教案:3.3.1二元一次不等式(组)与平面区域(2)

合集下载

23-二元一次不等式(组)与平面区域(1)

23-二元一次不等式(组)与平面区域(1)

3.3 二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域教材分析本节课是在学生学习了直线与直线方程的关系,初步了解了二元一次方程的几何意义的基础上,引领学生进一步研究二元一次不等式的几何意义,为后面学习用图解法求二元函数最值问题创造条件.使学生体会数与形的转化过程,逐步加强学生应用几何图形解决代数问题的意识.基于以上分析,在教学中应充分利用多媒体课件向学生展示代数条件与几何图形的对应关系,加强学生对问题的了解,培养学生学习数学的兴趣.课时分配本节内容用1课时的时间完成,主要讲解二元一次不等式(组)表示平面区域.教学目标重点: 用二元一次不等式(组)表示平面区域的方法.难点:1.探究二元一次不等式所表示的平面区域的过程;2.正确画出二元一次不等式(组)相应的平面区域.知识点:二元一次不等式的几何意义,能准确画出二元一次不等式(组)表示平面区域.能力点:学生在学会知识的过程中,培养学生运用数学方法解决问题的能力.教育点:通过对新知识的构建,优化学生的思维品质.自主探究点:通过自主探索、合作交流,增强学生对数学的情感体验,提高创新意识. 通过学生合作探究、独立思考、自由讨论、情景设置等方法帮助学生在原有经验上对新知识主动建构.考试点:充分体会数学来源于生活,又服务于生活,培养学生的应用意识.易错易混点:引导学生进行尝试、猜想、证明、归纳,突破本节难点.拓展点:链接高考感悟提升.教具准备实物投影机和粉笔课堂模式基于问题驱动的一问一答式一、复习引入提出问题,引起思考师:今天是什么特殊日子?生:重阳节师:你准备好礼物了吗?生:没有师:我给你们推荐一份礼物:一束鲜花!送母亲选什么花?生:康乃馨师:康乃馨是母亲之花,它代表了母亲对子女伟大、无私而又含蓄的爱;然后还可以选择些纯洁的百合花加以点缀,并且祝愿父母百年好合心想事成.你们满意吗?生:师:可是我却遇到了一个问题: 当花店老板告诉我康乃馨每枝15元,百合每枝10元时,我才发现只有150元钱,而且希望康乃馨的数量不低于百合数量的2倍,我可以如何购买呢?今天就请同学们一起帮我解决这个问题.设计意图:通过设置实际问题情景引入新课,提高学生的学习兴趣和自主探求新知的欲望,为下面的讲解做好铺垫.另外,情景的设置贴近学生的生活,并借助鲜花营造一种温馨的氛围和浪漫的气息,适合当今学生的口味,使原本枯燥严肃的数学课在不改变其严谨本质的前提下尽量趣味化.分析问题,建立模型设购买康乃馨x 枝,购买百合y 枝.( x ,y 均为整数)则购买数量应满足的条件:3230211x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩介绍概念今天这个不等式模型与前面的不等式有所不同:它含有两个未知数,并且未知数的最高次数是1这样的不等式叫做二元一次不等式.由几个二元一次不等式组成的不等式组称为二元一次不等式组.满足二元一次不等式(组)的x 和y 的取值构成有序实数对(x ,y )叫做二元一次不等式的一个解,所有这样的有序实数对(x ,y )构成的集合称为二元一次不等式(组)的解集.设计意图:引导学生思考、探究,让学生经历建立线性规划模型的过程.在获得探究体验的基础上,通过交流形成共识,建立二元一次不等式模型.尝试解决,学生遇挫如何求上面的二元一次不等式组的解集?针对前面的不等式组 ,由学生自主分析思路,发表见解.学生可能的思路:①列举法---首先肯定学生的做法,列举法是解决数学问题的一种基本方法,也是生活中的常用方法,但是它有一定的局限性,引导学生寻求通法.②消元法- -----首先肯定学生的转化和消元的思想,这是数学中的重要思想方法,但是消元中会出现知识性错误,教师引导学生寻找错误根源.在各种思路均受阻的情况下,引导学生转化思维角度,重新审视不等式的解与点的坐标都是有序实数对,于是用几何方法来解决代数问题,利用数形结合的思想去尝试探求答案.灵感来源:二元一次不等式的解是有序实数对,而点的坐标也是有序实数对,所以,二元一次不等(组)的解集就可以看成是直角坐标系内的点构成的集合----数形结合思想.解决策略:探寻解集的问题转化为探寻这些点所构成的几何图形的问题————转化思想.设计意图:引导学生思考、探究,让学生经历建立线性规划模型的过程.在获得探究体验的基础上,通过交流形成共识,建立二元一次不等式模型.突出不等式的特性,将画平面区域作为不等式的一种几何解法,利用数形结合思想得到不等式的解集.二、探究新知探究一:二元一次不等式(组)的解集表示的图形(1)先研究具体的二元一次不等式6x y -<的解集所表示的图形.1.联系类比:二元一次方程6x y -=表示图形是一条直线,平面内所有的点被直线分成三类: 第一类:在直线6x y -=上的点;------------------6x y -=第二类:在直线6x y -=左上方的区域内的点;第三类:在直线6x y -=右下方的区域内的点. -----6x y -≠猜想:6x y -<和6x y ->,是各占一方还是相互交融?2.实验探索:设点1(,)P x y 是直线6x y -=上的点,选取点2(,)A x y ,使它的坐标满足不等式6x y -<,完成填表、作图并思考;①通过你的试验,你发现了什么?②进行理性思考,你觉得你的发现具有合理性吗?学生思考、讨论、交流,达成共识:在平面直角坐标系中,以二元一次不等式6x y -<的解为坐标的点都在直线6x y -=的左上方; ③反过来,直线6x y -=左上方的点的坐标都满足不等式6x y -<吗?3.交流合作.4.得出结论:在平面直角坐标系中,不等式6x y -<的解与直线6x y -=左上方的平面区域的点形成一一对应的关系;所以不等式6x y -<表示直线6x y -=左上方的平面区域.类似的:二元一次不等式6x y ->表示直线6x y -=右下方的区域,直线叫做这两个区域的边界.(2)特殊例子推广到一般情况:二元一次不等式0Ax By C ++<在平面直角坐标系中表示直线0Ax By C ++=某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)设计意图:先由学生提出自己的想法,再引导学生分析其问题所在,在思维层层受阻的情况下主动探索其它解法,增加学习的目的性和主动性.探究方法 :由特殊到一般,从感性观察到理性思考,符合学生的认知规律,充分体现以学生为主体、教师为主导的教学思想.第一步,小组合作探究,增强学生的合作意识.第二步,学生独立思考.第三步,引导学生类比出一般结论.探究二:二元一次不等式表示哪侧的平面区域.自由讨论:不等式6x y -<表示直线6x y -=左上方的平面区域,是不是二元一次不等式0Ax By C ++<一定也是表示边界下方的区域?师:判定到底表示哪一侧是区域有困难吗?这个问题我来回答.设置情境:师:我把这个问题的答案放到了咱们班的作业本中了.这两摞作业中,其中一摞是咱们班的,请徐美华同学帮我把咱们班的那部分作业拿到我这儿来.生:(学生很快将本班的作业找到)师:你能确定这摞就是咱们班的吗?生:能确定.师:作业本上没有班级,你怎么就知道是这一摞呢?生:我抽了一本看了看就是我们班的.师:明白了,你从中抽查了一本确认是咱们班的,于是就确定这摞就是咱们班的了,那么如果你抽的那本不是咱们班的呢?生:一共就两摞,那就是另一摞了.师:我明白了:因为我们找的是这两摞作业中的某一摞,所以我只需从两摞中任意选取一个验证一下,如何是咱们班的就确定它所在的这一摞都是咱们班的,如果不是咱们班的就确认另一摞是咱们班的.非常简单,好!那么刚才判断哪一侧区域这个问题的答案找到了吗?生:噢!(沉思少许,恍然大悟)生:只需在此直线的某一侧取一个特殊点00(,)x y ,代入不等式验证,如果满足此不等式就是这个点所在的一侧,如果不满足就是另外的那一侧.师:你会取哪个点验证呢?生:一般取简单的点,如(0,0),(1,0),(0,1)等等.师:太棒了,简直是无师自通!谁告诉你们的呢?师:是生活告诉我们的!刚才我让同学帮我取作业本这件事情,你们都觉得太容易了,一件简单的生活小事不仅启发了我们对数学问题的思考,里面还蕴含着深刻的数学道理,它应用的是集合的思想:一个元素或者属于某个集合,或者属于它的补集,当全集中只有两个互补子集时,只需对某个元素验证一次便可知它属于哪个集合.如:直线6x y -=外的点的集合为{}(,)6U x y x y =-≠直线两侧的点的集合分别为{}(,)6A x y x y =-> {}(,)6B x y x y =-<验证原点(0,0)B ∈,则知道集合A 表示的就是原点所在一侧的区域.当然集合B 表示另一侧的区域. 设计意图:此问题的处理有三个目的:①此时学生的注意力已经有所下降,学习效率降低,通过设置情境再次吸引学生的注意力,提高课堂效果.②如果简单地告诉学生特殊点定域的方法,学生也很容易接受,完成本课的教学任务,但只是授之鱼而不是授之于渔.将此问题上升到集合思想的高度,达到触类旁通.③让学生进一步体会“数学源于生活并服务于生活”,生活本身就蕴含着深刻的数学道理,增强学生的学习兴趣.探究三:如何画出二元一次不等式(组)所表示的平面区域的.①直线定界(有等则实,无等则虚)②特殊点定域(优先考虑原点)例 画出不等式44x y +<表示的平面区域.解:先画直线44x y +=(画成虚线).取原点(0,0),代入44x y +<成立∴原点在44x y +<表示的平面区域内.思考:如果是44x y +≤呢?非常好!已经成功按照由特殊到一般的方法,利用数形结合思想成功得到了二元一次的平面区域. 设计意图:解决开始提出的问题,也不仅仅是为了解决开始的问题,而是巩固、提高、深化对本节课的理解:首先,不等式组中包含的四个不等式正是本节内容的四种类型,典型全面,通过练习可以很好的巩固本节内容.其次,在师生共同完成不等式表示的平面区域的基础上,通过启发引导由学生自己完成不等式组的平面区域,又是能力提高的过程.另外,寻找整数点是难点但不是本节的重点,所以由教师完成,让学生体会我们前面的研究是在实数的前提下研究的,当变量的取值范围发生改变后,点集也会相应改变,深化对本节课的理解.三、运用新知带着收获的喜悦,我们来解前面的不等式组.1.首先分析:不等式组的解集是各不等式解集的交集,所以表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.2.引导学生一步步画出图形,找到正确的平面区域.3.启发学生找到整数点①有多少种购买方案? 16种②最多买多少枝? 取整数解(8,3)即,康乃馨8枝,百合3枝,共11枝让我们把这一束感激的鲜花,献给所有为了子女而辛勤忙碌的母亲,一十一枝鲜花代表我们一心一意的祝福,祝福天下所有母亲一生一世幸福安康!设计意图:本课在浪漫温馨并配以美妙音乐(感恩的心)的氛围中结束,本课小结在鲜花和音乐的衬托下缓缓打出,回顾本节知识,升华个人情感,多些感动多些感恩,不也正是当今学生所必修的内容吗?若能在学生的心灵上有所启迪岂不一箭双雕?教书育人,乐在其中!四、课堂小结1.二元一次不等式表示平面区域;2.二元一次不等式(组)表示平面区域的作图方法.五、布置作业1.基础巩固: 课本第86页练习1.2.3(目的:巩固,熟练本节基础知识)2.课堂延伸:特殊点定域只是确定平面区域的一种基本方法,相信你还能探索发现更为简单实用的方法,试试看!(目的:将课堂上的探究延伸到课下,进一步提高学生探究问题的能力)3.大显身手:已知康乃馨的进价为10元,百合进价为3元,如果你是花店老板,你会建议我怎么购买? (目的:为讲线性规划问题做好铺垫)六、反思提升鉴于高二学生已具有较好的数学基础知识和较强的分析问题、解决问题的能力,本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合一问一答的教学方法.首先设置“问题”情境,激发学生解决问题的欲望;其次提供观察、探索、交流的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取知识.恰当的利用多媒体课件辅助教学,直观生动地呈现学生思维的形成过程,从而提高教学效率.在教学过程中,注重学生的探索经历和发现新知的体验,使其形成自己对数学知识的理解和有效的学习策略.美中不足的是知识量太少,思维量还够,但练习量有点少,不一定能够适应当前的高考选拔方式.七、板书设计。

