等边三角形三角形腰底等腰三角形等边三角形 ☆3、三边关系: (1)任意两边之和大于第三边 (2)任意两边之差小于第三边 验证:两条较短边之和与第三边的关系 二、角 1、基本概念( 内角、外角、∠ ) 2、按角对三角形的分类:???? ???? 锐角三角形斜三角形三角形钝角三角形直角三角形 3、三角形的内角和 (1)三角形三个内角和等于180° (2)直角三角形的两个锐角互余 (3)一个三角形最多3个锐角,最多1个钝角,最多1个直角,最少2个锐角) 三、线 1、中线 (1) 定义 (2) 重心 (3)中线是线段 (4) 表述方法 2、高线 (1)定义 (2)垂心 (3)高是线段,垂线是直线 (4)表示方法 (5)3种高的画法 3、角平分线 (1)定义 (2)外心 (3)画法 (4)表示方法 四、数三角形的个数 (1)图形的形成过程 (2)三角形的大小顺序 (3)按某一条边沿着一定的方向 (4)固定一个顶点,按照一定的顺序不断变换另外两个顶点去数 基础练习 1、图中有____个三角形;其中以AB 为边的三角形有______________;含∠ACB 的三角形有______________;在△BOC 中,OC 的对角是___________;∠OCB 的对边是___________. 2、用集合来表示“用边长把三角形分类”,下面集合正确的是( ) A B C D 3、若三角形的三边长分别为3,4,x -1,则x 的取值范围是_________________________

(完整)直角三角形的边角关系知识点,推荐文档

直角三角形的边角关系知识考点 知识讲解: 1.锐角三角函数的概念 如图,在ABC 中,∠C 为直角,则锐角A 的各三角 函数的定义如下: (1)角A 的正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 即sinA =a c (2)角A 的余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA , 即cosA =b c (3)角A 的正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作t an A , 即t an A =a b (4)角A 的余切:锐角A 的邻边与对边的比叫做∠A 的余切,记作 c ot A , 即c ot A =b a 2.直角三角形中的边角关系 (1)三边之间的关系:a 2+b 2=c 2 (2)锐角之间的关系:A +B =90° (3)边角之间的关系: sinA =cosB =a c , cosA =sinB =b c t an A =c ot B =a b , cot A =t an B =b a

3.三角函数的关系 (1)同角的三角函数的关系 1)平方关系:sinA 2+cosA 2=1 2)倒数关系:t an A·c ot A =1 3)商的关系:t an A =sinA cosA ,c ot A =cosA sinA (2)互为余角的函数之间的关系 sin(90°-A)=cosA , cos(90°-A)=sinA t an (90°-A)=c ot A , cot (90°-A)=t an A 4.一些特殊角的三角函数值 0° 30° 45° 60° 90° sin α 0 1 cos α 1 0 tan α 0 1 ----- cot α ----- 1

三角形边角关系培优训练经典

三角内角与外角典型题 1、①求下图各角度数之和。 ②如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F=__________. 2、如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE、CF相交于点G,∠BDC=140°,∠BGC=110°。求∠A的 度数。 3、如图△ABC中, ∠BAD=∠CBE=∠ACF, ∠ABC=50°,∠ACB=62°,求∠DFE的大小。 4、△ABC中,AD、BE、CF是角平分线,交点是点G,GH⊥BC。求证:∠BGD=∠CGH. A

2 1 P C B A 5.如图,已知CE 为△ABC 的外角∠ACD 的角平分线,CE 交BA 的延长线于点E , 求证:∠BAC > ∠B 6、△ABC 中,∠A: ∠ABC: ∠ACB=3:4:5,CE 是AB 上的高,∠BHC=135° 求证:BD ⊥AC 7、三角形的最大角与最小角之比是4:1,则最小内角的取值范围是多少? 8.若三角形的三个外角的比是2:3:4,则这个三角形的最大内角的度数是 . 9.如图,在△ABC 中,∠ABC = ∠ACB ,∠A = 40°,P 是△ABC 内一点,且∠1 = ∠2.则∠BPC =________。 10.锐角三角形ABC 中,3条高相交于点H ,若∠BAC =70°,则∠BHC =_______

