第四章波动和超声波..

合集下载

超声知识点全

超声知识点全

超声波:其本质为高频变化的压力波。

其频率超过成人听觉阈值的上限,以波动的形式在物质内传播而不能在真空内传播。

超声波的一般性质1.波形:①.纵波:介质中质点方向与波传播方向平行者称为纵波。

②横波:介质中质点方向与波传播方向垂直着称为横波。

③表面波2.频率:每秒振动的次数称为频率。

超声波的频率在20kHz以上,诊断用超声波频率多在1~2岫间。

3.周期:为一次完整的压力波变化(或振动)所需时间。

4.声传播速度:超声波在不同介质中的传播速度不同,同一介质温度高低不同亦具差别。

(血浆1571m/s, 软组织1500m/s。

)5.波长:为超声波在介质中传播时,一次完整周期所占空间长度。

波长,频率与声速间的关系:入=c/f 超声成像原理:A型:一维波形图。

B型:二维波形图。

M型:是一种单声束超声心动图(目前它一般不单独使用,与B型和D型组合用于心脏检查。

(临床常用探头:电子凸阵探头,电子线阵探头,电子扇形探头)①A型即幅度调制型,是以幅度的高低来表示接受到的回波信号的强弱。

仅观测沿超声脉冲波传播方向上各个点的回波强弱情况,属于一维超声,只对观测目标的测距定位有一定意义。

②M型又称作时间一运动型,它是在声束传播方向上先将各目标的位移轨迹以时间一位置曲线的形式展现,在显示屏上以卷轴显示的方式表现出来的成像方式。

M型超声用于检测人体中的运动器官,特别是诊断心脏的各种疾病,故M超又称为超声心动仪。

③B型即亮度调制显示,是以显示器上光点的亮度来表示脉冲回波信号的强弱,回波越强,光点越亮。

人体不同组织的声学特征I强回声强回声伴有声影:胆结石(边缘清晰声影),胸膜肺组织(边缘模糊声影)强回声伴有可疑声影:前列腺较小结石强回声/较强回声(不伴有声影):多数脏器的包膜,囊肿壁,肾中央区,肝脏小血管瘤,前列腺小结石II等回声(中等水平回声):肝脏实质,心肌,子宫肌壁III弱回声(低水平回声)典型弱回声/较低水平回声:皮下脂肪微弱回声(极低水平回声):血液、动静脉管腔IV无回声:正常的胆汁、尿液、脑脊液、玻璃体原发性甲状腺功能亢进症是指甲状腺激素分泌增加而导致的高代谢和基础代谢增加,为自身免疫性疾病,多见于20-40岁青年女性,情绪易激动、心悸、多汗、消瘦、手足震颤、眼突等症状。

超声波探伤教材

超声波探伤教材
超声波探伤
第一章 超声波检测的物理基础
一、波动 (一)振动与波 物体或质点在某一平衡位置附近作往复运
动,这种运动状态就叫做机械振动,简称 振动。如果物体或质点作周期性直线振动, 它离开平衡位置的距离与时间可以用正弦 或余弦函数表示,称为简谐振动。 这是最基本最重要的周期性直线振动。
适用的频率
超声波探伤常用的频率为 0.25MHz~15MHz。
对金属材料一般频率为 0.5~10MHz。
钢结构焊缝常用频率为1~5MHz。 陶瓷常用频率则为2.25~10MHz。 对铸铁、非金属声衰减强烈的粗晶材料,
甚至采用25KHz~0.25MHz 的频率。
(二)超声波的特性之一
T为周期,振子Q在平衡位置附近振动一次所需要的时间;
f为频率,单位时间内振子Q振动次数,与周期互为倒数, 即f=1/T。赫兹(Hz)单位为每秒振动一次1兆赫为1MHz;
(ωt+φ)为相位角,振子Q在振动过程中某一瞬间(t时刻) 所处的位置。在t=0时刻的相位角,称为初始相位;
ω为圆频率,表示在秒内的振动周期数? (每振动一次时间为360度)。
思考
为什么超声波会在工件中衰减?什么是第一、 第二、第三临界角?什么时候纵波入射会产生 横波全反射现象?超声检测底波高度法调节仪 器应满足的条件是什么?为什么超声纵波直探 头在钢中近场长度比水中的短?
横波 振动方向垂直于播向 固体介质
焊缝、钢管探伤
表面波 质点椭圆运动,