3.3.1二元一次不等式(组)与平面区域(一)

3.3.1二元一次不等式(组)与平面区域(一)

企业和个人贷款,希望这笔贷款至少可带来3万元的收益, 其中从企业贷款中获益12%,从个人贷款中获益10%.那 么,信贷部应如何分配资金呢?
x y 2500, 12 x 10 y 300 x 0, y0
1. 我们把含有两个未知数,并且未知数的次数是1的不
满足 x y 6 的点集在坐标平面上是怎样的图形?
l:x-y=6
问题一
满足 x y 6 的点集{( x, y) x y 6}在坐标平面上 是怎样的图形?
l:x-y=6
二元一次不等式 x-y<6所表示的图形.
在直角坐标系中,所有点被直线l : x-y<6分成三类: ①在直线l上的点;
确定.
一般地
C≠0时,常用点(0,0)确定.
C=0时,常用点(0,1)或(1,0)确定.
二元一次不等式Ax+By+C>0表示的平面区域常用 “直线定界,特殊点定域”的方法,即画线—取点—判 断.
例1. 画出x+4y<4表示的平面区域.
练习
教材P86练习第1、2题
x 3 y 6 0 例2. 画出 表示的平面区域. x y 2 0
l:x-y=6
问题一
满足 x y 6 的点集{( x, y) x y 6}在坐标平面上 是怎样的图形?
问题二
满足 Ax By C 0 的点集 {(x, y) Ax By C 0}
在坐标平面上是怎样的图形?
( A, B不同时为0)
问题三
满足 Ax 2 Bx C 0 的点集源自Ax 2 Bx C 0 的同
(1) x y 1
1.判断下列式子是不是二元一次不等式? 2
(2) x y 1