11、如图,BE平分∠ABD交CD于F,CE平分∠ACD交AB于G,AB、CD交于点O,且∠A=48?,∠D=46?,则∠BEC= 。 12.已知△ABC中,∠ABC和∠ACB的平分线交于点O,则∠BOC一定() A.小于直角 B.等于直角 C.大于直角 D.不能确定 13. △ABC的三条外角平分线所在直线相交构成的三角形是() A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定 14、若?ABC的三个内角满足3∠A>5∠B,3∠C<2∠B,则三角形是() A.钝角三角形B.直角三角形C.锐角三角形D.都有可能

直角三角形的边角关系专题复习

直角三角形的边角关系测试题 1、在Rt △ABC 中,∠A=90o,AB=6,AC=8,则sinB= ,cosC= 2、在△ABC 中,∠B=90o,2 1 cos =C ,则∠C= 】 3、在△ABC 中,∠C=90o,∠A=60o,AC=34,则BC= 4、在△ABC 中,∠C=90o,BC=3,AB=32,则∠A= 5、在△ABC 中,∠C=90o,若tanA= 2 1 ,则sinA= 6、在△ABC 中,若∠C=90o,∠A=45o,则tanA+sinB= 7、如图1,在△ABC 中,∠C=90o,∠B=30o,AD 是∠BAC 的平分线。已知AB=34, 那么AD= # 8、正方形ABCD 中,AM 平分∠BAC 交BC 于M ,AB=2,BM=1,则cos ∠MAC= 9、如果3)20tan(3=?+α,那么锐角α= 10、某校数学课外活动小组的同学测量英雄纪念碑的高,如图2所示,测得的数据为: BC=42m ,倾斜角o?=30α,测得测角仪高CD=1.5m ,则AB= 。(结果保留四位 有效数字) 11、在△ABC 中,∠C=90o,BC=5,AC=12,则tanA=( ) A 、512 B 、125 C 、513 D 、13 5 12、在Rt △ABC 中,∠C=90o,5 3 cos = A ,AC=6cm ,则BC=( )cm A 、8 B 、 C 、 D 、 ! 13、菱形ABCD 的对角线AC=10cm ,BD=6cm ,那么=2tan A ( ) A 、53 B 、54 C 、34 343 D 、34345 14、已知:如图3,梯形ABCD 中,AD 63864238242 3 23 1,23-1,2 3 --3253500 )3sin 2(3tan 2=-+-A B 5 米 353103?+?+?-?45tan 30cos 230tan 330sin ?-?+? -? - ?60tan 45tan 30sin 160cos 45cos 2226—1为平地 上一幢建筑物与铁塔图,题6-2图为其示意图.建筑物AB 与铁塔CD 都垂直于底面,BD=30m ,在A 点测得D 点的俯角为45°,测得C 点的仰角为60°.求铁塔CD 的高度. … 图6-1 图6-2 图2 a C A E B ) 图1 B C D A 图3 图4 图5

直角三角形的边角关系(含答案)

学生做题前请先回答以下问题 问题1:在Rt△ABC中,∠C=90°,sinA=________,cosA=________,tanA=________. 问题2:在Rt△ABC中,∠C=90°,锐角A越大,正弦sinA______,余弦cosA______,正切tanA______. 问题3:默写特殊角的三角函数值: 问题4:计算一个角的三角函数值,通常把这个角放在____________中研究,常利用_________或__________两种方式进行处理. 直角三角形的边角关系 一、单选题(共14道,每道7分) 1.式子2cos30°-tan45°-的值是( ) A. B.0 C. D.2 答案:B 解题思路: 试题难度:三颗星知识点:特殊角的三角函数值 2.如果△ABC中,,则下列说法正确的是( ) A.△ABC是直角三角形 B.△ABC是等腰三角形 C.△ABC是等腰直角三角形 D.△ABC是锐角三角形

答案:A 解题思路: 试题难度:三颗星知识点:特殊角的三角函数值 3.已知为锐角,且,那么的取值范围是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:锐角三角函数的增减性 4.如图,在Rt△ABC中,tanB=,BC=,则AC等于( )

A.3 B.4 C. D.6 答案:A 解题思路: 试题难度:三颗星知识点:解直角三角形 5.在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于( ) A. B. C. D. 答案:A 解题思路:

试题难度:三颗星知识点:锐角三角函数的定义 6.在Rt△ABC中,∠C=90°,若AB=4,,则斜边上的高为( ) A. B. C. D. 答案:B 解题思路:

直角三角形的边角关系知识点

直角二角形的边角关系知识考点 知识讲解: 1.锐角三角函数的概念 如图,在ABC 中,/ C 为直角,则锐角 A 的各三角函 数的定义如下: (1)角A 的正弦:锐角A 的对边与斜边的比叫做/ A 的正弦,记作sinA , ⑵ 角A 的余弦:锐角A 的邻边与斜边的比叫做/ A 的余弦,记作 cosA , 口口 b 即 cosA = (3)角A 的正切:锐角A 的对边与邻边的比叫做/ A 的正切,记作tanA , 即 tanA =7 b (4) 角A 的余切:锐角A 的邻边与对边的比叫做/ A 的余切,记作cotA , 即 si nA

b 即cotA =- a 2.直角三角形中的边角关系

(1) 三边之间的关系:a 2 + b 2 = c 2 (2) 锐角之间的关系:A + B = 90° (3) 边角之间的关系: sinA = cosB = -, cosA = sinB =2 c c a b tanA = cotB = , cotA = tanB = 3. 三角函数的关系 (1) 同角的三角函数的关系 2) 倒数关系:tan A -c otA = 1 sinA cosA tanA = , cotA =. cosA st nA (2) 互为余角的函数之间的关系 sin(90 ° - A) = cosA , cos(90 ° - A) = sinA tan (90 ° — A) = cotA , cot (90 ° — A) = tanA 4. 一些特殊角的三角函数值 1) 平方关系:sinA 2 + cosA 2 = 1 3) 商的关系:

2020中考数学专题练习:三角形的边角关系 (含答案)

2020中考数学专题练习:三角形的边角关系 (含答案) 1.已知在△ABC中,∠A=70°-∠B,则∠C=() A.35° B.70° C.110° D.140° 2.已知如图1中的两个三角形全等,则角α的度数是() 图1 A.72° B.60° C.58° D.50° 3.如图2,∠A,∠1,∠2的大小关系是() A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1 图2 图3 4.王师傅用四根木条钉成一个四边形木架,如图3.要使这个木架不变形,他至少还要再钉上几根木条() A.0根B.1根C.2根D.3根 5.下列命题中,真命题的是() A.周长相等的锐角三角形都全等 B.周长相等的直角三角形都全等 C.周长相等的钝角三角形都全等 D.周长相等的等腰直角三角形都全等 6.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是() A B C D

7.不一定在三角形内部的线段是() A.三角形的角平分线B.三角形的中线 C.三角形的高D.三角形的中位线 8.用直尺和圆规作一个角的平分线的示意图如图3所示,则能说明∠AOC =∠BOC的依据是() A.SSS B.ASA C.AAS D.角平分线上的点到角两边的距离相等 图3 图4 9.如图4,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=________cm. 10.如图5,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE. 图5 11.如图6,点A,B,D,E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF. 图6

三角形边角关系教案

14.1 三角形中的边角关系(1) -------边的关系 1.三角形的概念 2.三角形的表示方法及分类 3.三角形三边之间的关系 1.了解三角形的概念,掌握分类思想。 2.经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵。 3.让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值。 三教学重难点: 1.重点:了解三角形的分类,弄清三角形三边关系 2.难点:对两边之差小于第三边的领悟 四教学准备: 1.教师准备:多媒体课件 2.学生准备:四根小木条 五课时安排: 一节课 六教学过程: (一)创设情境,探究新知 1.请同学们仔细观察一组图片,找出你熟悉的图形三角形,引入课题 我们在日常生活中几乎随处可见三角形,它简单、有趣,也十分有用。三角形可以帮助我们更好地认识周围的世界,可以帮助我们解决很多实际问题……从这一节课开始我们将学习三角形。 (二)合作交流,探究新知 你能画一个三角形吗? 三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形 3.自学指导: 认真看书67页的内容。注意三角形边的表示方法。 并思考下面问题: (1)知道三角形的顶点,边,角等概念,会用几何符号表示一个三角形; (2)会把三角形按边进行分类,知道每类三角形的特征;