长轴垂直播向
固体介质
钢管、薄板探伤

短轴平行播向
板波 对称(S)型

上下表面:椭圆运动


中心:纵向振动
固体介质(波长薄板)薄板薄壁管探

超声波的物理特性及医学应用

超声波的物理特性及医学应用

超声波的物理特性及医学应用超声波是一种频率高于人类听觉范围的机械波,波长短于可见光波长的一种波动形式。

它在物理学和医学中有着广泛的应用,其物理特性和医学应用均为我们所熟知。

超声波的物理特性包括频率高、波长短、能量强、穿透力强等特点。

超声波的频率通常在20 kHz到1 GHz之间,远远超出了人类听觉的范围。

波长短于可见光波长,因此在物质中传播时,超声波能够穿透并产生回波,这使得超声波成为了一种理想的成像工具。

超声波能量强,穿透力强,能够穿透人体组织,因而被广泛应用于医学成像和治疗中。

在医学应用方面,超声波已经成为了一种重要的医疗工具。

超声波成像技术被广泛应用于医学影像学中,如超声心动图、超声造影、超声血流动力学等。

通过超声波成像技术,医生可以清晰地看到人体内部器官的结构和功能,从而诊断疾病和指导治疗。

而且,超声波成像技术还具有即时、无辐射和低成本等优点,因此被认为是一种理想的影像学检查手段。

超声波在医学中还被广泛应用于治疗。

超声波治疗技术是一种无创伤的治疗手段,通过超声波的热效应和机械效应对病灶进行治疗。

常见的超声波治疗包括超声波消融治疗、超声波手术刀和超声波射频治疗等,它们被广泛应用于肿瘤治疗、疼痛治疗、美容整形等领域。

超声波治疗技术具有无创伤、局部作用、可靶向等优点,因此备受医生和患者的青睐。

超声波在医学中还被应用于超声心血管造影、超声导航手术、超声检测等领域。

超声心血管造影技术是一种无创伤的心脏和血管成像技术,通过超声波对心脏和血管进行准确成像,帮助医生诊断心血管疾病。

超声导航手术技术则是一种利用超声波引导手术的技术,通过超声波成像对手术器械和病灶进行准确定位,能够提高手术的精确度和安全性。

超声波作用的原理

超声波作用的原理

超声波作用的原理
超声波是一种频率超过人类能听到的声音的波形,其工作原理可以通过以下几个方面进行描述:
1. 压电效应:超声波的发射和接收通过压电效应实现。

压电材料具有特殊的物理性质,可以在电压的作用下发生形变,同时也可以在受力的作用下产生电压。

当施加电压到压电晶体上时,晶体会发生压缩或拉伸,从而产生超声波。

2. 纵波传播:超声波是一种纵波,类似于空气中的声音波。

纵波是沿着波的传播方向推动介质分子振动的波动。

超声波在介质中传播时,会通过分子的压缩和膨胀产生压力变化,将能量传递给周围分子。

3. 衰减和反射:超声波在介质中传播时,会发生衰减和反射。

衰减是由于介质的吸收和散射,能量逐渐减少;反射是当超声波遇到界面时,部分能量被反射回来。

利用超声波的衰减和反射特性,可以测量距离、检测缺陷等。

4. 驻波效应:当超声波传播到一定距离后,会发生驻波效应。

驻波是指波的传播方向上的正向波和反向波之间发生干涉形成的固定位置的波峰和波谷。

利用驻波效应,可以对介质中的材料性质进行检测和分析。

超声波的应用非常广泛,包括医学、无损检测、测量领域等。

通过利用超声波的原理,可以实现材料的检测、成像、清洗和治疗等功能。

《波的形成和传播》示范教案

《波的形成和传播》示范教案

《波的形成和传播》示范教案第一章:引言1.1 课程简介本课程旨在帮助学生了解波的形成和传播的基本原理,通过学习波动现象,使学生能够运用物理知识分析实际问题。

1.2 教学目标(1)了解波的定义及分类;(2)掌握波的形成和传播条件;(3)学会用波动方程描述波的行为。