二元一次不等式(组)所表示的平面区域

二元一次不等式(组)所表示的平面区域

分析:由于画所二求元平一面次区不域等的式点组的表坐
标需示同的时平满面足区两域个的不步等骤式:,
-5
因此二元一次不等式组表示
的区域是各个不等式表示的
区域的交集,即公共部分。
y
5
o4
x=3
x-y+5=0
x
x+y=0
例3.一个化肥厂生产甲、乙两种混合肥 料,生产1车皮甲种肥料需用的主要原料 是磷酸盐4吨,硝酸盐18吨,生产1车皮乙 种肥料需用的主要原料是磷酸盐1吨,硝 酸盐15吨,现有库存磷酸盐10吨,硝酸盐 66吨。如果在此基础上进行生产,设x,y 分别是计划生产甲、乙两种混合肥料的车 皮数,请列出满足生产条件的数学关系式, 并画出相应的平面区域。
把边界画成实线。
2、由实特殊于数2、点直 符点特代线 号定别入同 相域地侧 同Ax(,的 ,+B代当点 所y+入C的以C≠中特坐只0,殊时标需从点常代在所验把入直得证原线Ax结)点的+B果作某y的+为一C中正特侧,负殊取所即点一得可。个 判断Ax+By+C>0表示哪一侧的区域。
性质:
直线l:Ax+By+C=0把坐标平面内不在 直线l上的点分为两部分,直线l同一侧的点 的坐标使式子Ax+By+C的值具有相同的符 号,并且两侧的点的坐标使Ax+By+C的值 的符号相反,一侧都大于零,另一侧都小 于零。
(2)z=(x+3)2 +(y+1)2的最大值和最小值。
例3、写出表示下面区域 的二元一次不等式组
y
(-4,-1)
(0,1)
x
(2,-1)
典例精析
题型三:根据平面区域写出二元一次不等式(组)

3.3.2二元一次不等式组表示的平面区域

3.3.2二元一次不等式组表示的平面区域

我的记录空间:
3.3.2二元一次不等式组表示的平面区域
一、学习目标
1.掌握二元一次不等式组表示的平面区域;
2.掌握化归与数形结合的思想方法。

教学重点、难点:二元一次不等式组表示的平面区域
二、课前自学
二元一次不等式4x+y ≤10表示的区域是直线4x+y=10及直线的下方的平面区域,那么不等式组410
4320x y x
y +≤⎧⎨+≤⎩表示怎样的几何意义?
画出不等式组410
4320x y x
y +≤⎧⎨+≤⎩表示的平面区域。

变题:(1)加上约束条件0,0x y ≥≥,画出所表示的平面区域。

(2)加上约束条件0,0x y ≥≥,求所表示的平面区域的面积。

(3)加上约束条件0,0x y ≥≥,求所表示的平面区域内的整点个数。

归纳:不等式组表示的平面区域化归为各个不等式所表示的区域的交集。

三、问题探究
例1、画出下列不等式组所表示的平面区域:
(1)2124y x x y ≤+⎧⎨+>⎩ (2)0
04380
x y x y >⎧⎪>⎨⎪+-<⎩
思考:如何寻找满足例1(2)中不等式组的整数解?
我的记录空间: 20y x -≤⎧。

江苏省泰州市姜堰区艺术中学高中数学必修五学案_3.3.2二元一次不等式组表示的平面区域

江苏省泰州市姜堰区艺术中学高中数学必修五学案_3.3.2二元一次不等式组表示的平面区域

课题:3.3.2二元一次不等式组表示的平面区域【学习目标】1. 理解二元一次不等式组表示的平面区域; 2、能够准确地画出可行域; 【课前预习】1.在同一直角坐标系中,分别画出不等式104≤+y x 与2034≤+y x 表示的平面区域.2.画出二元一次不等式组⎩⎨⎧≤+≤+2034104y x y x 表示的平面区域.3.再在第2题基础上加上约束条件00≥≥y x ,,画出它们表示的平面区域.第1题图第2题图第3题图【课堂研讨】例1、画出下列不等式组所表示的区域.(1)⎩⎨⎧>++≤4212y x x y (2)⎪⎩⎪⎨⎧<-+>>083400y x y x变式:如何寻找满足例1(2)中不等式组的整数解?Oxy Oxy Oxy例2、如图,ABC ∆三个顶点)02()02()40( - ,,,,,C B A ,求ABC ∆内任一点)(y x ,所满足的条件.例3、如图所示阴影部分可用二元一次不等式组表示(A .⎩⎨⎧≥+--≥0221yx y B .⎩⎨⎧≤+--≥0221y x yC .⎪⎩⎪⎨⎧≥+--≥≤04220yx y xD .⎪⎩⎪⎨⎧≤+--≥≤04220y x y x3.不等式组⎩⎨⎧≤≤≥++-300))(5(x y x y x 表示的平面区域是一个____________.A .三角形B .直角梯形C .梯形D .矩形4.用不等式组表示下列各图中阴影区域.(1) (2)x(3) (4)5.利用平面区域求不等式组⎪⎩⎪⎨⎧<--<-+>--015530632032y x y x y x 的整数解.。