(3)知道等腰三角形的腰,底边,顶角,底角等概念; 依次向学生介绍有关知识 4.巩固练习(多媒体展示) 5.合作探究三角形的三边关系 有这样的四根小棒(6cm、8cm、12cm、18cm)请你任意的取其中的三根,首尾连接,摆成三角形。 (1)有哪几种取法? (2)是不是任意三根都能摆出三角形?若不是,哪些可以?哪些不可以? (3)用三根什么样的小棒才能拼成三角形呢?你从中发现了什么? 小组活动:学生自主探索并合作交流满足怎样的数量关系的三根小棒能组成三角形; 我们可以发现这四根小棒中,如果较短的两根的和不大于最长的第三根,就不能组成三角形。 这就是说:三角形中任何两边的和大于第三边 三角形中任意两边的差与第三边有什么关系?你能根据上面的结论,利用不等式的性质加以说明吗? 三角形中任何两边的差小于第三边 6.讲解例题 例1 :例:一根木棒长为7,另一根木棒长为2,若要围成三角形,那么则第三根木棒长度应在什么范围呢? 解:设第三条边长为a cm,则 7-2<a<7+2 即5<a<9 结论:其它两边之差< 三角形的一边< 其它两边之和 例2:已知:等腰三角形周长为18cm,如果一边长等于4cm,求另两边的长? 解(1)设等腰三角形的底边长为4 cm,则腰长为x cm。根据题意,得 x+x+4=18 解方程,得 x=7

直角三角形的边角关系(含答案)

第十四章 直角三角形的边角关系 基础知识梳理 1.锐角三角函数. 在Rt △ABC 中,∠C 是直角,如图所示. (1)正切:∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tanA= A A ∠∠的对边 的邻边 . (2)正弦:∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sinA= A ∠的对边 邻边 . (3)余弦:∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA= A ∠的邻边 邻边 . (4)锐角三角函数:锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数. (5)锐角的正弦和余弦之间的关系. 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值. 即:如果∠A+∠B=90°,那么sinA=cos (90°-A )=cosB ;cosA=sin (?90?°-?A )?=sinB . (6)一些特殊角的三角函数值(如下表). (7)已知角度可利用科学计算器求得锐角三角函数值;同样,?已知三角函数值也可利用科学计算器求得角度的大小.

(8)三角函数值的变化规律. ①当角度在0°~90°间变化时,正弦值(正切值)随着角度的增大(或减小)而增大(或减小). ②当角度在0°~90°间变化时,余弦值随着角度的增大(或减小)而减小(?或增大).(9)同角三角函数的关系. ①sin2A+cos2A=1;②tanA=sin cos A A . 2.运用三角函数解直角三角形. 由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形.如图所示,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对 边分别为a,b,c. (1)三边之间的关系:a2+b2=c2(勾股定理). (2)锐角之间的关系:∠A+∠B=90°. (3)边角之间的关系:sinA=a c ,cosA= b c ,tanA= a b . 所以,在直角三角形中,只要知道除直角外的两个元素(其中至少有一个是边),?就可以求出其余三个未知元素. 解直角三角形的基本类型题解法如下表所示: (1)尽量使用原始数据,使计算更加准确; (2)不是解直角三角形的问题,添加合适的辅助线转化为解直角三角形的问题; (3)恰当使用方程或方程组的方法解决一些较复杂的解直角三角形的问题; (4)在选用三角函数式时,尽量做乘法,避免做除法,以使运算简便; (5)必要时画出图形,分析已知什么,求什么,它们在哪个三角形中,?应当选用什么关系式进行计算; (6)添加辅助线的过程应书写在解题过程中. 3.解直角三角形的实际问题. 解直角三角形的实际问题涉及到如下概念和术语. (1)坡度、坡角.