1.3 教学方法采用讲授、实验、讨论相结合的方法,引导学生主动探究波的形成和传播规律。

第二章:波的分类和特点2.1 机械波2.1.1 定义:机械波是机械振动在介质中的传播过程。

2.1.2 分类:纵波和横波2.1.3 特点:纵波振动方向与波传播方向相同,横波振动方向与波传播方向垂直。

2.2 电磁波2.2.1 定义:电磁波是电磁场在空间中的传播过程。

2.2.2 分类:无线电波、微波、红外线、可见光、紫外线、X射线、γ射线2.2.3 特点:电磁波传播不需要介质,速度恒定为光速。

2.3 声波2.3.1 定义:声波是机械振动在气体、液体和固体中的传播过程。

2.3.2 特点:声波传播需要介质,速度随介质性质变化而变化。

第三章:波的形成和传播条件3.1 波的形成3.1.1 振源:振源是产生波动的源头,可以是简谐振动或非简谐振动。

3.1.2 介质:介质是波传播的媒介,可以是气体、液体和固体。

3.2 波的传播3.2.1 连续介质:连续介质是指介质中任意两点相互连接。

3.2.2 非连续介质:非连续介质是指介质中存在间断现象。

3.2.3 波的传播条件:波在介质中传播需满足连续性和波动方程。

第四章:波动方程及其性质4.1 简谐波的波动方程4.1.1 一维波动方程:y = Acos(kx ωt + φ)4.1.2 二维波动方程:u = Acos(kx ωt + φ)4.2 波动方程的性质4.2.1 波动方程中的各参数含义:A为振幅,k为波数,ω为角频率,φ为初相位。

4.2.2 波动方程的解:波动方程可以表示不同类型的波,如平面波、球面波等。

4.2.3 波动方程的变换:通过变换可以分析波在不同介质中的传播特性。

声波透射法

声波透射法
声波透射法检测技术
1
声波透射法检测技术
目录
第一章 声波法透射法的基本原理 第二章 现场测试方法
第三章 数据分析与判断
第四章 工程实例
2
第一章 声波法透射法的基本原理
一、波动与声波的概念
波动:在空间某处发生的扰动,以一定的速度由 近及远地传播,这种传播着的扰动称为波动。分 为机械波和电磁波。
机械波:机械扰动在介质内的传播形成的波,如应 力波、水波、声波等。 电磁波:电磁扰动在真空或介质内的传播形成的波, 如无线电波、光波、红外线等
3
第一章 声波法透射法的基本原理
声波:是在介质中传播的机械波,依据波动频率 的不同分为:
次声波:0~2×101Hz 可闻声波:2×101Hz~2×104Hz 超声波:2×104Hz~1010Hz 特超声波:>1010Hz
用于混凝土声波透射法检测的声波频率一般为: 2×104Hz~2.5×1010Hz
为可能异常点
17
第三章 数据分析与判定
四、桩身完整性类别判定
18
第三章 数据分析与判定
五、几个问题
(一)应变测试中的波速与声波透法测试波速的比较
1、波型相同,均为纵波,检测对象相同。 2、波长不同:低应变中的应力波波长量级为米,而声波透 法中的波长为厘米级。 3 、频率不同:低应变:几百赫兹,而声波透法:30~50kHz 4 、波速不同:低应变:平均波速3750m/s,
同样依据质点振动方向与波的传播方向的可分为: 纵波、横波及表面波。
4
第一章 声波法透射法的基本原理
二、检测原理
声波透射法是在桩内预埋若干根平行于桩的纵轴的声测管 道,将超声探头通过声测管道直接伸入桩身混凝土内部进 行逐点、逐段探测。其基本原理是根据声波脉冲波穿越被 测混凝土时,声学参数(声时、声速、频率、能量及波形 等)的变化反映缺陷的存在,分析这些声学参数的变化来 评判桩身的完整性。