人教A版高中数学必修五3.1.不等关系与不等式 教学设计

人教A版高中数学必修五3.1.不等关系与不等式 教学设计

人教版新课标普通高中◎数学⑤必修第三章不等式概述不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容.建立不等观念,处理不等关系与处理等量问题是同样重要的.根据课程标准,在本章中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的内在联系.1.内容与课程学习目标本章主要学习描述不等关系的数学方法,一元二次不等式的解法及其应用,线性规划问题,基本不等式及其应用等,通过学习,要使学生达到以下目标:(1)通过具体情境,感受在现实世界和日常生活中存在着大量的数量关系,了解不等式(组)的实际背景.(2)经历从实际情境中抽象出一元二次不等式模型的过程;通过函数图象了解一元二次不等式与相应函数、方程的联系;会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图.(3)从实际情境中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)探索基本不等式的证明过程;会用基本不等式解决简单最大(小)值问题.2.教学要求(1)基本要求①了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景;理解不等式(组)对于刻划不等关系的意义和价值;会用不等式(组)表示实际问题中的不等关系,能用不等式(组)研究含有不等关系的实际问题.②理解并掌握不等式的基本性质;了解从实际情境中抽象出一元二次不等式模型的过程.③理解一元二次不等式的概念;通过图象,理解并掌握一元二次不等式、二次函数及一元二次方程之间的关系.④理解并掌握解一元二次不等式的过程;会求一元二次不等式解集;掌握求解一元二次不等式的程序框图及隐含的算法思想,会设计求解的过程.⑤了解从实际情境中抽象出二元一次不等式(组)模型的过程;理解二元一次不等式(组)、二元一次不等式(组)的解集的概念;了解二元一次不等式的几何意义,理解(区域)边界的概念及实线、虚线边界的含义;会用二元一次不等式(组)表示平面区域,能画出给定的不等式(组)表示的平面区域.1教师备课系统──多媒体教案2 ⑥了解线性约束条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解的概念;掌握简单的二元线性规划问题的解法.⑦了解基本不等式的代数背景、几何背景以及它的证明过程;理解算术平均数,几何平均数的概念;会用基本不等式解决简单的最大(小)值的问题;通过基本不等式的实际应用,感受数学的应用价值.(2)发展要求①体会不等式的基本性质在不等式证明中所起的作用.②会从实际情景中抽象出一些简单的二元线性规划问题并加以解决.(3)说明①不等式的有关内容将在选修4-5中作进一步讨论.②淡化解不等式的技巧性要求,突出不等式的实际背景及其应用.③突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形.3. 教学内容及课时安排建议3.1不等式与不等关系(约2课时)3.2一元二次不等式及其解法(约2课时)3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域(约2课时)3.3.2简单的线性规划问题(约2课时)3.4基本不等式:2ba ab +≤(约2课时)人教版新课标普通高中◎数学⑤ 必修33.1 不等关系与不等式教案 A第1课时教学目标一、知识与技能通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质.二、过程与方法通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法.三、情感、态度与价值观通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯. 教学重点和难点教学重点:用不等式(组)表示实际问题的不等关系;并用不等式(组)研究含有不等关系的问题;理解不等式(组)对于刻画不等关系的意义和价值.教学难点:用不等式(组)正确表示出不等关系.教学关键:将实际问题的不等关系转化为数学中不等式问题.教学突破方法:通过分析实践、自主探究、合作交流等一系列的寻求问题解决方法的活动,讨论解决方法.教法与学法导航教学方法:观察法、探究法、尝试指导法、讨论法.学习方法:从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.教学准备教师准备:多媒体、黑板、教材.学生准备:直尺、教材.教学过程一、创设情境,导入新课在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.如两点之间线段最短、三角形两边之和大于第三边,等等.人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系.在数学中,我们用不等式来表示不等关系.下面我们首先来看如何利用不等式来表示不等关系.二、主题探究,合作交流1. 用不等式表示不等关系引例1:限速40km /h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是40v .教师备课系统──多媒体教案4引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示.3.2,5.20000≥≥p f问题1:设点A 与平面α的距离为d ,B 为平面α上的任意一点,则||d AB ≤. 问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本. 据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯ 万元,那么不等关系“销售的总收入不低于20万元”可以表示为不等式2.5(80.2)200.1x x --⨯≥. 问题3:某钢铁厂要把长度为4 000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍. 怎样写出满足所有上述所有不等关系的不等式呢?解:假设截得500 mm 的钢管 x 根,截得600mm 的钢管y 根.根据题意,应有如下的不等关系:(1)截得两种钢管的总长度不超过4 000mm ;(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍;(3)截得两种钢管的数量都不能为负.要同时满足上述的三个不等关系,可以用下面的不等式组来表示:5006004000300.x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩,,, 三、拓展创新,应用提高1. 试举几个现实生活中与不等式有关的例子.2. 教材第74页的练习 第1、2题.四、小结用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.五、课堂作业教材第75页习题 3.1A 组 第4、5题.人教版新课标普通高中◎数学⑤ 必修5第2课时教学目标一、知识与技能掌握不等式的基本性质,会用不等式的性质证明简单的不等式.二、过程与方法通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法.三、情感、态度与价值观通过讲练结合,培养学生转化的数学思想和逻辑推理能力.教学重点和难点教学重点:掌握不等式的性质和利用不等式的性质证明简单的不等式.教学难点:利用不等式的性质证明简单的不等式.教学关键:学生会用不等式的性质证明简单的不等式和比较两个数的大小.教学突破方法:通过问题解决情景的设置、投影错例展示的方式,解决学生对不等式的理解.教法与学法导航教学方法:采用探究法,遵循从具体到抽象的原则.学习方法:通过观察、分析、讨论,引导学生归纳小结出不等式的基本性质,设计较典型的问题,总结解题的规律.教学准备教师准备:多媒体、黑板、教材.学生准备:直尺、教材.教学过程一、创设情境,导入新课关于不等式的几个基本事实0;0;0.a b a b a b a b a b a b >⇔->⎧⎪=⇔-=⎨<⇔-<⎪⎩在初中,我们已经学习过不等式的一些基本性质,请同学们回忆初中不等式的的基本性质.1. 不等式的两边同时加上或减去同一个数,不等号的方向不改变,即若a b a c b c >⇒±>±;2. 不等式的两边同时乘以或除以同一个正数,不等号的方向不改变,即若,0a b c ac bc >>⇒>;3. 不等式的两边同时乘以或除以同一个负数,不等号的方向改变,即若,0a b c ac bc ><⇒<.二、主题探究,合作交流1. 不等式的基本性质教师备课系统──多媒体教案6 师:同学们能证明以上不等式的基本性质吗?证明:(1)()()0a cbc a b+-+=->,∴a c b c+>+;(2)()()0>-=---bacbca,∴cbca->-.实际上,我们还有,a b b c a c>>⇒>.(证明:∵a>b,b>c,∴a-b>0,b-c>0.)根据两个正数的和仍是正数,得(a-b)+(b-c)>0,即a-c>0,∴a>c.于是,我们就得到了不等式的基本性质:(1)abba<⇔>;(2),a b b c a c>>⇒>;(3)a b a c b c>⇒+>+;(4),0a b c ac bc>>⇒>;,0a b c ac bc><⇒<.例1已知0,0,a b c>><求证c ca b>.证明:因为0a b>>,所以ab>0,1ab>.于是11a bab ab⨯>⨯,即11b a>.由c<0 ,得c ca b>.例2比较(a+3)(a-5)与(a+2)(a-4)的大小.分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要).根据实数运算的符号法则来得出两个代数式的大小.比较两个实数大小的问题转化为实数运算符号问题.解:由题意可知:(a+3)(a-5)-(a+2)(a-4)=(a2-2a-15)-(a2-2a-8)=-7<0∴(a+3)(a-5)<(a+2)(a-4)2. 探索研究思考:利用上述不等式的性质,证明不等式的下列性质:(5)dbcadcba+>+⇒>>,;(6)bdacdcba>⇒>>>>0,0;人教版新课标普通高中◎数学⑤ 必修7(7))2,(0≥∈>⇒>>n N n b a b a n n ;(8))2,(0≥∈>⇒>>n N n b a b a n n .证明:(5)∵ a >b , ∴ a +c >b +c . ①∵ c >d , ∴ b +c >b +d . ②由①②得 a +c >b +d .(6)bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,.(7)同学们自己证明.(8)反证法)假设n n b a ≤,则:a b a b <⇒<=⇒=这都与b a >矛盾, ∴n n b a >.三、知识巩固,练习提高例3 已知x ≠0, 比较22)1(+x 与124++x x 的大小.