直角三角形的边角关系提高性测试卷(含答案)

直角三角形的边角关系提高题 一、选择题 1.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足.若AC =4,BC =3,则sin ∠ACD 的值为( ) A . 34 B .43 C .54 D .5 3 2.已知∠A +∠B =90°且cos A =51 ,则cos B 的值为( ) A .51 B .54 C .562 D .5 2 3.已知tan a =3 2 ,则锐角a 满足( ) A .0°<a <30° B .30°<a <45° C .45°<a <60° D .60°<a <90° 4.如图所示,在△ABC 中,AB =AC =5,BC =8,则tan C =( ) A .53 B .54 C .34 D .4 3 5.如图,从山顶A 望到地面C ,D 两点,测得它们的俯角分别是45°和30°,已知CD =100m ,点C 在BD 上,则山高AB 等于 ( ) A .100 m B .350m C .250m D .50(13+)m 6.已知楼房AB 高50 m ,如图,铁塔塔基距楼房房基间的水平距离BD =50 m ,塔高DC 为3 1 (350150+)m ,下列结论中,正确的是 ( ) A .由楼顶望塔顶仰角为60° B .由楼顶望塔基俯角为60° C .由楼顶望塔顶仰角为30° D .由楼顶望塔基俯角为30° 7.如图,水库大坝的横断面积为梯形,坝顶宽6米、坝高24米、斜坡AB 的坡角为45°, 斜坡CD 的坡度i =1∶2,则坝底AD 的长为 ( ) A .42米 B .(32430+)米 C .78米 D .(3830+)米 二、填空题 2.将cos21°、cos37°、sin41°、cos46°的值按由小到大的顺序排列是 . 6.如图,太阳光线与地面成60 角,一棵倾斜的大树与地面成30 角,这时测得 大树在地面上的影长为10m ,则大树的长约为 m .(保留2位有数字)

2020中考数学 几何专项突破:三角形的边角关系(含详解版)

2020中考数学几何专项突破 三角形的边角关系(含答案) 典例探究 例1 如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55°C.50°D.40° 例2 如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为() A.30° B.60° C.90° D.45° 例3 如果一个三角形的两边长分别为2和4,则第三边长可能是() A.2 B.4 C.6 D.8 巩固练习 1.下列命题中,错误的是: ( ) A.三角形两边之差小于第三边. B.三角形的外角和是360°.

C.三角形的一条中线能将三角形分成面积相等的两部分. D.等边三角形即是轴对称图形,又是中心对称图形. 2.下面四个结论中,正确的是() A. 三角形的三个内角中最多有一个锐角 B. 等腰三角形的底角一定大于顶角 C. 钝角三角形最多有一个锐角 D. 三角形的三条内角平分线都在三角形内 3.下列说法正确的是() 三角形的角平分线是射线。 B、三角形三条高都在三角形内。 三角形的三条角平分线有可能在三角形内,也可能在三角形外。 D、三角形三条中线相交于一点。 4.如图(1),用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整。若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何? (A) 5 (B) 6 (C) 7 (D) 10 。 5.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是 A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 等边三角形 6.已知a、b、c为三个正整数,如果a+b+c=12,那么以a、b、c为边能组成的三角形是: ①等腰三角形;②等边三角形;③直角三角形;④钝角三角形.以上符合条件的正确结论是.(只填序号) 7.如图,在中,,是的垂直平分线,交于点,交 于点.已知,则的度数为() A. B. C. D. 8.已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是() A.4cm B.5cm C.6cm D.13cm 9.下列长度的三条线段能组成三角形的是( ) A.1cm, 2cm, 3.5cm; B.4cm, 5cm, 9cm C.5cm,8cm, 15cm D.6cm,8cm, 9cm Rt ABC △ο 90 = ∠B ED AC AC D BC Eο 10 = ∠BAE C ∠ ο 30ο 40ο 50ο 60 A D C E B

三角形中的边角关系测试卷

《三角形中的边角关系》测试卷 一、选择题 1、三角形的三边分别为3,1-2a,8,则a 的取值范围是( ) -2 2、下列不属于命题的是( ) A.两直线平行,同位角相等; B.如果x 2=y 2 ,则x =y ; C.过C 点作CD ∥EF ; D.不相等的角就不是对顶角。 3、如果三角形的一个内角等于其它两个内角的差,这个三角形是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D. 斜三角形 4、四条线段的长度分别为4、6、8、10,可以组成三角形的组数为( ) .3 5、如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( ) A .2 B .3 C .4 D . 5 6、一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α等于( ) A .30° B .45° C .60° D .75° 7、图(五)为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为 4 21 平方公分,则此方格纸的面积为多少平方公分? A . 11 B . 12 C . 13 D . 14 8、已知如图,∠A=32°,∠B=45°,∠C=38°则ΔDFE 等于( ) ° ° ° ° 9、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°, 那么∠2的度数是( ) A .32° B .58° C .68° D .60° 10、已知:如图,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边的高,则∠DBC=( ) A .10° B .18° C .20° D .30° 11、已知等腰三角形的一个内角为040,则这个等腰三角形的顶角为 ( ) A.0 40 B.0 100 C.0 40或0 100 D.0 70或0 50 二、填空题 A B 30° 45° α 1 2