超声波检测讲义

超声波检测讲义(UT)无损检测培训资料--超声波检测通用工艺规程1.主要内容与适用范围本规程规定了焊缝超声检测人员具备的资格、仪器、探头、试块、检测技术方法和质量分级等。

本规程适用于本公司生产的厚度为6mm~30mm钢制承压设备全熔化焊的超声检测。

不适用于铸钢及奥氏体钢焊缝,外径小于159mm的钢管对接焊缝,内径小于或等于250mm或内外径之比小于80%的纵向焊缝检测。

本规程按JB4730的要求编写,符合《容规》和GB150等要求。

检测工艺卡是本规程的补充,由Ⅱ级人员按本规程等要求编制,其检测参数规定的更具体。

2.引用标准、法规JB/T4730-2005《承压设备无损检测》GB150-1998《钢制压力容器》JB/T9214-1999《A型脉冲反射式超声波探伤系统工作性能测试方法》JB/T10061-1999《A型脉冲反射式超声波探伤仪通用技术条件》JB/T10062-1999《超声探伤用探头性能测试方法》3.检测人员3.1检测人员必须经过培训,按《特种设备无损检测人员考核与监督管理规则》的要求。

经理论和实践考试合格,取得相应等级资格证书的人员担任。

3.1.1检测人员每年应检查一次身体,其矫正视力不低于1.0。

4.探伤仪、探头和试块4.1探伤仪采用A型脉冲反射式超声波探伤仪器,其工作频率范围为0.5 MHz~10MHz,仪器至少在荧光屏满刻度的80%范围内呈线性显示。

仪器应具有80dB以上的可调衰减器,步进级每档不大于2Db,其精度为任意相邻12 dB的误差在±1dB 以内,最大累计误差不超过1dB.。

水平线性误差不大于1%,垂直线性误差不大于5%。

4.2探头4.2.1晶片面积一般不应超过500mm2,且任意一边长原则上不大于25 mm 。

4.2.2单斜探头声束轴线水平偏离角不应大于2度,主声束垂直方向不应有明显的双峰。

4.3仪器和探头的系统性能4.3.1在达到所检工件的最大检测声程时,其灵敏度余量应≥10dB。

大一物理知识点总结分章节

大一物理知识点总结分章节大一物理知识点总结第一章:力学1.1 物体和力1.1.1 物体的质量和体积1.1.2 力的概念和特点1.2 运动学1.2.1 位移、速度和加速度1.2.2 直线运动和曲线运动1.2.3 牛顿第一定律和第二定律1.3 力学中的能量1.3.1 动能和势能1.3.2 动能定理和机械能守恒定律1.4 静力学1.4.1 平衡条件和力的合成1.4.2 浮力和密度的关系第二章:热学2.1 温度和热量2.1.1 温度的测量和单位2.1.2 热量的传递和能量守恒定律2.2 热力学定律2.2.1 理想气体定律2.2.2 热传导和传热方式2.2.3 热机和热效率第三章:电学3.1 静电学3.1.1 电荷和库仑定律3.1.2 电场和电势3.2 电流和电阻3.2.1 电流的概念和测量3.2.2 电阻的概念和欧姆定律 3.2.3 欧姆定律的应用3.3 电路和电源3.3.1 并联电路和串联电路3.3.2 电源的类型和特点第四章:光学4.1 光的传播和光的特性4.1.1 光的传播模型4.1.2 光的直线传播和光的反射4.2 光的折射和色散4.2.1 光的折射定律4.2.2 光的色散和光的全反射4.3 光的成像和光学仪器4.3.1 光的成像原理4.3.2 凸透镜和凹透镜的成像第五章:波动与声学5.1 机械波的传播性质5.1.1 机械波的分类和传播特性5.1.2 波的叠加和波的干涉5.2 声音的产生和传播5.2.1 声音的产生原理和声音的特性5.2.2 声音的传播和声音的衰减5.3 声学应用和超声波5.3.1 声音的应用领域5.3.2 超声波的产生和应用以上为大一物理知识点总结的基本章节内容,每个章节可以进一步展开相关知识点的详细解释和应用案例。