解:(取差)22)1(+x -)1(24++x x22424112x x x x x =---++=.∵0≠x , ∴02>x . 从而22)1(+x >124++x x .例4 已知a >b >0,c <d <0,则ba -c 与ab -d 的大小关系为________.解析:b a -c -ab -d =b 2-bd -a 2+ac (a -c )(b -d )=(b +a )(b -a )-(bd -ac)(a -c )(b -d ).因为a >b >0,c <d <0,所以a -c >0,b -d >0,b -a <0,又-c >-d >0,则有-ac >-bd ,即ac <bd ,则bd -ac >0,所以(b +a )(b -a )-(bd -ac )<0,所以b a -c -a b -d =(b +a )(b -a )-(bd -ac )(a -c )(b -d )<0,即b a -c <ab -d ..教师备课系统──多媒体教案8 答案:ba-c<ab-d.课堂练习:教材第74页的练习第3题.四、小结本节课学习了不等式的性质,并用不等式的性质证明了一些简单的不等式,还研究了如何比较两个实数(代数式)的大小——作差法,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n个因式之积或完全平方式或常数的形式;第二步:判断差值与零的大小关系,必要时须进行讨论;第三步:得出结论.五、课堂作业教材第75页习题3.1 A组第2、3题;B组第1题.教案 B第1课时教学目标1.在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容;利用数轴回忆实数的基本理论并能用实数的基本理论来比较两个代数式的大小,及用实数的基本理论来证明不等式的一些性质.2.通过回忆与复习学生所熟悉的等式性质类比得出不等式的一些基本性质.并在了解不等式一些基本性质的基础之上,掌握作差比较法判断两实数或代数式大小,利用它们来证明一些简单的不等式.3.通过富有实际意义问题的解决,激发学生的探究精神和严肃认真和科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学生的学习兴趣.教学重点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题;理解不等式(组)对于刻画不等关系的意义和价值及不等式的三条基本性质.教学难点用不等式或不等式组准确地表示出不等关系,作差比较法判断两实数或代数式大小.教学过程一、导入新课章头图是一幅山峦重叠起伏的壮观画面,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.二、提出问题1.回忆初中学过的不等式,让学生说出“不等关系”与不等式的异同,怎样利用人教版新课标普通高中◎数学⑤ 必修 9不等式研究及表示不等关系?2. 在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系,你能举出一些实际例子吗?三、应用示例例1 某汽车公司由于发展的需要需购进一批汽车,计划使用不超过1 000万元的资金购买单价分别为40万元、90万元的A 型汽车和B 型汽车.根据需要,A 型汽车至少买5辆,B 型汽车至少买6辆,写出满足上述所有不等关系的不等式.解:设购买A 型汽车和B 型汽车分别为x 辆、y 辆,则40901000,5,6,N ,x y x y x y *+≤⎧⎪≥⎨≥⎪∈⎩,,即. 49100,5,6,N .x y x y x y *+≤⎧⎪≥⎨≥⎪∈⎩, 例2.某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种,按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍.怎样写出满足上述所有不等关系的不等式呢?解:假设截得的500mm 钢管x 根,截得的600mm 钢管y 根.根据题意,应有如下的不等关系:5006004000,3,,.x y x y x N y N +≤⎧⎪≥⎪⎨∈⎪⎪∈⎩说明:关键是找出题目中的限制条件,利用限制条件列出不等关系.四、小结上面的例子表明,我们可以用不等式(组)来刻画不等关系.表示不等关系的式子叫做不等式,常用(<>≤≥≠、、、、)表示不等关系. 老师进一步画龙点睛,指出不等式是研究不等关系的重要数学工具.五、练习教材第74页 练习第 1、2题.六、提出新问题怎样比较两个实数的大小?七、作业教材第75页习题3.1 A 组第4、5题; B 组第1、2题.第2课时教学目标1.在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容;利用数轴回忆实数的基本理论并能用实数的基本理论来比较两个代数式的大小,教师备课系统──多媒体教案10及用实数的基本理论来证明不等式的一些性质.2.通过回忆与复习学生所熟悉的等式性质类比得出不等式的一些基本性质.并在了解不等式一些基本性质的基础之上,掌握作差比较法判断两实数或代数式大小,利用它们来证明一些简单的不等式.3.通过富有实际意义问题的解决,激发学生的探究精神和严肃认真和科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学生的学习兴趣. 教学重点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值及不等式的三条基本性质. 教学难点用不等式或不等式组准确地表示出不等关系,作差比较法判断两实数或代数式大小. 教学过程一、提出问题不等式是研究不等关系的重要数学工具,我们都了解哪些不等式的性质呢?1.请学生回答等式有哪些性质?2.不等式有哪些基本性质?这些性质都有何作用?二、探究不等式的性质性质1:如果b a >,那么a b <;如果a b <,那么b a >(对称性).证:∵b a >,∴0>-b a ,由正数的相反数是负数.0)(<--b a ,0<-a b ,a b <.性质2:如果b a >,c b >,那么c a >(传递性).证:∵b a >,c b >,∴0>-b a ,0>-c b .∵两个正数的和仍是正数,∴+-)(b a 0)(>-c b .∵0>-c a ,∴c a >.由对称性,性质2可以表示为如果b c <且a b <那么a c <.性质3:如果b a >,那么c b c a +>+(加法单调性)反之亦然.证:∵0)()(>-=+-+b a c b c a ,∴c b c a +>+.从而可得移项法则:b c a b c b b a c b a ->⇒-+>-++⇒>+)()(.性质4:如果b a >且d c >,那么d b c a +>+(相加法则).证:d b c a d b c b d c c b c a b a +>+⇒⎭⎬⎫+>+⇒>+>+⇒>. 推论:如果b a >且d c <,那么d b c a ->-(相减法则).人教版新课标普通高中◎数学⑤ 必修 11证:∵d c < ∴d c ->-;d b c a d c ba ->-⇒⎩⎨⎧->->.或证:)()()()(d c b a d b c a ---=---.d c ba <> ⇒⎭⎬⎫<-∴>-∴00d c b a 上式>0.性质5:如果b a >且0>c ,那么bc ac >.如果b a >且0<c ,那么bc ac <(乘法单调性).证:c b a bc ac )(-=-.∵b a >,∴0>-b a .根据同号相乘得正,异号相乘得负,得:0>c 时0)(>-c b a ,即:bc ac >;0<c 时0)(<-c b a ,即:bc ac <.性质6:如果0>>b a 且0>>d c ,那么bd ac >(相乘法则).证:bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,.推论:如果0>>b a 且d c <<0,那么d bc a>(相除法则).证:∵0>>c d ∴⇒⎪⎭⎪⎬⎫>>>>0011b a dcd bc a >.性质7:如果0>>b a , 那么n n b a > (N 1)n n ∈>且.性质8:如果0>>b a ,那么n n b a > (N 1)n n ∈>且.证:(反证法)假设n n b a ≤,则:a b a b <=这都与b a >矛盾, ∴nn b a >.三、应用实例例1 比较大小教师备课系统──多媒体教案12 ①已知0>>ba,0<c求证:bcac>;解:∵0a b>>,∴ab>0,1ab>.∴11a bab ab⨯>⨯,即11b a>.∵c<0 ,∴c ca b>.②231-和10.解:∵23231+=-,∵02524562)10()23(22<-=-=-+.∴231-<10.例2 比较)5)(3(-+aa与)4)(2(-+aa的大小.解:(取差))5)(3(-+aa-)4)(2(-+aa7)82()152(22<-=-----=aaaa.∴)5)(3(-+aa<)4)(2(-+aa.例3 已知x≠0, 比较22)1(+x与124++xx的大小.解:(取差)22)1(+x-)1(24++xx22424112xxxxx=---++=.∵0≠x,∴02>x.从而22)1(+x>124++xx.小结:比较大小的步骤:“作差-变形-定号-结论”.例4 已知2,x>比较311x x+与266x+的大小.人教版新课标普通高中◎数学⑤ 必修 13解:3232211(66)33116x x x x x x x +-+=--+- 2(3)(32)(3)x x x x =-+-+-=(3)(2)(1)x x x --------------------(*)(1)当3x >时,(*)式0>,所以 311x x +>266x +;(2)当3x =时,(*)式0=,所以 311x x +=266x +;(3)当23x <<时,(*)式0<,所以 311x x +<266x +. 说明:实数比较大小的问题一般可用作差比较法,其中变形常用因式分解、配方、通分等方法才能定号.四、课堂练习1.已知0>>b a ,0<<d c ,0<e ,求证:db ec a e ->-. 证明:⇒⎪⎭⎪⎬⎫<-<-⇒>-<-⇒⎭⎬⎫<<>>011000e d b c a d b c a d c b a d b e c a e ->-. 2.||||,0b a ab >>, 比较a 1与b 1的大小. 解:a 1-b 1aba b -=, 当0,0>>b a 时,∵||||b a >即b a >,0<-a b ,0>ab , ∴0<-ab a b ,∴a 1<b1. 当0,0<<b a 时∵||||b a >即b a <,0>-a b ,0>ab , ∴0>-ab a b ,∴a 1>b1. 3.若0,>b a , 求证:a b ab >⇔>1. 解:01>-=-aa b a b . ∵0>a , ∴0>-a b ,∴b a <.0>-⇒>a b a b .∵0>a ,∴01>-=-a b a a b , ∴1>a b .教师备课系统──多媒体教案14 五、课堂小结1.不等式的性质,并用不等式的性质证明了一些简单的不等式;2.如何比较两个实数(代数式)的大小——作差法.六、布置作业教材第75页习题3.1 A组第2、3题;B组第2、3题.。