三角形边角关系培优训练

三角形三边关系、内角练习题一、三边关系 1.已知 ABC中,周长为12,b=1 2 (a+c),则b为 2.一边长为5cm,另一边长为10cm的等腰三角形的周长是 3.有木条4根,长度为14厘米,10厘米,8厘米,6厘米,选其中三根组成三角形,则选择的种数有种 4.三角形两边长为2cm和7cm,第三边长为奇数,那么这个三角形的周长是 cm 5.一条线段的长为a,若要使3a—l,4a+1,12-a这三条线段组成一个三角形,求a的取值范围? 6.设△ABC的三边a , b ,c 的长度均为自然数,且a≤b≤c ,a + b + c =13 , 则以a , b , c 为三边的三角形共有多少个。 6.在右图中,已知AD是△ABC的BC边上的高,AE是BC边上的中线,求证: AB+AE+1 2 BC>AD+AC 证明:∵AD⊥BC( )∴AB>AD( ) 在△AEC中,AE+EC>AC( )又∵AE为中线( ) ∴EC=1 2 BC( ) 即AE+1 2 BC>AC( ) ∴AB+AE+ 1 2 BC>AD+AC

21P C B A B 7.如图,已知D 是△AB C 内任意一点,则有AB+AC >DB+DC. 8.如图,已知P 是△ABC 内一点,连结AP ,PB,PC, 求证:(1)PA+PB+PC > 21 (AB+AC+BC) (2) PA+PB+PC < AB+AC+BC 二、三角关系 1.若三角形的三个外角的比是2:3:4,则这个三角形的最大内角的度数是 . 2.已知△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,则∠BOC 一定( ) A.小于直角 B.等于直角 C.大于直角 D.不能确定 3. △ABC 的三条外角平分线所在直线相交构成的三角形是( ) A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定 4.如图△ABC,∠ABC = ∠ACB,∠A = 40°,P 是△ABC 内一点,∠1 = ∠2.则∠BPC =____。

三角形边角关系专项练习

三角形边角关系及三线练习题 典型例题 【例1】 已知三角形的三边长分别为4、5、x ,则x 不可能是( ) A. 3 B. 5 C. 7 D. 9 1. 【例2】 一个三角形的三条边中有两条边相等,且一边长为4,还有一边长为9,则它 的周长为( ) A. 17 B. 22 C. 17或22 D. 13 相关变形:一等腰三角形两边长分别为3,5,试求该三角形的周长。 等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( ) A.150° B.80° C.50°或80° D.70° 【例3】 如图SX —02,AD ⊥BC ,则图中以AD 为高的三角形有___________个。 【例4】 如图SX —03,已知线段AD 、AE 分别是△ABC 的中线和高线,且AB=5cm ,AC=3cm , (1) △ABD 与△ACD 的周长之差为_________;(2) △ABD 与△ACD 的面积关系为__________。 【例5】 已知△ABC 中,给出下列四个条件:(1) ∠A+∠B=∠C; (2) ∠A=90°-∠B; (3) ∠A :∠B :∠C=1:1:2; (4) ∠A :∠B :∠C=1:2:3. 其中能够判定△ABC 是直角三角形的有( )个。 A. 1 B. 2 C. 3 D. 4 【例6】 如图SX —04,Rt △ABC 中,∠ACB=90°,CD 是AB 边上的高,AB=13cm ,BC=12cm ,AC=5cm ,求:(1) △ABC 的面积; (2) CD 的长。 【例7】 如图SX —05,△ABC 中,∠B 、∠C 的平分线交于点P ,且∠BPC=130°,求∠ BAC SX — 02 SX —03 SX — 04