希望这份总结对你的学习有所帮助!。

物理学中的波动和振动教学设计方案


波的反射和折射
01 反射定律
描述波在界面上的反射规律
02 折射定律
描述波在界面上的折射规律
03 常见现象
波在界面上的入射、反射和折射
多普勒效应
频率变化
应用广泛
实际解释
描述波源和观察者相对运 动时频率的变化
在声音和光学领域有广泛 应用
理解多普勒效应有助于解 释观测到的现象
驻波和波包
驻波是在特定条件下 形成的稳定波动模式, 而波包是波动在空间 中的集中能量传播形 式。这些是波动中常 见且重要的现象。
02 挑战与思考
困难促使学生探索和思考
03 应用知识解决问题
实践提升学生问题解决能力
课程总结
全面介绍内容
基本理论 应用实例
加深理解
案例分析 实验操作
未来发展
探索方向 科技兴趣培养
技术创新
领域拓展 学生潜力挖掘
展望未来
深入研究波动和振动领域,拓展应用和理论。交 叉融合促进跨学科研究与技术创新。培养学生对 科学的热爱与追求,服务未来社会发展。
应用展示
声学应用
学生制作声音信 号发生器
其他应用
学生展示了各种 波动和振动应用
成果
光学应用
学生进行光学干 涉实验
教学反思
教师在课程设计和实 施中注重理论与实践 的结合,引导学生主 动参与和探索。重视 学生独立思考和问题 解决能力的培养,通 过反思和评估不断改 进教学方法和内容。 教师的教育使命是为 学生提供更好的教育 资源和服务,促进学 生全面发展和社会进 步。
结束语
感谢学生
认真学习参与
展望未来
充满挑战机遇
祝愿学生
保持对科学热爱
● 06

超声波

第一部分专业知识1、机械振动⑴、振动-物体沿直线或曲线在某一平衡位臵附近作往复周期性运动称为机械振动。

⑵、振动的周期和频率T=1/f超声波是机械波 X射线属于电磁波。

⑶、波动是振动形式和振动能量的传播过程,波动过程中介质质点不发生迁移⑷、波长、频率和波速λ=C/f波长与频率成反比,与波速成正比。

超声探头发生的波是活塞波。

4、超声的的传播速度⑴、固体中的声速与介质的密度和弹性模量有关,还与波的类型的关。

①不同介质,声速不同;介质的弹性模量愈大,密度愈小,声速愈大。

②在同一固体介质中,纵波、横波和表面波的声速各不相同,并且有以下关系:CL>CS>CR⑶、板波的波速与频率和板厚有关,它是f·d 的函数。

波的绕射和障碍物尺寸D f及波长λ的相对大小有关。

当D f <<λ时,波的绕射强,当D f>>λ时,反射强,绕射弱,声波几乎全反射。

⑵声阻抗Z超声场中任意一点的声压与该处质点振动速度之比称为声阻抗。

声阻抗的大小等于介质密度和声速的乘积。

Z=ρc⑶、声强I单位时间内垂直通过单位面积的声能称为声强。

Z P I 22=在同一介质中,超声波的声强与声压的平方成正比。

8、超声波垂直入射到界面时的反射和透射 ⑴、声压反射率和声压透射率①声压反射率:1212Z Z Z Z r +-=②声压透射率:1222Z Z Z t +=③ T+R=1①超声波垂直入射到平界面时,声压或声强的分配比例与界面两侧介质的声阻抗有关。

②声阻抗差越大,声压反射率越大。

当Z 1>>Z 2或Z 2 >>Z 1时,声波几乎全射,无透射。

③声阻抗差越小,声压反射率越小,声压透射率越大。

当Z 1≈Z 2时,声波几乎全透射,无反射。

在底面全反射的情况下,声压往复透射率:2221211)(4rZ Z Z Z T -=+=往与声强透射率数值相等。

若底面反射率为:2323'Z Z Z Z r +-=则声压往复透射率为:')1(2r r T ⋅-=往③波型转换:超声波斜入射至界面时,除产生同种波型的反射和折射波外,不产生不同类型的反射和折射波,这种现象称为波型转换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档