二元一次不等式(组)所表示的平面区域 教案

芯衣州星海市涌泉学校3.5.1二元一次不等式〔组〕所表示的平面区域教案一、教学目的:1.知识目的:能做出二元一次不等式〔组〕所表示平面区域;会把假设干直线围成的平面区域用二元一次不等式组表示.2.才能目的:培养学生用数形结合思想分析问题、解决问题的才能;3.情感目的:体会数学的应用价值,激发学生的学习兴趣.二、教学重点、难点:重点:二元一次不等式〔组〕表示的平面区域难点:用二元一次不等式〔组〕表示平面区域.三、教学方法与手段本节课采用探究式教学法,采用启发、引导、探究、讨论交流的方式进展组织教学.并充分利用多媒体辅助教学.四、教学过程〔一〕创设情景,引入新课本班方案用少于100元的钱购置单价分别为2元和1元的大、小彩球装点元旦晚会的会场,根据需要,大球数不少于10个,小球数不少于20个,请你给出几种不同的购置方案?分析:〔1〕引入问题中的变量:设买大球x 个,买小球y 个;〔2〕把文字语言转化为数学符号语言:〔少于100元的钱购置〕⇒1002<+y x 〔1〕 〔大球数不少于10〕⇒10≥x ,N x ∈ 〔2〕 〔小球数不少于20〕⇒20≥y ,N y ∈〔3〕〔3〕抽象出数学模型:2x y 100x 10y 20,x,y N +<⎧⎪≥⎨⎪≥∈⎩〔二〕讲授新课1.二元一次不等式〔组〕的定义〔1〕二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式. 〔2〕二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组. 注意:二元一次不等式〔组〕是根据未知数的个数和未知数的最高次数加以区分.2.探究二元一次不等式〔组〕的解集表示的图形回忆:初中一元一次不等式〔组〕的解集所表示的图形——数轴上的区间二元一次方程表示的是什么图形?直线考虑:在直角坐标系内,二元一次不等式〔组〕的解集表示什么图形?问题一:平面直角坐标系中不在直线上的点被直线AxBy C 0++=分为几部分? 两部分以x y 10+-=为例进展直观说明,引出以下概念:每部分叫做开半平面,开半平面与直线的并集叫做闭半平面.以不等式解〔x,y 〕为坐标的所有点构成的集合,叫做不等式表示的区域或者者不等式的图象. 如何求二元一次不等式表示的平面区域?我们先研究详细的二元一次不等式xy 10+->的解集所表示的图形. 问题二:平面内所有的点被直线xy 10+-=分成几类? 如图:在平面直角坐标系内,x y 10+-=表示一条直线.平面内所有的点被直线分成三类:第一类:在直线xy 10+-=上的点; 第二类:在直线x y 10+-=左下方的区域内的点;第三类:在直线x y 10+-=右上方的区域内的点.问题三:每部分中的点都有哪些特点?在直线的上方、下方取一些点:上方:〔0,2〕,〔1,3〕,〔0,5〕,〔2,2〕下方:〔-1,0〕,〔0,0〕,〔0,-2〕,〔1,-1〕分别把点的坐标代入式子xy 1+-中,会有什么结果? 直线上方的点使的x y 10+->;直线下方的点使的x y 10+-<.猜想:直线同侧点的坐标是否使式子的值具有一样的符号?问题四:直线x y 10+-=右上方的平面区域如何表示?左下方的平面区域呢?x y 10+->;x y 10+-<.由学生自行归纳总结,不要求证明.结论:直线AxBy C 0++=把平面直角坐标系中不在直线上的点分为两部分,同一侧点的坐标使式子Ax By C ++的值具有一样的符号,并且两侧的点的坐标使式子Ax By C ++的值符号相反,一侧都大于0,一侧都小于0.问题五:如何判断Ax By C 0++>表示直线Ax By C 0++=哪一侧平面区域?根据以上结论,只需要在直线的某一侧取一个特殊点(x0,y0),从00A B C y ++x 的正负即可判断不等式Ax By C 0++>表示直线哪一侧的平面区域,这种方法称为代点法.概括为:“直线定界,特殊点定域〞.特别地,当0≠C时,常把原点作为特殊点,即“直线定界、原点定域〞. 问题六:0≥++C y Ax B 表示的平面区域与0>++C y Ax B 表示的平面区域有何不同?如何表达这种区别?把直线画成实线以表示区域包含边界直线;把直线画成虚线以表示区域不包含边界直线.〔三〕应用新知,练习稳固例1.画出下面二元一次不等式表示的平面区域:〔1〕2x y 30-->;〔2〕3x 2y 60+-≤.设计以下几个问题:(1)不等式表示的区域是在哪条直线的一侧?这条直线是画实线还是虚线?(2)运用代点法判断平面区域的位置时取哪个特殊点代入较好学生完成,师指导.例2.画出以下不等式组表示的平面区域〔1〕2x y 10x y 10-+>⎧⎨+-≥⎩〔2〕2x 3y 202y 10x 30-+>⎧⎪+≥⎨⎪-≤⎩设计以下几个问题:(1)不等式组表示的平面区域如何确定?(各个不等式表示的平面点集的交集即各个不等式所表示的平面区域的公一一共部分)(2)第二小题中加上条件x,y N ∈,又会是什么图形呢?多媒体演示平面区域(是上述公一一共平面区域内的整点)例3.一个化肥厂消费甲、乙两种混料,消费1车皮甲种肥料需要的主要原料是磷酸盐4吨,硝酸盐18吨;消费1车皮乙种肥料需要的主要原料是磷酸盐1吨,硝酸盐15吨.现有库存磷酸盐10吨,硝酸盐66吨.假设在此根底上进展消费,设x,y分别为方案消费甲、乙两种混料的车皮数,请列出满足消费条件的数学关系式,并画出相应的平面区域.解:x,y满足的数学关系式为:4x y10 18x15y66 x0y0+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩分别画出不等式组中,各不等式表示的区域,然后取交集.如图中的阴影部分.反响练习:教材89页练习A组2〔4〕.〔四〕课堂小结知识上:1.二元一次不等式〔组〕表示平面区域2.断定方法:“直线定界,特殊点定域〞.小窍门:假设C≠0,可取(0,0);假设C=0,可取(1,0)或者者(0,1).思想方法上:数形结合的数学思想方法.〔五〕布置作业教材89页练习B组1、2.大屏幕展示考虑题:〔再次回到引例〕为下一节课做准备。