三角形中边与角之间的不等关系

三角形中边与角之间的不等关系 《三角形中边与角之间的不等关系》教学设计教学目标: 1. 通过 实验探究发现:在一个三角形中边与角之间的不等关系; 2. 通过实验探究和推理论证,发展学生的分析问题和解决问题的能力;通过探索、总结形成利用图形的翻折等变换是解决几何问题常见的策略; 3. 提供动手操作的机会,让学生体验数学活动中充满着探索与创新,激发学生学习几何的兴趣。教学重点:三角形中边与角之间的不等关 系及其探究过程。教学难点:如何从实验操作中得到启示,写成几 何证明的表达。教具准备:三角形纸片数张、剪刀、圆规、三角板等。教学过程一、知识回顾 1. 等腰三角形具有什么性质? 2. 如何判定一个三角形是等腰三角形?从这两条结论来看,今后要在同 一个三角形中证明两个角相等,可以先证明它们所对的边相等;同样要证明两条边相等可以先证明它们所对的角相等。二、引入新课问题:在三角形中不相等的边所对的角之间又有怎样的大小关系呢?或者不相等的角所对的边之间大小关系又怎样?方法回顾:在探究 “等边对等角”时,我们采用将三角形对折的方式,发现了“在三角形中相等的边所对的角相等”,从而利用三角形的全等证明了这些性质。现在请大家拿出三角形的纸片用类似的方法探究今天的问题。三.探究新知实验与探究1:在△ABC中,如果AB>AC,那么我们可以将△ABC沿∠BAC的平分线AD折叠,使点C落在AB边上的点E处,即AE=AC,这样得到∠AED=∠C,再利用∠AED是△BDE的外角的关系得到∠AED>∠B,从而得到∠C>∠B。由上面的操作过程得到启示, 请写出证明过程。(提示:作∠BAC的平分线AD,在AB边上取点E,使AE=AC,连结DE。)形成结论1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。思考:是否还 有不同的方法来证明这个结论? 实验与探究2:在△ABC中,如果∠C>∠B,那么我们可以将△ABC沿BC的垂直平分线MN折叠,使点B落在点C上,即∠MCN=∠B,于是MB=MC,这样AB=AM+MB=AM+MC>AC. 由上面的操作过程得到启示,请写出证明过程。 形成结论2:在一个三角形中,如果两个角不等,那么它们所对的边

三角形边角关系-经典例题.docx

1、如图,BE是ZABD的平分线,CF是ZACD的平分线,BE、CF相交于点G, ZBDC=140° , ZBGC=110° o 求ZA 的度数. 2、如图,已知P是Z\ABC内一点,连结AP, PB, PC 求证:(1) PA+PB+PC > - (AB+AC+BC) 2 (2) PA+PB+PC < AB+AC+BC 4、如图1,在厶ABC中,AD丄BC,AE是角平分线, (1)求ZDAE与ZB、ZCZ间的关系; (2)如图2,AE是ZBAC的角平分线,FD垂直于BC于D,求ZDFE与ZB、ZC之间的关系. (3)如图3,当点F在AE延长线上时,FD仍垂直于BC于D,继续探讨ZDFE与ZB、ZC的关 系A 5、如图Z\ABC 中,ZBAD=ZCBE=ZACF, ZABC=506 , ZACB=62°,求ZDFE 的大小.

6、AABC中,AD、BE、CF是角平分线,交点是点G, GH丄BC 求证:ZBGD=ZCGH. A

7、如图,厶0y=90°,点A、B分别在坐标轴Ox、Oy上移动,BF是ZABP的平分线,BF的反向延 反线与ZOAB的平分线交于点C,求证ZACB的度数是定值. 8、在平面直角坐标系中,点0为坐标原点,点A在第一象限, 点B是x正半轴上一点。过点0做OD〃AB, ZBA0的平分线与 ZM0D的平分线相交于点Q, 求仝竺的值 ZAON 9、直角坐标系中,0P平分ZXOY, B为 Y轴正半轴上一点,D为第四象限内一点, BD 交x 轴于C , DE // 0P 交x 轴于点E , BCE交0P于A, ZBDE的平分线交0P于G,交直线AC于 M,如图 求证2ZOGD - ZOED ZOAC 为定值 CA 平分Z D

相关文档
最新文档