3.3.1二元一次不等式表示的平面区域(2015年人教A版数学必修五导学案)


y

x
课题:3.3.1 二元一次不等式表示的平面区域检测案
班级: 【课堂检测】
1.判断下列命题是否正确: (1)点 (0, 0) 在平面区域 x y 0 内; (2)点 (0, 0) 在平面区域 x y 1 0 内;
姓名:
学号:

学习小组
, 0) 在平面区域 y 2 x 内; (3)点 (1


【课堂研讨】
例 1. 画出下列不等式所表示的平面区域: (1) y 2 x 1 (2) x y 2 0 (3) y 2 x 3
例 2、将下列各图中的平面区域(阴影部分)用不等式表示出来. (图( 1 )中不包括 y 轴) : y y 6x+5y=22 O x O x O
(2)点 P(m, 3) 在直线 2 x 3 y 4 0 的下方,求实数 m 的取值范围.
5.已知直线 l : x y a 0 ,点 P , 2),P2 (3, 5) 分别位于直线 l 的两侧, 1 (1 试求实数 a 的取值范围.

y y=x x
(1)
(2)
(3)
, 2) 在直线 例 3、已知 P( x0,y0 ) 与点 A(1
l : 3x 2 y 8 0 两侧,则 ( ) A. 3 x 0 2 y 0 0 B. 3 x 0 2 y 0 0
C. 3x0 2 y0 8 D. 3x0 2 y0 8
(4)点 (0, 1) 在平面区域 x y 1 0 内; 2.不等式 x 4 y 9 0 表示直线 x 4 y 9 0 ( ) A.上方的平面区域 B.下方的平面区域 C.上方的平面区域(包括直线) D.下方的平面区域(包括直线) 3.画出下列不等式所表示的平面区域: (1) y x 1; (2) y 0 ; (3) 3x 2 y 6 0 ; (4) x 2 .

二元一次不等式(组)与平面区域

二元一次不等式( 二元一次不等式(组)与 平面区域
兖州六中 徐洪艳
一家银行的信贷部计划年初 引例 : 投入25 000 000元用于企业和个人贷 投入 元用于企业和个人贷 希望这笔资金至少可带来30 000元 款,希望这笔资金至少可带来 希望这笔资金至少可带来 元 的收益,其中从企业贷款中获益 其中从企业贷款中获益12% 的收益 其中从企业贷款中获益 %,从 个人贷款中获10% 那么 那么, 个人贷款中获 %.那么,信贷部应该如 何分配资金呢? 何分配资金呢? 设用于企业贷款的资金为x元 设用于企业贷款的资金为 元,用于个人 贷款的资金为y元 贷款的资金为 元。则分配资金应该满足 的条件为: 的条件为:
盐类
肥料
磷酸盐 硝酸盐 (10t) (66t)
车皮数
甲种肥料 乙种肥料
4t 1t
18t 15t
x y
总吨数
4x+y 18x+15y
解:设x,y分别为计划生产甲乙两 设 分别为计划生产甲乙两 种肥料的车皮数,满足以下条件 满足以下条件: 种肥料的车皮数 满足以下条件
4 x + y ≤ 10 18 x + 15 y ≤ 66 x≥0 y≥0
x
2x+y=15
x+2y=18
例4.一个化肥厂生产甲乙两种混合化 一个化肥厂生产甲乙两种混合化 生产1车皮甲种肥料的主要原料是 肥,生产 车皮甲种肥料的主要原料是 生产 磷酸盐4t、硝酸盐18t;生产 车皮乙 生产1车皮乙 磷酸盐 、硝酸盐 生产 种肥料的主要原料是磷酸盐 磷酸盐1t、 种肥料的主要原料是磷酸盐 、硝 酸盐15t.现库存磷酸盐 、硝酸盐 现库存磷酸盐 酸盐 现库存磷酸盐10t、 66t,在此基础上生产这两种混合肥料 在此基础上生产这两种混合肥料 .列出满足生产条件的数学关系式 并 列出满足生产条件的数学关系式,并 列出满足生产条件的数学关系式 画出相应的平面区域. 画出相应的平面区域

§4 4.1 二元一次不等式(组)与平面区域


一工厂生产甲、乙两种产品,生产每吨产品的资源需求如下表: 例 4 一工厂生产甲、乙两种产品,生产每吨产品的资源需求如下表:
品种 甲 乙 电力/kW·h 电力/kW·h 2 8 煤/t 3 5 工人/ 工人/人 5 2
的用电额度, 该厂有工人 200 人,每天只能保证 160kW ⋅ h 的用电额度,每天用煤 150t,请在直角坐标系中画出每天甲、 不得超过 150t,请在直角坐标系中画出每天甲、乙两种产品允许的 产量范围。 产量范围。
每月用餐费最低标准240元 每月用餐费最低标准240元; 240 其他费用最少支出180元 其他费用最少支出180元. 180 可用来支配的资金为500元 可用来支配的资金为500元, 500 如何使用这些钱呢? 如何使用这些钱呢?
设用餐费为 x 元,其他费用为 y 元, 由题意 x 不小于 240, y 不小于 180, x 与 y 之和不超过 500, , ,
因为对在直线 Ax+By+ 同一侧的所有点( 因为对在直线 Ax+By+C=0 同一侧的所有点( x, y ),把它的坐标 Ax+By+ 所得到实数的符号都相同。 ( x, y ) 代入 Ax+By+C,所得到实数的符号都相同。
所以只需在此直线的某一侧取一特殊点(x0,y0),从 Ax0+By0+C 所以只需在此直线的某一侧取一特殊点( Ax+By+ (<0)表示直线哪一侧的平面区域 表示直线哪一侧的平面区域. 的正负即可判断 Ax+By+C>0(<0)表示直线哪一侧的平面区域.
l : x + 2y −3 = 0
, 在 l 上方的平面区域内的任一点的坐标( x y )满足不等式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 必修5 3.3二元一次不等式(组)与平面区域 (教案)

(第 2 课时)

【教学目标】 1.理解二元一次不等式组的相关概念,并能画出二元一次不等式(组)来表示的平面区域; 2.学会从实际问题的不等关系中抽象出二元一次不等式组,并正确二元一次不等式(组)来表示的平面区域; 3.培养学生画图能力和分析解决问题的能力. 【重点】灵活运用二元一次不等式(组)来表示的平面区域

【难点】如何确定不等式0(AxByC或<0)表示0AxByC的哪一侧区域

【预习提纲】 (根据以下提纲,预习教材第 85 页~第 86 页) 1.(1) 二元一次不等式为含有两个未知数,并且未知数的次数为1的不等式. (2)二元一次不等式组称为由几个二元一次不等式组成的不等式组 (3)二元一次不等式(组)的解集称为满足二元一次不等式(组)的x和y的取值构成有序数对(x,y)所有这样的有序数对(x,y)构成的集合.有序实数对可以看成直角坐标平面内点的坐标.可见二元一次不等式(组)的解集可以看成直角坐标系内的点构成的集合. 2. 画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特别是,当0C时,常把原点(0,0)作为测试点.

3. 直线0:CByAxl将平面分成两部分,则有“同正异负”,

即(1)),(),,(2211yxByxA在0:CByAxl的同侧02211CByAxCByAx;

(2)),(),,(2211yxByxA在0:CByAxl的异侧02211CByAxCByAx;

(3)),(),(2211yxByxA或在0:CByAxl上02211CByAxCByAx.

【基础练习】 1.画出满足下列条件的点的集合. 2

(1)01243yxyx;(2)9362323xyyxxyx;(3)0412yxyx 解:(1);(2); (3) 2.求不等式组3006xyxyx,表示的平面区域的面积.

解:画出所表示的平面区域为:如图三角形 易求得其面积为.36

3.已知)1,3()3,2(BA、,直线1:kxyl与线段AB相交,则k的取值范围为

20kk或.

【典型例题】 类型一 产品安排问题 3

例1 要将两种大小不同的钢板截成CBA、、三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示: 类型 A规格 B规格 C规格

第一种钢板 2 1 1 第二种钢板 1 2 3

今需要CBA、、三种规格的成品分别27,18,15块,用数学关系式和图形表示上述要求. 【审题要津】审题时注意CBA、、三种规格的成品既可能来自于第一种钢板,又可能来自第二种钢板,抓住这一联系表示不等关系;画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法. 解:设需要第一种钢板x张,第二种钢板y张,则





.00273182152yxyxyxyx

用图形表示为:

【方法总结】正确选择未知量(第一种钢板x张,第二种钢板y张)是正确表示不等关系的前提;画平面区域的基本步骤:先由直线定界,再由特殊点确定所求区域为直线的哪侧;画平面区域时一定要注意边界是实线还是虚线. 类型二 下料问题 例2 一个化肥厂生产甲、乙两种肥料,生产1车皮甲种肥料的主要原料是磷酸盐t4、硝酸盐t18;生产1车皮乙种肥料需要的主要原料是磷酸盐t1、硝酸盐t15.现库存磷酸盐t10、硝酸盐t66,在此基础上生产甲、乙两种肥料,列出满足生产条件的数学关系式,并

画出相应的平面区域. 【审题要津】审题时要注意实际意义对变量的限制;画图时要注意特殊与一般相结合. 解:设yx,分别为生产甲、乙两种混合肥料的车皮数,于是满足以下条件为:





.00661518104yxyxyx

;在直角坐标系中画出其对应的区域为: 4

【方法总结】认真审题将实际问题抽象成不等式组,并画出平面区域是下一步解题的关键. 类型三 物资调运问题 例3 某矿山车队有4辆载重为10t的甲型卡车和7t辆载重为6t的乙型卡车,有9名驾驶员.此车队每天至少要运360矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式,并画出表示的平面区域. 【审题要津】对比产品安排、下料问题中自变量x、y的设法,恰当选择每天派出甲型卡车、乙型卡车的辆数作自变量为突破口,便于找到不等关系.画平面区域时,不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分. 解:设每天派出甲型卡车x辆,乙型卡车y辆,则





7040360866109yxyxyx

,即





704030459yxyxyx

.其平面区域表示为:.

【方法总结】本题用驾驶员人数限制车辆数,故甲型卡车和乙型卡车的总和不能超过驾驶员人数,这个不等式关系易忽略,所以在解决此类问题时,一定要留意所给材料中的数字,弄清其出现的意义,才能完整地写出所有的不等关系. 【变式练习】2005年12月,由于松花江上游化工厂发生爆炸事件,化工原料泄露,造成哈尔滨城市用水污染.为保证该市用水,某公司接受向该地区每天至少运180吨饮用水的任务,该公司有8辆载重为6吨的A型卡车与4辆载重为10吨的B型卡车,有10名驾驶员,每辆卡车每天往返的次数为A型卡车4次,B型卡车3次,每辆卡车每天往返的成本费A型卡车为320元,B型卡车为500元,公司每天最多可以提供资金3200元.用数学的角度来分析一下该公司调配车辆所受到的限制. 5

解:设每天调出A型卡车x辆,B型卡车y辆. 由条件得:32005003201803024104080yxyxyxyx 用平面区域表示为:

. 1.如图,阴影部分表示的区域可用二元一次不等式组表示的是:A.

;02201yxyxA



01022yxyx

B;02201yxyxC;



.02201yxyx

D

2. 完成一项装修工程,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资2000元,设木工、瓦工分别yx,人,用不等式表示请工人的范围是B. 6

;,20004050NyNxyxA

;,20004050NyNxyxB

;,20004050NyNxyxC;



.,20005040NyNxyx

D

3.图书馆新进60本文学名著只供两个文科班戒赌,规定每位同学最多借一本,每班至少借10本,若两个班级借书的人数分别是yx,,则yx,满足的不等关系用不等式表示正确

的是C.





101060.yxyxA;2010yxyxB;





**,101060NyNxyxyx

D





**,101060NyNxyxyx

C;

4.某高速公路对行驶的各种车辆的速度的最大限速为,行驶过程中,同一车道上的车间距不得小于,用不等式表示用.A.



2010yxyx

A;

);(10)/(120mdhkmvB或

).(10)();/(120mdDhkmvC

5.某工厂生产甲、乙两种产品,其产量分别为45个与53个,所用原料为A、B两种规 7

格金属板,每张面积分别为22cm与23cm.用A种规格金属板可造甲种产品3个,乙种产品5个;用B种规格金属板可造甲种产品6个,乙种产品6个.以A、B两种金属板各取的张数为变量,写出满足上述所有不等关系的不等式,并画出平面区域. 解:设A、B两种金属板各取x张、y张,则满足条件的所有不等关系的不等式组为:





0055654563yxyxyx

画出平面区域为:. 6.购买8角邮票和2元邮票若干张,并且每种邮票至少买两张,如果你最多可购买10元钱的邮票,写出两种邮票的张数满足的不等关系的不等式组,并画出平面区域.

解:设买8角邮票x张,2元邮票y张,则*,221028.0Nyxyxyx;

画出平面区域为:. 7.某电脑用户计划使用不超过500元的资金购买单价为60元、70元的单片软件和盒装磁盘,根据需要,软件至少购买3片,磁盘至少购买2盒,写出上述所有不等关系的不等式,并画出平面区域.

解:设买软件x件,磁盘y件,则*,235076Nyxyxyx

相关文档
最新文档